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Achievable Rate Regions for Network Coding
Randall Dougherty, Chris Freiling, and Kenneth Zeger, Fellow, IEEE

Abstract— Determining the achievable rate region for networks
using routing, linear coding, or nonlinear coding is thought to be
a difficult task in general, and few are known. We describe the
achievable rate regions for four interesting networks (completely
for three and partially for the fourth). In addition to the known
matrix-computation method for proving outer bounds for linear
coding, we present a new method that yields actual characteristic-
dependent linear rank inequalities from which the desired bounds
follow immediately.

Index Terms— Shannon capacity, routing, entropy, information
theory.

I. INTRODUCTION

IN THIS paper, a network is a directed acyclic multigraph
G = (V , E), some of whose nodes are information sources

or receivers (see [22]). Associated with the sources are m
generated messages, where the i th source message is assumed
to be a vector of ki arbitrary elements of a fixed finite
alphabet, A, of size at least 2. At any node in the network,
each out-edge carries a vector of n alphabet symbols which is
a function (called an edge function) of the vectors of symbols
carried on the in-edges to the node, and of the node’s message
vectors if it is a source. Each network edge is allowed to be
used at most once (i.e. at most n symbols can travel across
each edge). It is assumed that every network edge is reachable
by some source message. Associated with each receiver are
one or more demands; each demand is a network message.
Each receiver has decoding functions which map the receiver’s
inputs to vectors of symbols in an attempt to produce the
messages demanded at the receiver. The goal is for each
receiver to deduce its demanded messages from its in-edges
and source messages by having information propagate from
the sources through the network.

A (k1, . . . , km, n) fractional code is a collection of edge
functions, one for each edge in the network, and decoding
functions, one for each demand of each node in the
network. A (k1, . . . , km, n) fractional solution is a
(k1, . . . , km, n) fractional code which results in every
receiver being able to compute its demands via its decoding
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functions, for all possible assignments of length-ki vectors
over the alphabet to the i th source message, for all i .

Special codes of interest include linear codes, where the
edge functions and decoding functions are linear, and routing
codes, where the edge functions and decoding functions simply
copy specified input components to output components.1

Special networks of interest include multicast networks, where
there is only one source node and every receiver demands all
of the source messages, and multiple-unicast networks, where
each network message is generated by exactly one source
node and is demanded by exactly one receiver node.

For each i , the ratio ki/n can be thought of as the rate at
which source i injects data into the network. If a network has
a (k1, . . . , km , n) fractional solution over some alphabet, then
we say that (k1/n, . . . , km/n) is an achievable rate vector,
and we define the achievable rate region of the network as
the following convex hull2

S = CHULL({r ∈ Qm : r is an achievable rate vector})
where Q is the set of all rational numbers. Every vector
in the achievable rate region can be effectively achieved by
time-sharing between two achievable points (since it is a
convex combination of those achievable points).

Determining the achievable rate region of an arbitrary
network appears to be a formidable task. Alternatively, certain
scalar quantities that reveal information about the achievable
rates are typically studied. For any (k1, . . . , km, n) fractional
solution, we call the scalar quantity

1

m

(
k1

n
+ · · · + km

n

)

an achievable average rate of the network. We define the
average coding capacity of a network to be the supremum
of all achievable average rates, namely

Caverage = sup

{
1

m

m∑
i=1

ri : (r1, . . . , rm) ∈ S

}
.

Similarly, for any (k1, . . . , km, n) fractional solution, we call
the scalar quantity

min

(
k1

n
, . . . ,

km

n

)

1If an edge function for an out-edge of a node depends only on the symbols
of a single in-edge of that node, then, without loss of generality, we assume
that the out-edge simply carries the same vector of symbols (i.e. routes the
vector) as the in-edge it depends on.

2There is some variation in the definition and terminology in the literature.
Some authors use the term “capacity region” or “rate region”. Alternative
definitions of the region have been defined as the topological closure of S or
without the convex hull.
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an achievable uniform rate of the network. We define the
uniform coding capacity of a network to be the supremum
of all achievable uniform rates, namely

Cuniform = sup{min(r1, . . . , rm) : (r1, . . . , rm) ∈ S}.
Note that for any r ∈ S and r′ ∈ Rm , if each component
of r′ is nonnegative, rational, and less than or equal to the
corresponding component of r, then r′ ∈ S. In particular, if
(r1, . . . , rm) ∈ S and

ri = min
1≤ j≤m

r j

then (ri , ri , . . . , ri ) ∈ S, which implies

Cuniform = sup{ri : (r1, . . . , rm) ∈ S, r1 = · · · = rm}.
In other words, all messages can be restricted to having the
same dimension k1 = · · · = km when considering Cuniform.
Also, note that

Cuniform ≤ Caverage.

The quantities Caverage and Cuniform are attained by points on
the boundary of S. It is known that not every network has
a uniform coding capacity which is an achievable uniform
rate [7].

If a network’s edge functions are restricted to purely routing
functions, then we write the capacities as Caverage

routing and Cuniform
routing ,

and refer to them as the average routing capacity and uniform
routing capacity, respectively. Likewise, for solutions using
only linear edge functions, we write Caverage

linear and Cuniform
linear and

refer to them as the average linear capacity and uniform linear
capacity, respectively.

Given random variables x1, . . . , xi and y1, . . . , y j , we write

x1, . . . , xi −→ y1, . . . , y j

to mean that y1, . . . , y j are deterministic functions of
x1, . . . , xi . We say that x1, . . . , xi yield y1, . . . , y j .

In this paper, we study four specific networks, namely
the Generalized Butterfly network, the Fano network, the
non-Fano network, and the Vámos network. The last three of
these networks were shown to be matroidal in [8] and various
capacities of these networks have been computed. However,
the full achievable rate regions of these networks have not
been previously determined, to the best of our knowledge.
These particular networks were chosen to demonstrate that a
wide variety of techniques can be useful for determining these
achievable rate regions. Some other work on achievable rates
and capacities has been done in [5], [15], and [21]. We note
that the derivations presented in this paper were often quite
challenging, even though in hindsight they may appear neat
and concise. We hope that some intuition can be learned from
the derivations present herein.

The Generalized Butterfly network (studied in Section II and
illustrated in Figure 1) has the same topology as the usual But-
terfly network [2], but instead of one source at each of nodes v1
and v2, there are two sources at each of these nodes. For each
of the source nodes, one of its source messages is demanded
by receiver v5 and the other by receiver v6. The usual Butterfly
network is the special case when messages a and d do not exist

Fig. 1. The Generalized Butterfly network. Source node v1 generates
messages a and b, and source node v2 generates messages c and d.
Receiver node v5 demands messages a and c, and receiver node v6 demands
messages b and d. The symbol vectors carried on edges e1,5, e3,4, and e2,6 are
denoted x , y, and z, respectively.

(or are just not demanded by any receiver). A large majority
of network coding publications mention in some context the
Butterfly network, so it plays an important role in the field.

The Fano network (studied in Section III and illustrated
in Figure 2) and the non-Fano network (studied in Section V
and illustrated in Figure 6) were used in [7] as components of
a larger network to demonstrate the unachievability of network
coding capacity. Specifically, in [7] the Fano network was
shown to be solvable if and only if the alphabet size is a power
of 2 and the non-Fano network was shown to be solvable if
and only if the alphabet size is odd. In [9], the Fano and
non-Fano networks were used to build a solvable multicast
network whose reverse (i.e. all edge directions change, and
sources and receivers exchange roles) was not solvable, in
contrast to the case of linear solvability, where reversals of
linearly solvable multicast networks were previously known
to be linearly solvable [16], [17], [20]. In [6], the Fano and
non-Fano networks were used to construct a network which
disproved a previously published conjecture asserting that all
solvable networks are vector linearly solvable over some finite
field and some vector dimension.

The Vámos network (studied in Section VII and illus-
trated in Figure 10) was used in [8] to demonstrate that
non-Shannon-type information inequalities could yield upper
bounds on network coding capacity which are tighter than
the tightest possible bound theoretically achievable using only
Shannon-type information inequalities. Here we completely
determine the routing and linear rate regions for the
Vámos network, but only give partial results for the non-linear
rate region (which indicate that it could be quite complicated).
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Fig. 2. The Fano network. Source nodes v1, v2, and v3 generate
messages a, b, and c, respectively. Receiver nodes v12, v13, and v14
demand messages c, b, and a, respectively. The symbol vectors carried on
edges e4,6, e8,10, e5,7, e9,11 are labeled as w, x , y, and z, respectively.

Finally, we present a new method for proving bounds
on achievable rate regions for linear coding, which actually
produces explicit linear rank inequalities which directly imply
the desired bounds.

II. GENERALIZED BUTTERFLY NETWORK

Theorem 1: The achievable rate regions for either linear or
non-linear coding are the same for the Generalized Butterfly
network and are equal to the closed polytope in R4 whose
faces lie on the 9 planes:

ra = 0
rb = 0
rc = 0
rd = 0

rb = 1

rc = 1

ra + rb + rc = 2

rb + rc + rd = 2

ra + rb + rc + rd = 3

and whose vertices are the 14 points:

(0, 0, 0, 0) (0, 0, 0, 2) (2, 0, 0, 0) (0, 1, 0, 0)

(0, 0, 1, 0) (2, 0, 0, 1) (1, 0, 0, 2) (0, 0, 1, 1)

(1, 1, 0, 0) (1, 0, 1, 1) (1, 1, 0, 1) (0, 1, 1, 0)

(0, 1, 0, 1) (1, 0, 1, 0).

Furthermore, the coding capacity and linear coding capacity
are given by:

Cuniform = Cuniform
linear = 2/3

Caverage = Caverage
linear = 3/4.

Proof: Consider a network solution over an alphabet A
and denote the source message dimensions by ka , kb, kc,
and kd , and the edge dimensions by n. Let each source be
a random variable whose components are independent and
uniformly distributed over A. Then the solution must satisfy
the following inequalities:

ka ≥ 0 (1)

kb ≥ 0 (2)

kc ≥ 0 (3)

kd ≥ 0 (4)

kb = H (b) = H (y|a, c, d) ≤ n (5)

kc = H (c) = H (y|a, b, d) ≤ n (6)

ka + kb + kc = H (a, b, c) = H (x, y|d)

≤ H (x, y) ≤ 2n (7)

kb + kc + kd = H (b, c, d) = H (y, z|a)

≤ H (y, z) ≤ 2n (8)

ka + kb + kc + kd = H (a, b, c, d) = H (x, y, z)

≤ 3n. (9)

(1)–(4) are trivial; (5) follows because

c, d, y −→ y, z −→ b, d

(at node v6), and therefore a, c, d, y −→ a, b, c, d and thus
H (a, b, c, d) = H (a, c, d, y); similarly for (6); (7) follows
because x, y −→ a, c (at node v5), c, d, y −→ b, d
(at node v6), and therefore

d, x, y −→ a, c, d, y −→ a, b, c, d

and thus H (a, b, c, d) = H (d, x, y); similarly for (8); (9) fol-
lows because x, y, z −→ a, b, c, d (at nodes v5 and v6).
Dividing each inequality in (1)–(9) by n gives the 9 bounding
hyperplanes stated in the theorem.

Let

ra = ka/n

rb = kb/n

rc = kc/n

rd = kd/n

and let P denote the polytope in R4 consisting of all
4-tuples (ra, rb, rc, rd ) satisfying (1)–(9). Then (1)–(4) and (9)
ensure that P is bounded. One can easily calculate that each
point in R4 that satisfies some independent set of four of
the inequalities (1)–(9) with equality and also satisfies the
remaining five inequalities must be one of the 14 points stated
in the theorem. Now we show that all 14 such points do indeed
lie in the achievable rate region, and therefore their convex
hull equals the achievable rate region. The following 5 points
are achieved by taking n = 1 with the following codes over
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any field (where, if ka = 2, the two components of a are
denoted a1 and a2):

(2, 0, 0, 1) : x = a1, y = a2, z = d
(1, 0, 0, 2) : x = a, y = d1, z = d2
(1, 0, 1, 1) : x = a, y = c, z = d
(1, 1, 0, 1) : x = a, y = b, z = d
(0, 1, 1, 0) : x = b, y = b + c, z = c

and the remaining 9 points are achieved by fixing certain
messages to be 0.

Since the above codes are all linear, the achievable rate
regions for linear and non-linear codes are the same.

By (9), we have Caverage ≤ 3/4, and this upper bound is
achievable by routing using the code given above for the point
(2, 0, 0, 1), namely taking x = a1, y = a2, and z = d . By (8),
we have Cuniform ≤ 2/3; since

(2/3)(1, 1, 1, 1) = (1/3)(1, 0, 1, 1) + (1/3)(1, 1, 0, 1)

+ (1/3)(0, 1, 1, 0)

the upper bound of 2/3 is achievable by a convex combination
of the linear codes given above for the points (1, 0, 1, 1),
(1, 1, 0, 1), and (0, 1, 1, 0), as follows. Take k = 2 and n = 3
and use the (linear) code determined by:

x = (a1, a2, b2)
y = (c1, b1, b2 + c2)
z = (d1, d2, c2).

Theorem 2: The achievable rate region for routing for the
Generalized Butterfly network is the closed polytope in R4

bounded by the 9 planes in Theorem 1 together with the plane

rb + rc = 1

and whose vertices are the 13 points:

(0, 0, 0, 0) (0, 0, 0, 2) (2, 0, 0, 0) (0, 1, 0, 0)
(0, 1, 0, 1) (0, 0, 1, 0) (2, 0, 0, 1) (1, 0, 0, 2)
(0, 0, 1, 1) (1, 0, 1, 0) (1, 1, 0, 0) (1, 0, 1, 1)
(1, 1, 0, 1).

Furthermore, the routing capacities are given by:

Cuniform
routing = 1/2

Caverage
routing = 3/4.

Proof: With routing, in addition to the inequalities (1)–(9),
a solution must also satisfy

kb + kc ≤ n (10)

since all of the components of messages b and c must be
carried by the edge labeled y. One can show that each point
in R4 that satisfies with equality some independent set of
four of the inequalities (1)–(9) and (10) and also satisfies
the remaining six inequalities must be one of the 13 points
stated in this theorem (i.e. 13 of the 14 points stated in
Theorem 1 by excluding the point (0, 1, 1, 0)). The proof of
Theorem 1 showed that all vertices of P except (0, 1, 1, 0)
were achievable using routing.

Fig. 3. The achievable coding rate region for the Fano network is a 7-sided
polyhedron with 8 vertices.

By (10), we have Cuniform
routing ≤ 1/2, and this upper bound is

achievable, for example, by taking a convex combination of
codes that achieve (1, 0, 1, 0) and (0, 1, 0, 1), as follows. Take
k = 1 and n = 2 and use the routing code determined by:

x = (0, a)

y = (b, c)

z = (d, 0).

The capacity Caverage
routing = 3/4 follows immediately from the

proof of Theorem 1.

III. FANO NETWORK

Theorem 3: The achievable rate regions for either linear
coding over any finite field alphabet of even characteristic or
non-linear coding are the same for the Fano network and are
equal to the closed polyhedron in R3 whose faces lie on the
7 planes (see Figure 3):

ra = 0

rb = 0

rc = 0

ra = 1

rc = 1

rb + rc = 2

ra + rb = 2
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and whose vertices are the 8 points:

(0, 0, 0) (0, 0, 1) (1, 0, 0) (0, 2, 0)

(0, 1, 1) (1, 0, 1) (1, 1, 0) (1, 1, 1).

Proof: Consider a network solution over an alphabet A
and denote the source message dimensions by ka , kb, and kc,
and the edge dimensions by n. Let each source be a random
variable whose components are independent and uniformly
distributed over A. Then the solution must satisfy the fol-
lowing inequalities:

ka ≥ 0 (11)

kb ≥ 0 (12)

kc ≥ 0 (13)

ka = H (a) = H (z|b, c) ≤ H (z) ≤ n (14)

kc = H (c) = H (y|a, b) ≤ H (y) ≤ n (15)

kb + kc = H (b, c) = H (x, z|a) ≤ H (x, z) ≤ 2n (16)

ka + kb = H (a, b) = H (x, z|c) ≤ H (x, z) ≤ 2n. (17)

(11)–(13) are trivial; (14) follows because

z, b, c −→ z, y −→ a

(at node v14), so z, b, c −→ a, b, c and thus
H (z, b, c) = H (a, b, c); (15) follows because

a, b, y −→ a, w, y −→ a, x −→ c

(at node v12), so a, b, y −→ a, b, c and thus
H (a, b, y) = H (a, b, c); (16) follows because

a, x, z −→ a, b, c

(at nodes v12 and v13) and thus H (a, x, z) = H (a, b, x);
(17) follows from: x, z −→ b (at node v13), b, c −→ y
(at node v5),

x, z, c −→ z, b, c −→ y, z, b, c −→ a, b, c

so H (x, z, c) = H (a, b, c). Dividing each inequality
in (11)–(17) by n gives the 7 bounding planes stated in the
theorem.

Let ra = ka/n, rb = kb/n, and rc = kc/n, and let P
denote the polygon in R3 consisting of all 3-tuples (ra, rb, rc)
satisfying (11)–(17). Then P is bounded by (11)–(17). One can
easily calculate that each point in R3 that satisfies some set
of three of the inequalities (11)–(17) with equality and also
satisfies the remaining four inequalities must be one of the
8 points stated in the theorem. Now we show that all 8 such
points do indeed lie in P . The following 5 points are seen to
lie in P by taking n = 1 and the following codes over any
even-characteristic finite field

(0, 1, 1) : x = y = c, w = z = b

(1, 0, 1) : x = y = c, w = z = a

(1, 1, 0) : x = y = b, w = z = a

(0, 2, 0) : x = y = b1, w = z = b2

(1, 1, 1) : w = a+b, y = b+c, x = a+c, z = a+b+c

and the remaining 3 points are achieved by fixing
certain messages to be 0 (note that the codes

Fig. 4. The achievable linear coding rate region over even-characteristic
finite fields for the Fano network is a 8-sided polyhedron with 8 vertices.

for (0, 1, 1), (1, 0, 1), and (1, 1, 0) can be obtained from the
linear code for (1, 1, 1) but we gave routing solutions for
them here).

Since the above codes are all linear, the achievable rate
regions for linear and non-linear codes are the same.

It was shown in [6] that for the Fano network,
Caverage = Cuniform = 1 and Cuniform

linear = 1 for all
even-characteristic fields and Cuniform

linear = 4/5 for all odd-
characteristic fields. The calculation of Cuniform

linear = 4/5 in [6]
required a rather involved computation. We now extend that
computation to give the following theorem.

Theorem 4: The achievable rate region for linear coding
over any finite field alphabet of odd characteristic for the
Fano network is equal to the closed polyhedron in R3 whose
faces lie on the 8 planes (see Figure 4):

ra = 0
rb = 0
rc = 0
ra = 1
rc = 1

ra + 2rb + 2rc = 4
2ra + rb + 2rc = 4
2ra + 2rb + rc = 4

and whose vertices are the 10 points:

(0, 0, 0) (0, 0, 1) (1, 0, 0) (0, 2, 0)
(0, 1, 1) (1, 0, 1) (1, 1, 0)
(2/3, 2/3, 1) (1, 2/3, 2/3) (4/5, 4/5, 4/5).
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Proof: In addition to satisfying the conditions (11)–(17),
the solution must satisfy the following inequalities:

ka + 2kb + 2kc ≤ 4n (18)

2ka + kb + 2kc ≤ 4n (19)

2ka + 2kb + kc ≤ 4n. (20)

The proofs of these inequalities are given in Section IV, and
an alternate proof of (19) is given in Section VIII-A.

A straightforward argument as in previous theorems shows
that the vertices of the (bounded) region specified by inequal-
ities (11)–(15) and (18)–(20) (inequalities (16) and (17) are
now redundant) are the ten vertices listed in the theorem. For
the first seven of these, the codes given in Theorem 3 work
here as well; the remaining points are attained by the following
three codes (the last of which was given in [6]):

(1, 2/3, 2/3) : n = 3,

w = (a1 + b1, a2 + b2, a3)

x = (a1 − c1, a2 − c2, a2 + b2)

y = (b1 + c1, b2 + c2, b1)

z = (a1 + b1 − c1, a2 + b2 + c2, a3)

(2/3, 2/3, 1) : n = 3,

w = (a1 + b1, a2 + b2, b2)

x = (a1 − c1, a2 − c2, c3)

y = (b1 + c1, b2 + c2, c3)

z = (a1 + b1 − c1, a2 − b2 − c2, c1)

(4/5, 4/5, 4/5) : n = 5,

w = (a1 + b1, a2 + b2, a3 + b3, a4

+ b4, b1 + b4)

x = (c1 + a1, c2 + a2, c3 − a3, c4

− a4, a3 + b3)

y = (c1 − b1, c2 − b2, c3 + b3, c4 + b4, b2)

z = (a1 + b1 + c1, a2 + b2 + c2, a3 + b3

+c3, a4 + b4 + c4, b1 + b4 + c4).

Theorem 5: The achievable rate region for routing for the
Fano network is the closed polyhedron in R3 whose faces lie
on the 6 planes (see Figure 5):

ra = 0

rb = 0

rc = 0

ra = 1

rc = 1

ra + rb + rc = 2

and whose vertices are the 7 points:

(0, 0, 0) (0, 0, 1) (1, 0, 0) (0, 2, 0)

(0, 1, 1) (1, 0, 1) (1, 1, 0).

Proof: With routing, in addition to the
inequalities (11)–(17), a solution must also satisfy

ka + kb + kc ≤ 2n (21)

since all of the components of messages a, b, and c must be
carried by the edges labeled x and z. One can easily check that

Fig. 5. The achievable routing rate region for the Fano network is a 6-sided
polyhedron with 7 vertices.

the extreme points of the new region with the inequality (21)
added are the 7 points stated in this theorem (i.e., the points
stated in Theorem 3 excluding the point (1, 1, 1)); see figure 5.
The proof of Theorem 3 showed that all vertices of P other
than (1, 1, 1) were achievable using routing.

IV. PROOFS OF REMAINING BOUNDS

FOR THE FANO NETWORK

For the case of linear coding over a finite field of odd
characteristic, we want to prove the bounds:

ka + 2kb + 2kc ≤ 4n (22)

2ka + kb + 2kc ≤ 4n (23)

2ka + 2kb + kc ≤ 4n. (24)

We will do this by following and extending the arguments
from [6, Sec. IV], with minor modifications needed because
we now have separate source message dimensions ka, kb, kc

instead of a single message dimension k.
These arguments are built up step-by-step, starting from

a proof that (in this case) the network is not scalar-linear
solvable over a field of odd characteristic. This is extended
to a proof that the network is not vector-linear solvable (with
ka = kb = kc = n) over such a field; arguments involving
division of scalar network coefficients turn into arguments
involving matrices, so, as in [6, Sec. II], one first has to show
that the relevant matrices are invertible.
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When one proceeds to the case where the k’s can differ
from n, the matrices are no longer completely invertible; one
has to extract as large a part of them as possible that is
invertible. Constructing the achievable rate region becomes
an iterative process. Given the bounds produced so far, one
determines the extreme points (corners) of the resulting region
and tries to find linear network codes attaining these points;
if such an attempt fails, the reason for that failure can lead
to an improvement in the matrix argument and hence a new
bounding inequality. The iteration continues until, it is hoped,
success is attained because all of the current extreme points
have been achieved. Here we will just give the final result of
that iteration.

We already have the bounds ka ≤ n and kc ≤ n (but we
do not necessarily have kb ≤ n). Therefore, we can think of
the length-n symbol vectors w and z (referred to in [6] as
e13,17 and e22,30) as coming in two parts, one of length ka

and one of length δa = n − ka . Similarly, we can think of the
symbol vectors x and y (referred to in [6] as e21,29 and e14,18)
as coming in two parts, one of length kc and one of length
δc = n − kc. In order to consider what happens to these parts
separately, we decompose each of the transition matrices Mi

from [6] in the form

Mi =
[

Ri Si

Ti Ui

]

where the submatrices Ri , Si , Ti , Ui are of appropriate sizes
(or are omitted altogether if appropriate). For instance, for
i = 2 we have that R2 is ka ×kb, T2 is δa ×kb, and S2 and U2
are omitted; for i = 5 we have that R5 is kc ×ka , S5 is kc ×δa ,
T5 is δc × ka , and U5 is δc × δa .

We can now follow the arguments in [6, pp. 2752–2755]
and verify that they apply in this new context with no
further changes. In particular, the following formulas from
[6, pp. 2754–2755] still hold:

(U7 + T8S5)T2b + T8 R5 R2b, T3b

−→ (I + R8 R5)R2b + (S7 + R8S5)T2b (25)

and

T5a + T5 R2b + U5T2b + U6T3b,

a + R2b + S7T2b − R8 R5a, U7T2b − T8 R5a −→ b. (26)

Since the field has odd characteristic, we can let

a′ = a + 2−1 R2b

and then rewrite (26) in the following form:

T5a′ + 2−1T5 R2b + U5T2b + U6T3b,

(I − R8 R5)a
′ + 2−1((I + R8 R5)R2b

+ (S7+ R8S5)T2b + (S7− R8S5)T2b),

U7T2b + 2−1T8 R5 R2b − T8 R5a′ −→ b. (27)

Note that a′ has ka independent components and is indepen-
dent of b, just like a is, because a′, b −→ a, b.

The three vectors on the left-hand side of (26) have
respective dimensions δc, ka , and δa; these add up to 2n − kc.
From these vectors we can compute all of b by (26), and then

we can also reconstruct some information about a, namely
(I − R8 R5)a from the second of the three vectors and T8 R5a
from the third vector. (We can also get T5a from the first
vector, but this will not be used below.) This gives a total of

kb + rank
([

I − R8 R5
T8 R5

])

independent components reconstructed from these three
vectors, so we must have

kb + rank
([

I − R8 R5
T8 R5

])
≤ 2n − kc. (28)

Now, using (25), we see that

T2b, T3b, T8 R5 R2b −→ (I + R8 R5)R2b. (29)

But we can add (I + R8 R5)R2b and (I − R8 R5)R2b to
get 2R2b, which yields R2b because the field has odd
characteristic. And (26) implies

a, T2b, T3b, R2b −→ a, b. (30)

Putting these together, we get

a, T2b, T3b,

[
I − R8 R5

T8 R5

]
R2b −→ a, b.

Now, using (28) and the known sizes of the
vectors a, T2b, and T3b, we get the inequality

ka + n − ka + n − kc + 2n − kc − kb ≥ ka + kb,

which reduces to (22).
Using (25) and (27) together, we get

a′, T2b, T3b, T8 R5 R2b, T5 R2b, −→ a′, b

−→ a, b,

yielding the inequality

ka + n − ka + n − kc + n − ka + n − kc ≥ ka + kb,

which is (23).
For the remaining inequality (24), we will use the following

fact: if M is a k × k matrix and N is an r × k matrix, then

rank
([

M
N

])
+ rank

([
M − I

N

])
+ rank

([
M + I

N

])

≥ 2k + rank(N). (31)

Since 1 �= −1 in a field of odd characteristic, (31) is a special
case of:

Lemma 1: If M is a k ×k matrix and N is an r ×k matrix,
and the scalars λ1, . . . , λt are distinct, then

t∑
i=1

rank
([

M − λi I
N

])
≥ (t − 1)k + rank(N). (32)

We thank Nghi Nguyen for supplying the following clean
proof of this result.

Proof: Let Ei be the null space of M −λi I , and let E be
the null space of N . Then

rank
([

M − λi I
N

])
= k − dim(Ei ∩ E)
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and

rank(N) = k − dim(E).

So (32) is equivalent to

tk −
∑

i

dim(Ei ∩ E) ≥ tk − dim(E)

and hence to ∑
i

dim(Ei ∩ E) ≤ dim(E),

and the latter inequality is true because the subspaces (Ei ∩ E)
are linearly independent in E . (If v ∈ E is the sum of vectors
vi ∈ Ei ∩ E for 1 ≤ i ≤ t , then we can recover the vectors vi

from v using formulas such as

(λ1 − λ2) . . . (λ1 − λt )v1 = (M − λ2 I ) . . . (M − λt I )v.)

Now, we have

rank
([

R8 R5 − I
T8 R5

])
≤ 2n − kc − kb

from (28). Since [
R8 R5
T8 R5

]
=

[
R8
T8

]
R5,

we have

rank
([

R8 R5
T8 R5

])
≤ rank(R5) ≤ kc.

Now, as stated in [6, p. 2756], we can find a matrix Q such
that

rank

⎛
⎝

⎡
⎣ I + R8 R5

T8 R5
Q

⎤
⎦

⎞
⎠ = ka (33)

and

rank(Q) = ka − rank
([

I + R8 R5
T8 R5

])
,

so

rank
([

I + R8 R5
T8 R5

])
= ka − rank(Q).

Substituting these facts into (31) gives

2n − kc − kb + kc + ka − rank(Q) ≥ 2ka + rank(T8 R5).

(34)

But (33) implies that⎡
⎣ I + R8 R5

T8 R5
Q

⎤
⎦R2b −→ R2b; (35)

combining this with (29) and (30) yields

T2b, T3b, T8 R5 R2b, Q R2b −→ b.

Using this with the bound on rank(T8 R5) obtained from (34),
we get

n − ka + n − kc + 2n − ka − kb − rank(Q) + rank(Q) ≥ kb,

which reduces to the desired inequality (24).

Fig. 6. The non-Fano network. Source nodes v1, v2, and v3 generate
messages a, b, and c, respectively. Receiver nodes v12, v13, v14, and v15
demand messages c, b, a, and c, respectively. The symbol vectors carried on
edges e6,9, e7,10, e8,11, e4,5 are labeled as w, x , y, and z, respectively.

V. NON-FANO NETWORK

Theorem 6: The achievable rate region for either linear
coding over any finite field alphabet of odd characteristic or
non-linear coding are the same for the non-Fano network and
are equal to the closed cube in R3 whose faces lie on the
6 planes (see Figure 7):

ra = 0

rb = 0

rc = 0

ra = 1

rb = 1

rc = 1

and whose vertices are the 8 points:

(0, 0, 0) (0, 0, 1) (1, 0, 0) (0, 1, 0)

(0, 1, 1) (1, 0, 1) (1, 1, 0) (1, 1, 1).

Proof: Consider a network solution over an alphabet A
and denote the source message dimensions by ka , kb, and kc,
and the edge dimensions by n. Let each source be a random
variable whose components are independent and uniformly
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Fig. 7. The achievable coding rate region for the Fano network is a
cube in R3.

distributed over A. Then the solution must satisfy the
following inequalities:

ka ≥ 0 (36)

kb ≥ 0 (37)

kc ≥ 0 (38)

ka = H (a) = H (z|b, c) ≤ H (z) ≤ n (39)

kb = H (b) = H (z|a, c) ≤ H (z) ≤ n (40)

kc = H (c) = H (z|a, b) ≤ H (z) ≤ n. (41)

(36)–(38) are trivial; (39) follows because

z, b, c −→ z, y −→ a

(at node v14), so z, b, c −→ a, b, c and thus
H (a, b, c) = H (z, b, c). (40) follows because

z, a, c −→ z, x −→ b

(at node v13), so z, a, c −→ a, b, c and thus
H (a, b, c) = H (z, a, c). (41) follows because

z, a, b −→ z, w −→ c

(at node v12), so z, a, b −→ a, b, c and thus H (a, b, c) =
H (z, a, b). Dividing each inequality in (36)–(41) by n gives
the 8 bounding planes stated in the theorem.

Let ra = ka/n, rb = kb/n, and rc = kc/n, and let P denote
the polyhedron in R3 consisting of all 3-tuples (ra, rb, rc)
satisfying (36)–(41). Then P is simply the unit cube shown
in Figure 7, and its extreme points are the 8 points stated in
the theorem. To show that the 8 points lie in the achievable

rate region, let n = ka = kb = kc = 1 and use the following
linear code for (1, 1, 1) over any odd-characteristic finite field:

w = a + b, y = b + c, x = a + c, z = a + b + c

where node v15 can recover its demand via

c = (w − y + x) · 2−1.

The other 7 points are obtained by setting certain messages
to 0 in the code for (1, 1, 1). Since the above codes are all
linear, the achievable rate regions for linear and non-linear
codes are the same.

Theorem 7: The achievable rate region for linear coding
over any finite field alphabet of even characteristic for the
non-Fano network is equal to the closed polyhedron in R3

whose faces lie on the 7 planes (see Figure 8):

ra = 0

rb = 0

rc = 0

ra = 1

rb = 1

rc = 1

ra + rb + rc = 5/2

and whose vertices are the 10 points:

(0, 0, 0) (0, 0, 1) (1, 0, 0) (0, 1, 0)

(0, 1, 1) (1, 0, 1) (1, 1, 0)

(1, 1, 1/2) (1, 1/2, 1) (1/2, 1, 1).

Proof: The six inequalities from Theorem 6 still apply
here; the proof that the additional inequality

2ka + 2kb + 2kc ≤ 5n (42)

must also hold in the case of even-characteristic finite
fields is given in Section VI (and another proof is given
in Section VIII-B).

The new inequality (42) cuts down the achievable rate
region to the polyhedron shown in Figure 8, whose extreme
points are the 10 points listed in the theorem. The
point (1, 1, 1/2) is achieved by the following code with
n = ka = kb = 2 and kc = 1, which works over any finite
field:

w = (a1, b1)

y = (b1 + c, b2)

x = (a1 + c, a2)

z = (a1 + b1 + c, a2 + b2).

The other two new extreme points are achieved by permuting
the variables in the above code.

Note that both the uniform capacity and average capacity
are 5/6 for the non-Fano network, for any even-characteristic
finite field.

Theorem 8: The achievable rate region for routing for the
non-Fano network is the closed tetrahedron in R3 whose faces
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Fig. 8. The achievable linear coding rate region over even-characteristic finite
fields for the non-Fano network is a 7-sided polyhedron with 10 vertices.

lie on the 4 planes (see Figure 9):

ra = 0

rb = 0

rc = 0

ra + rb + rc = 1

and whose vertices are the 4 points:

(0, 0, 0), (0, 0, 1), (1, 0, 0), (0, 1, 0).

Proof: In addition to satisfying (36)–(41), a routing
solution must also satisfy

ka + kb + kc ≤ n (43)

since the edge labeled z must carry all 3 messages a, b, and c.
The inequality (43) makes the inequalities (39)–(41)
redundant, and, in fact, the vertices of the polygon determined
by (36)–(38) and (43) are the 4 listed in the theorem. These
are achievable using the following routing codes:

(0, 0, 1) : y = z = c

(1, 0, 0) : z = a

(0, 1, 0) : z = b.

VI. PROOF OF REMAINING BOUND FOR

THE NON-FANO NETWORK

For the case of linear coding over a finite field of
characteristic 2, we want to prove the bound:

2ka + 2kb + 2kc ≤ 5n (44)

Fig. 9. The achievable routing rate region for the Fano network is a
tetrahedron in R3.

We will again do this by following the arguments from
[6, Sec. IV], with minor modifications. (Those arguments were
for a different network which was two copies of the non-Fano
network with one demand node merged, but a number of them
concentrated on just the left half of that network and hence
will be directly applicable to the non-Fano network.) The ideas
behind the proof are basically the same as in Section IV,
although the specific linear algebra techniques that ended up
being needed were somewhat different.

The matrices M1 through M15 will be the same as they
are in [6, pp. 2756–2757]; they label a part of the network
there which is identical to the non-Fano network. Again here,
instead of one value δ = n − k we have three values

δa = n − ka

δb = n − kb

δc = n − kc.

When we talk about thinking of an edge vector as one part
of length k followed by one part of length n − k, we will use
k = kc here; so, for instance, R7 is a kc × ka matrix, while
R9 is kc × kc.

Now follow the argument from [6, pp. 2756–2757] as
written, except that L is just the five vectors

M3a + M4c,

M5b + M6c,

Q13(M7a + M9c),

Q15(M8b + M9c),

Q10(M1a + M2b)
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Fig. 10. The Vámos network. A message variable a, b, c, or d labeled above
a node indicates an in-edge (not shown) from the source node (not shown)
generating the message. Demand variables are labeled below the receivers
v9–v13 demanding them. The edges e1,2, e3,4, e5,6, and e7,8 are denoted by
w, x , y, and z, respectively.

without any “corresponding five objects” from the other
side. The same argument then yields L −→ a, b, c. Since
M15 M7 = Ika , we have rank(M15) ≥ ka and hence
rank(Q15) ≤ δa; similarly, rank(Q13) ≤ δb. Therefore,
following the computation in [6, p. 2757], we find that L has
only

n + n + [δa + δb − (kc − α)] + [n − α] = 2n + δa + δb + δc

independent entries. Therefore,

2n + δa + δb + δc ≥ ka + kb + kc,

so

2ka + 2kb + 2kc ≤ 5n.

VII. VÁMOS NETWORK

Theorem 9: The achievable rate region for routing for
the Vámos network is the polytope in R4 whose faces lie

on the 6 planes:

ra = 0

rb = 0

rc = 0

rd = 0

2ra + rb + 2rd = 2

ra + rb + rc + 2rd = 2

and whose vertices are the points

(0, 0, 0, 0) (1, 0, 0, 0) (0, 0, 0, 1)

(1, 0, 1, 0) (0, 2, 0, 0) (0, 0, 2, 0)

Proof: The first 4 planes are trivial.
Now, notice that in a routing solution, y must carry all of

a and d in order to meet the demands at nodes v10 and v12,
respectively. Thus, x must carry all of a and d too. Also, x
and y together must carry all of b in order to meet the demand
at node v9. In summary, x and y together must carry at least
2 copies of a, 2 copies of d , and one copy of b. This implies

2ka + kb + 2kd ≤ 2n

and therefore

2ra + rb + 2rd ≤ 2.

Similarly, w must carry all of d in order to meet the demand
at node v12, and w and y together must carry all of b and c
in order to meet the demands at nodes v11 and v13. Since y
must carry all of a and d , we conclude that w and y together
must carry at least one copy of a, one copy of b, one copy
of c, and two copies of d . This implies

ka + kb + kc + 2kd ≤ 2n

and therefore

ra + rb + rc + 2rd ≤ 2.

It is easy to check that the vertices of the polytope bounded
by the 6 planes listed in the theorem are the 6 vertices listed in
the theorem. Each of the 6 vertices can be achieved as follows:

(0000) trivially;
(1000) with x = y = z = a;
(0001) with w = x = y = z = d;
(1010) with w = c and x = y = z = a;
(0200) with w = x = b1 and y = z = b2;
(0020) with w = x = c1 and y = z = c2.

The following theorem uses only Shannon-type information
inequalities to obtain a polytopal outer bound in R4 to the
achievable rate region.

Theorem 10: The achievable rate region for the Vámos
network lies inside the polytope in R4 whose faces lie on
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the 9 planes:

ra = 0

rb = 0

rc = 0

rd = 0

ra = 1

rd = 1

rb + rc = 2

ra + rb = 2

rc + rd = 2

and whose vertices are the points:

(0, 2, 0, 1) (0, 2, 0, 0) (1, 1, 1, 0) (1, 1, 0, 0)

(1, 1, 0, 1) (1, 0, 0, 1) (0, 0, 0, 1) (0, 0, 0, 0)

(1, 0, 0, 0) (1, 0, 1, 1) (0, 0, 1, 1) (0, 1, 1, 1)

(1, 0, 2, 0) (0, 0, 2, 0) (1, 1, 1, 1).

Proof: Consider a network solution over an alphabet A
and denote the source message dimensions by ka , kb, kc,
and kd , and the edge dimensions by n. Let each source be
a random variable whose components are independent and
uniformly distributed over A. Then the solution must satisfy
the following inequalities:

ka ≥ 0 (45)

kb ≥ 0 (46)

kc ≥ 0 (47)

kd ≥ 0 (48)

ka = H (a) ≤ H (z|b, c, d) ≤ n (49)

kd = H (d) ≤ H (y|a, b, c) ≤ n (50)

kb + kc = H (b, c) ≤ H (w, z|a, d)

≤ H (w, z) ≤ 2n (51)

ka + kb = H (a, b) ≤ H (x, z|c, d)

≤ H (y, z) ≤ 2n (52)

kc + kd = H (c, d) ≤ H (w, y|a, b)

≤ H (w, y) ≤ 2n. (53)

(45)–(48) are trivial; (49) follows because b, c, d, z −→ a;
(50) follows because a, b, c, y −→ d; (51) follows because
a, d, w, z −→ b, c; (52) follows because x, z, c, d −→ a, b;
(53) follows because w, y, a, b −→ c, d; Dividing each
inequality in (45)–(53) by n gives the 9 bounding hyperplanes
stated in the theorem.

Let

ra = ka/n

rb = kb/n

rc = kc/n

rd = kd/n

and let P denote the polytope in R4 consisting of all 4-tuples
(ra, rb, rc, rd ) satisfying (1)–(9). Then (45)–(48) and (52)–(53)
ensure that P is bounded. One can easily calculate that each

point in R4 that satisfies some independent set of four of
the inequalities (45)–(53) with equality and also satisfies the
remaining five inequalities must be one of the 15 points stated
in the theorem.

For further bounds, we use the following result from [10]:
Suppose that A, B , C , and D are random variables and we

have an information inequality of the form

a1 I (A; B) ≤ a2 I (A; B|C) + a3 I (A; C|B) + a4 I (B; C|A)

+ a5 I (A; B|D) + a6 I (A; D|B) + a7 I (B; D|A)

+ a8 I (C; D) + a9 I (C; D|A) + a10 I (C; D|B).

(54)

Then we get the following bound on the Vámos message and
edge entropies:

(a2 + a3 + a4)H (a) + (a2 + a3 + a8 + a9 + a10)H (b)

+ (a5 + a7 + a8 + a9 + a10)H (c)

+ (a5 + a6 + a7)H (d)

+ (a2 − a1 − a7)I (c; y)

+ (a4 + a7 − a10)I (b; x)

≤ (a5 + a6 + a7 + a8 + a9 + a10)H (w)

+ (a2 + a3 + a4 + a7)H (x)

+ (−a1 + a2 + a5 + a9)H (y)

+ (a3 + a8 + a10)H (z). (55)

And by the same argument, if (54) is a linear rank inequality
(for a particular characteristic), then (55) holds for any linear
(for that characteristic) fractional code for the Vámos network.

If the inequalities

a2 ≥ a1 + a7

a4 + a7 ≥ a10 (56)

are satisfied, then the inequality (55) directly leads to a Vámos
achievable rate region bound, by neglecting the (nonnegative)
terms involving I (c; y) and I (b; x). Specifically, in this case,
by substituting

H (a) = ka

H (b) = kb

H (c) = kc

H (d) = kd

H (w) = H (x) = H (y) = H (z) = n

into (55), we obtain

ka(a2 + a3 + a4) + kb(a2 + a3 + a8 + a9 + a10)

+ kc(a5 + a7 + a8 + a9 + a10)

+ kd(a5 + a6 + a7)

≤ n(−a1 + 2a2 + 2a3 + a4 + 2a5

+ a6 + 2a7 + 2a8 + 2a9 + 2a10). (57)
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Theorem 11: The achievable rate region for linear coding
over any finite field alphabet for the Vámos network is the
polytope in R4 whose faces lie on the 10 planes:

ra = 0

rb = 0

rc = 0

rd = 0

ra = 1

rd = 1

rb + rc = 2

ra + rb = 2

rc + rd = 2

ra + 2rb + 2rc + rd = 5

and whose vertices are the points

(0, 0, 2, 0) (0, 0, 1, 1) (1, 0, 1, 1) (1, 0, 0, 0)

(0, 0, 0, 0) (0, 0, 0, 1) (1, 0, 0, 1) (1, 1, 0, 1)

(1, 1, 0, 0) (0, 2, 0, 0) (1, 1, 1/2, 1) (1, 1/2, 1, 1)

(0, 2, 0, 1) (1, 1, 1, 0) (0, 1, 1, 1) (1, 0, 2, 0).

Proof: The first nine bounding planes come from
Theorem 10. The tenth bounding plane is shown by letting (54)
be the Ingleton inequality [14], which can be written in the
form

I (A; B) ≤ I (A; B|C) + I (A; B|D) + I (C; D)

and which is a linear rank inequality for all characteristics, to
get the Vámos linear rate region bound

H (a) + 2H (b) + 2H (c) + H (d)

≤ 2H (w) + H (x) + H (y) + H (z)

from (55).
The proof that the extreme points of the polytope bounded

by these planes are the 16 points listed above is left as an
exercise for the reader’s computer (we used cddlib [11]).

Here are linear codes over an arbitrary field) achieving six
of the extreme points:

(1, 1, 1, 0) : n = 1,

w = a + c

x = a

y = z = a + b

(0, 1, 1, 1) : n = 1,

w = x = b + d

y = b + c + d

z = c

(1, 0, 2, 0) : n = 1,

w = c1

x = a

y = z = a + c2

(0, 2, 0, 1) : n = 1,

w = x = b1 + d

y = z = b2 + d

(1, 1, 1/2, 1) : n = 2,

w = (b2 + d1, c + d2)

x = (a1 + d1, a2 + b2 + c + d2)

y = (a1 + b1 + d1, a2 + d2)

z = (a1 + b1, a2 + c)

(1, 1/2, 1, 1) : n = 2,

w = (c1 + d1, b + d2)

x = (a1 + c1 + d1, a2 + d2)

y = (a1 + d1, a2 + b + c2 + d2)

z = (a1 + c2, a2 + b)

The remaining 10 points are achieved by fixing certain
messages to be 0.

The following theorem uses the non-Shannon-type
Zhang-Yeung information inequality to obtain an additional
outer bound in R4 to the achievable rate region.

Theorem 12: The achievable rate region for non-linear
coding for the Vámos network is bounded by the inequalities:

4ra + 4rb + 2rc + rd ≤ 10 (58)

2ra + 2rb + 4rc + 4rd ≤ 11 (59)

ra + 2rb + 4rc + 5rd ≤ 11 (60)

5ra + 6rb + 6rc + 5rd ≤ 20. (61)

Proof: If we let (54) be the Zhang-Yeung inequality [23],
which can be written in the form

I (A; B) ≤ 2I (A; B|C) + I (A; C|B) + I (B; C|A)

+I (A; B|D) + I (C; D), (62)

then we get the Vámos network bound

4H (a) + 4H (b) + 2H (c) + H (d) + I (c; y)

≤ 2H (w) + 4H (x) + 2H (y) + 2H (z) (63)

from (55). This immediately gives the inequality (58) (we can
simply discard the I (c; y) term).

Also, we can let (54) be (62) with variables C and D
interchanged; then the result from (55) is

H (a) + 2H (b) + 4H (c) + 4H (d) − I (c; y) + I (b; y)

≤ 5H (w) + 2H (x) + 2H (y) + H (z). (64)

This does not directly give a rate region bound, because the
term −I (c; y) cannot be simply discarded. However, if we
add (63) and (64), we get an inequality that yields (61); if we
add to (64) the inequality

H (a) + I (c; y) ≤ H (y)

(which, as noted in [10], holds in the Vámos network because
b, c, d, y −→ a), we get (59); and if we add to (64) the
inequality

H (d) + I (c; y) ≤ H (y)
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(which, as noted in [10], holds in the Vámos network because
a, b, c, y −→ d), we get (60).

Many additional non-Shannon-type information inequalities
are given in [10]. These can be used as above to give additional
bounds on the achievable rate region for non-linear coding
for the Vámos network. In fact, the inequalities from [10]
using at most four copy variables with at most three copy
steps yield 158 independent constraints on this achievable
rate region. (Note: inequalities (58)–(61) are superseded by
these new inequalities.) One of these is used in [10] to show
that the uniform coding capacity of the Vámos network is at
most 19/21.

Since there are infinitely many information inequalities
on four random variables [18], it is quite possible that the
achievable rate region for non-linear coding for the Vámos
network is not a polytope. On the other hand, this rate region
could be quite simple; to date, no fractional solution is known
for the Vámos network which lies outside the achievable rate
region for linear coding.

VIII. NEW LINEAR RANK INEQUALITIES

FROM NETWORKS

We now give a new method for producing bounds on
achievable rate regions for linear coding. Unlike the previous
method using matrix algebra, this method actually produces
explicit linear rank inequalities (perhaps only true for some
characteristics) which directly imply the bounds in question.
However, it is not clear yet that this new method can produce
all results obtained from the matrix algebra method. We will
use the method to prove one of the three bounds needed for
the Fano network, and a weaker version of the bound needed
for the non-Fano network; we hope to find further refinements
of the method later which will yield all four of these bounds.

In particular, we produce an explicit linear rank inequal-
ity valid only for odd-characteristic fields, and another
linear rank inequality valid only for even-characteristic
fields. Such inequalities have also been produced by
Blasiak, Kleinberg, and Lubetzky [3] (also by use of the Fano
and non-Fano matroids), but those inequalities do not directly
give bounds for the networks here.

Unlike the matrix computation method, which concentrates
on the matrices specifying how information moves forward
through the network, the new method concentrates on inverse
functions specifying how the information on each edge was
produced from the information on its predecessor edges.
(One can think of the edge as carrying some linear functions of
the original message components; then the information on this
edge can be thought of as the vector space spanned by these
functions, as a subspace of the space of all linear functions
of the message components.) If the network conditions are
satisfied, then the information can be traced back from the
receiver node to the source nodes using these functions; one
will be able to give arguments that some of these functions
are invertible, just as one gave arguments that some of the
matrices were invertible or full-rank. But now we will go
farther, by saying that even if the network conditions do not
quite hold, the reasoning about invertibility of the functions

will still work on a subspace of the domain of the functions;
the extent to which the reasoning does not work (i.e., the
codimension of this subspace) is the same as the extent to
which the network condition fails (which can also be measured
in terms of dimensions of subspaces). The result will be that
we can produce an unconditional (but perhaps dependent on
characteristic) linear rank inequality which, in combination
with the network conditions, will directly imply the desired
rate region bound.

We start by giving some basic results in linear algebra.
If A is a subspace of a finite-dimensional vector space V ,

then we denote the codimension of A in V by

codimV (A) = dim(V ) − dim(A).

Linear rank inequalities are closely related to information
inequalities. In fact, in order to describe linear rank inequalities
we will borrow notation from information theory to use in the
context of linear algebra in the following manner.

Suppose A and B are subspaces of a given vector space V ,
and let 〈A, B〉 denote the span of A ∪ B . We will let
H (A) denote the rank of A, and let H (A, B) denote the rank
of 〈A, B〉. The meaning of conditional entropy notation with
subspace dimensions then follows from

H (A|B) = H (A, B) − H (B)

that is, H (A|B) denotes the excess rank of subspace A over
that of subspace A ∩ B , or equivalently, the codimension of
A ∩ B in A. Similarly, the mutual information

I (A; B) = H (A) − H (A|B)

when applied to subspaces A and B , gives the dimension of
the intersection A ∩ B .

Lemma 2: For any subspaces A1, . . . , Am of finite-
dimensional vector space V ,

codimV

(
m⋂

i=1

Ai

)
≤

m∑
i=1

codimV (Ai ).

Lemma 3: Let A and B be finite-dimensional vector spaces,
let f : A → B be a linear function, and let B ′ be a subspace
of B. Then

codimA

(
f −1(B ′)

)
≤ codimB

(
B ′).

Proof: Let S = f −1(B ′) and let T be a subspace of A
such that S + T = A and S ∩ T = {0}. Let g : T → B be a
linear function such that g = f on T . Then we have

codimA(S)

= dim(T ) [from S + T = A and S ∩ T = {0}]
= dim(g(T )) + nullity(g)

= dim(g(T )) [from g−1({0}) = {0}]
≤ codimB

(
B ′). [from B ′ ∩ g(T ) = {0}]

Lemma 4: Let A1, . . . , Ak, B be subspaces of a finite-
dimensional vector space V . There exist linear functions
fi : B → Ai (for i = 1, . . . , k) such that f1 + · · · + fk = I
on a subspace of B of codimension H (B|A1, . . . , Ak) in B.
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Proof: The subspace is

W = (A1 + · · · + Ak) ∩ B.

For each w j in a basis for W , choose xi, j ∈ Ai for
i = 1, . . . , k such that

w j = x1, j + · · · + xk, j .

Define linear maps gi : W → Ai for i = 1, . . . , k so that
gi (w j ) = xi, j for all i and j ; then extend each gi arbitrarily
to a linear map fi : B → Ai . We have

H (B|A1, . . . , Ak) = dim(B) − dim(B ∩ (A1 + · · · + Ak))

= dim(B) − dim(W ).

Lemma 5: Let A, B, C be subspaces of a finite-dimensional
vector space V , and let f : A → B and g : A → C be linear
functions such that f + g = 0 on A. Then f = g = 0 on a
subspace of A of codimension at most I (B; C) in A.

Proof: For all u ∈ A, g(u) ∈ B so f (u) = −g(u) ∈ B
and therefore f maps A into B ∩ C . Thus,

dim(A) − nullity( f ) = rank( f ) ≤ dim(B ∩ C) = I (B; C)

so the kernel of f has codimension at most I (B; C) in A.
Lemma 6: Let A, B1, . . . , Bk be subspaces of a finite-

dimensional vector space V , and let fi : A → Bi be
linear functions such that f1 + · · · + fk = 0 on A. Then
f1 = · · · = fk = 0 on a subspace of A of codimension at
most

H (B1) + · · · + H (Bk) − H (B1, . . . , Bk)

in A.
Proof: Use induction on k. The claim is trivially true for

k = 1, and is true for k = 2 by Lemma 5. Let us assume it is
true up to k − 1 for k ≥ 3. Apply Lemma 5 with

B = Bk

C = B1 + · · · + Bk−1

f = fk

g = f1 + · · · + fk−1

to get f1+· · ·+ fk−1 = fk = 0 on a subspace S of A satisfying

codimA(S) ≤ H (B1, . . . , Bk−1) + H (Bk) − H (B1, . . . , Bk).

By the induction hypothesis, f1 = · · · = fk−1 = 0 on a
subspace S′ of S satisfying

codimS
(
S′) ≤ H (B1) + · · · + H (Bk−1) − H (B1, . . . , Bk−1).

Adding these two inequalities gives us the desired result for
subspace S′.

A. A Linear Rank Inequality From the Fano Network

Theorem 13: Let A, B, C, D, W, X, Y, Z be subspaces of
a finite-dimensional vector space V over a scalar field of
odd characteristic. Then, the following linear rank inequality
holds:

2H (A) + H (B) + 2H (C)

≤ H (W ) + H (X) + H (Y ) + H (Z)

+ 2H (A|Z , Y ) + H (B|X, Z) + 2H (C|A, X)

+ 3H (X |W, Y ) + 3H (Z |W, C)

+ 5H (W |A, B) + 5H (Y |B, C)

+ 5(H (A) + H (B) + H (C) − H (A, B, C)). (65)

Proof: See the Appendix.
In the context of the Fano network, all of the compound

terms at the end of inequality (65) are zero, so this inequality
directly implies inequality (19).

By replacing W with W ∩ (A + B + C + X + Y + Z) and
similarly for X , Y , and Z , one can improve the inequality to a
balanced form where H (W ) becomes I (W ; A, B, C, X, Y, Z),
H (W |A, B) becomes I (W ; C, X, Y, Z |A, B), and similarly
for X , Y , and Z .

Theorem 14: The linear rank inequality in Theorem 13
holds for any scalar field if dim(V ) ≤ 2, but may not hold if
the scalar field has characteristic 2 and dim(V ) ≥ 3.

Proof: See the Appendix.

B. A Linear Rank Inequality From the Non-Fano Network

Theorem 15: Let A, B, C, W, X, Y, Z be subspaces of a
finite-dimensional vector space V over a scalar field of
even characteristic. Then, the following linear rank inequality
holds:

2H (A) + 3H (B) + 2H (C)

≤ H (W ) + H (X) + H (Y ) + 3H (Z)

+ 2H (A|Y, Z) + 3H (B|X, Z) + H (C|W, Z)

+ 2H (W |A, B) + 4H (X |A, C) + 3H (Y |B, C)

+ 6H (Z |A, B, C) + H (C|W, X, Y )

+ 7(H (A) + H (B) + H (C) − H (A, B, C)). (66)

Proof: See the Appendix.
In the context of the non-Fano network, all of the compound

terms at the end of inequality (66) are zero, so this inequality
directly implies the inequality

2ka + 3kb + 2kc ≤ 6n, (67)

which is a weaker version of inequality (42).
Theorem 16: The linear rank inequality in Theorem 15

holds for any scalar field if dim(V ) ≤ 2, but may
not hold if the scalar field has odd characteristic and
dim(V ) ≥ 3.
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Proof: In V = G F(p)3 for any odd prime p, define the
following subspaces of V :

A = 〈(1, 0, 0)〉
B = 〈(0, 1, 0)〉
C = 〈(0, 0, 1)〉
W = 〈(1, 1, 0)〉
X = 〈(1, 0, 1)〉
Y = 〈(0, 1, 1)〉
Z = 〈(1, 1, 1)〉.

It is easily verified that the inequality in Theorem 15 is not
satisfied in this case.

To show that the inequality indeed holds if dim(V ) ≤ 2,
one can again show that the inequality becomes a Shannon
inequality under the assumption that H (A) = 0, or under
the assumption H (B|A) = 0, or under the assumption
H (C|A, B) = 0. If all three of these assumptions fail, then
we must have

dim(V ) ≥ H (A, B, C) > H (A, B) > H (A) > 0 (68)

and hence dim(V ) ≥ 3. Or one can give a case-by-case direct
argument.

IX. CONCLUSION

We have determined the exact complete achievable (routing,
linear, and non-linear) rate regions for the Generalized Butter-
fly, Fano, and non-Fano networks, as well as the routing and
linear rate regions for the Vámos network. Bounds are given
for the non-linear rate region for the Vámos network. A new
method was presented using linear rank inequalities to obtain
rate region bounds.

Both the older method using matrix computations and the
new method using inverse functions are, as yet, incomplete
methods for determining linear achievable rate regions. For the
example networks given here, the matrix computation method
eventually yielded a full solution, but new ideas needed to
be found for each new network, and it is not clear that
the method will succeed in all cases. The inverse function
method has not yet reached even that level of development;
it needs further refinements simply to duplicate the results
from the matrix method. And presently the solution-finding
phase (verifying that the corners of the current putative
achievable rate region are indeed achievable) is largely a
trial-and-error process, although guided by properties deduced
during the proof of the currently-known bounding planes.
So there is substantial further work to be done in order to
make these methods automatically applicable to more general
networks.

APPENDIX

Proof of Theorem 13: We will use the Fano network in
Figure 2, derived in [8], from the Fano matroid, to help guide

the proof. By Lemma 4, there exist linear functions

f1 : W → A f2 : W → B
f3 : Y → B f4 : Y → C
f5 : X → W f6 : X → Y
f7 : Z → W f8 : Z → C
f9 : C → A f10 : C → X

f11 : B → X f12 : B → Z
f13 : A → Z f14 : A → Y

such that

f1 + f2 = I on a subspace W ′ of W with
codimW

(
W ′) ≤ H (W |A, B) (A.1)

f3 + f4 = I on a subspace Y ′ of Y with
codimY

(
Y ′) ≤ H (Y |B, C) (A.2)

f5 + f6 = I on a subspace X ′ of X with
codimX

(
X ′) ≤ H (X |W, Y )

f7 + f8 = I on a subspace Z ′ of Z with
codimZ

(
Z ′) ≤ H (Z |W, C) (A.3)

f9 + f10 = I on a subspace C ′ of C with
codimC

(
C ′) ≤ H (C|A, X)

f11 + f12 = I on a subspace B ′ of B with
codimB

(
B ′) ≤ H (B|X, Z)

f13 + f14 = I on a subspace A′ of A with

codimA
(
A′) ≤ H (A|Z , Y ). (A.4)

Combining these, we get maps

f1 f7 f13 : A → A (A.5)

f2 f7 f13 + f3 f14 : A → B (A.6)

f8 f13 + f4 f14 : A → C. (A.7)

Note that

f1 f7 f13 + f2 f7 f13 = f7 f13

on the subspace f −1
13 f −1

7 (W ′) of A

f7 f13 + f8 f13 = f13

on the subspace f −1
13 (Z ′) of A

f3 f14 + f4 f14 = f14

on the subspace f −1
14 (Y ′) of A

so the sum of the functions in (A.5)–(A.7) is equal to I on
the subspace

A′′ .= A′ ∩ f −1
13 (Z ′) ∩ f −1

13 f −1
7 (W ′) ∩ f −1

14 (Y ′)

and we get

codimA
(

A′′)
≤ codimA

(
A′) + codimA

(
f −1
13 (Z ′)

)

+codimA

(
f −1
13 f −1

7 (W ′)
)

+ codimA

(
f −1
14 (Y ′)

)
[from Lemma 2]

≤ codimA
(
A′)+ codimZ

(
Z ′)+ codimW

(
W ′)+ codimY

(
Y ′)

[from Lemma 3]
≤ H (A|Z , Y ) + H (Z |W, C) + H (W |A, B) + H (Y |B, C)

[from (A.1), (A.2), (A.3), (A.4)].
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Applying Lemma 6 to

f1 f7 f13 − I

f2 f7 f13 + f3 f14

f8 f13 + f4 f14

we get a subspace Ā of A′′ such that

codimA
(
Ā
)

= codimA
(

A′′) + codimA′′
(

Ā
) ≤ �A (A.8)

.= H (A|Z , Y ) + H (Z |W, C) + H (W |A, B) + H (Y |B, C)

+H (A) + H (B) + H (C) − H (A, B, C) (A.9)

on which

f1 f7 f13 = I (A.10)

f2 f7 f13 + f3 f14 = 0

f8 f13 + f4 f14 = 0.

Similarly, we get a subspace C̄ of C such that

codimC
(
C̄

)
≤ �C (A.11)
.= H (C|A, X) + H (X |W, Y ) + H (W |A, B) + H (Y |B, C)

+H (A) + H (B) + H (C) − H (A, B, C) (A.12)

on which

f4 f6 f10 = I (A.13)

f2 f5 f10 + f3 f6 f10 = 0

f9 + f1 f5 f10 = 0

and a subspace B̄ of B such that

codimB
(
B̄

)
≤ �B (A.14)
.= H (B|X, Z) + H (X |W, Y ) + H (Z |W, C) + H (W |A, B)

+H (Y |B, C) + H (A) + H (B) + H (C) − H (A, B, C)

(A.15)

on which

f2 f5 f11 + f2 f7 f12 + f3 f6 f11 = I

f1 f5 f11 + f1 f7 f12 = 0

f4 f6 f11 + f8 + f12 = 0.

Note: There is only one H (W |A, B) in (A.15) because we
can write

fi f5 f11 + fi f7 f12 = fi ( f5 f11 + f7 f12)

for i = 1, 2.
Let us define the following subspaces of B:

S1 = {u ∈ B : f11u ∈ f10C̄}
S2 = {u ∈ B : f12u ∈ f13 Ā}
S3 = {u ∈ B : f5 f11u ∈ f7 f13 Ā}
S4 = {u ∈ B : f14 f1 f7 f12u ∈ f6 f10C̄}
S = B̄ ∩ S1 ∩ S2 ∩ S3 ∩ S4. (A.16)

Then we have the following:

codimB(S1) ≤ codimX
(

f10C̄
) [from Lemma 3]

= dim(X) − dim(C̄)

[from (A.13) −→ f10 injective]
= codimC

(
C̄

) + H (X) − H (C)

≤ �C + H (X) − H (C) [from (A.11)]
(A.17)

codimB(S2) ≤ codimZ
(

f13 Ā
) [from Lemma 3]

= dim(Z) − dim( Ā)

[from (A.10) −→ f13 injective]
= codimA

(
Ā
) + H (Z) − H (A)

≤ �A + H (Z) − H (A) [from (A.8)]
(A.18)

codimB(S3) ≤ codimW
(

f7 f13 Ā
) [from Lemma 3]

= dim(W ) − dim( Ā)

[from (A.10) −→ f7, f13 injective]
= codimA

(
Ā
) + H (W ) − H (A)

≤ �A + H (W ) − H (A) [from (A.8)]
(A.19)

codimY (S4) ≤ codimY
(

f6 f10 Ā
) [from Lemma 3]

= dim(Y ) − dim(C̄)

[from (A.13) −→ f6, f10 injective]
= codimC

(
C̄

) + H (Y ) − H (C)

≤ �C + H (Y ) − H (C). [from (A.11)]
(A.20)

Suppose t ∈ S. Then,

f2 f5 f11t + f2 f7 f12t

= f2 f7 f13 f1 f5 f11t + f2 f7 f12t

[we have f5 f11t = f7 f13u for some u ∈ Ā,

and f7 f13 f1 f7 f13u = f7 f13u since f1 f7 f13u = u]
= f2 f7 f13 f1 f5 f11t + f2 f7 f13 f1 f7 f12t

[since f12t ∈ f13 Ā]
= f2 f7 f13( f1 f5 f11 + f1 f7 f12)t

= 0 (A.21)

[since t ∈ B̄]
f2 f5 f11t + f3 f6 f11t

= f2 f5 f10 f4 f6 f11t + f3 f6 f10 f4 f6 f11t

[since f11t ∈ f10C̄]
= ( f2 f5 f10t + f3 f6 f10) f4 f6 f11t

= 0 (A.22)

[since f11t ∈ f10C̄ and hence

f4 f6 f11t ∈ f4 f6 f10C̄ = C̄]
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f2 f7 f12t + f3 f6 f11t

= f2 f7 f12t + f3 f6 f10 f4 f6 f11t

= f2 f7 f12t − f3 f6 f10 f8 f12t

= f2 f7 f12t − f3 f6 f10 f8 f13 f1 f7 f12t

= f2 f7 f12t + f3 f6 f10 f4 f14 f1 f7 f12t

= f2 f7 f12t + f3 f14 f1 f7 f12t

= f2 f7 f13 f1 f7 f12t + f3 f14 f1 f7 f12t

= ( f2 f7 f13 + f3 f14) f1 f7 f12t

= 0. (A.23)

We therefore obtain

2t = 2( f2 f5 f11t + f2 f7 f12t + f3 f6 f11t)

= ( f2 f5 f11t + f2 f7 f12t) + ( f2 f5 f11t + f3 f6 f11t)

+( f2 f7 f12t + f3 f6 f11t)

= 0 + 0 + 0 = 0. [from (A.21), (A.22), (A.23)]
Since the field has odd characteristic, we must have t = 0.
Thus, S = {0}, and therefore

H (B) = codimB(S)

≤ codimB
(
B̄

) +
4∑

i=1

codimB(Si )

[from (A.16), Lemma 2]
≤ �B + 2�A + 2�C

+H (W ) + H (X) + H (Y ) + H (Z)

−2H (A) − 2H (C). [from (A.14), (A.17)–(A.20)]
The result then follows from (A.9), (A.12), and (A.15). �

Proof of Theorem 14: In V = G F(2)3, define the following
subspaces of V :

A = 〈(1, 0, 0)〉
B = 〈(0, 1, 0)〉
C = 〈(0, 0, 1)〉
W = 〈(1, 1, 0)〉
X = 〈(1, 0, 1)〉
Y = 〈(0, 1, 1)〉
Z = 〈(1, 1, 1)〉.

It is easily verified that the inequality in Theorem 13 is not
satisfied in this case.

Next we show the inequality indeed holds if
dim(V ) ≤ 2. One way to do this is to show (using
software such as Xitip [19]) that the inequality becomes a
Shannon inequality under the assumption that H (A) = 0, or
under the assumption H (B|A) = 0, or under the assumption
H (C|A, B) = 0. If all three of these assumptions fail, then
we must have

dim(V ) ≥ H (A, B, C) > H (A, B) > H (A) > 0 (A.24)

and hence dim(V ) ≥ 3.

Or one can give a direct argument by cases. Assume to
the contrary that there exist subspaces A, B, C, W, X, Y, Z of
vector space V such that

2H (A) + H (B) + 2H (C)

> H (W ) + H (X) + H (Y ) + H (Z)

+ 2H (A|Z , Y ) + H (B|X, Z) + 2H (C|A, X)

+ 3H (X |W, Y ) + 3H (Z |W, C)

+ 5H (W |A, B) + 5H (Y |B, C)

+ 5(H (A) + H (B) + H (C) − H (A, B, C)). (A.25)

Let

Q = (H (A), H (B), H (C), H (A, B, C))

R = H (A) + H (B) + H (C) − H (A, B, C).

Let LHS and RHS denote the left and right sides of inequality
(A.25). We will obtain contradictions for all the possible values
of Q.

Case (i): dim(V ) = 1
All entropies are 0 or 1. Since LHS ≤ 5, at most one of

H (A), H (B), H (C) can equal 1, for otherwise R ≥ 1 would
imply RHS ≥ 5.

• (1001): LHS = 2 implies H (A|Z , Y ) = 0 which
implies H (Z) = 1 or H (Y ) = 1. Also, we must have
H (Z |W, C) = H (Y |B, C) = 0, the latter implying
H (Y ) = 0. So we must have H (Z) = 1 which in turn
implies H (W ) = 1 and therefore RHS ≥ 2.

• (0101): LHS = 1 implies H (B|X, Z) = 0 which implies
H (X) = 1 or H (Z) = 1, and therefore RHS ≥ 1.

• (0011): L H S = 2 implies H (C|A, X) = 0 and
H (X |W, Y ) = 0, which imply H (X) = 1, which implies
H (W ) = 1 or H (Y ) = 1 and therefore RHS ≥ 2.

Case (ii): dim(V ) = 2
All entropies are 0, 1, or 2. LHS ≤ 10 implies RHS ≤ 9,

and therefore R ≤ 1. LHS ≥ 1 implies H (A, B, C) > 0 and
therefore H (A, B, C) ∈ {1, 2}.

• (1011): LHS ≤ 4 and R = 1 imply RHS ≥ 5.
• (1101): Same.
• (0111): Same.
• (2001): Same.
• (0201): Same.
• (0021): Same.
• (2012): LHS = 6. R = 1 implies RHS ≥ 5 which

implies H (A|Z , Y ) = 0 which implies H (Z , Y ) ≥ 1
and therefore RHS ≥ 6.

• (1022): Same.
• (1112): LHS = 5. R = 1 implies RHS ≥ 5.
• (0122): Same.
• (2102): Same.
• (0212): LHS = 4. R = 1 implies RHS ≥ 5.
• (1202): Same.
• (1001): LHS = 2 implies H (A|Z , Y ) = 0 which

implies H (Z) = 1 or H (Y ) = 1. If H (Z) = 1, then
H (Z |W, C) = 0 which would imply H (W ) = 1 and
therefore RHS ≥ 2. If H (Y ) = 1, then H (Z |W, C) = 1
which would imply RHS ≥ 5.
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• (0101): LHS = 1 implies H (X) = H (Z) = 0 which
implies H (B|X, Z) = 1 and therefore RHS ≥ 1.

• (0011): LHS = 2 implies H (C|A, X) = 0 which implies
H (X) = 1. Also, H (X |W, Y ) = 0 implies H (W, Y ) ≥ 1
and therefore RHS ≥ 2.

• (0202): L H S = 2 implies H (X) + H (Z) ≤ 1 which
implies H (B|X, Z) ≥ 1 which implies H (B|X, Z) = 1
which implies H (X, Z) = 1 which implies H (X) +
H (Z) = 1 and therefore RHS ≥ 2.

• (0022): LHS = 4 implies H (W |A, B) = 0 which
implies H (W ) = 0. Also, H (C|A, X) ≤ 1 implies
H (X) ≥ 1 which implies H (X |W, Y ) = 0 which
implies H (Y ) ≥ H (X). Thus, H (C|A, X) = 0 which
implies X = C which implies H (Y ) ≥ H (C) = 2 and
therefore RHS ≥ 4.

• (2002): LHS = 4 implies H (Y |B, C) = 0 which
implies H (Y ) = 0. Also, H (A|Z , Y ) ≤ 1 which implies
H (Z) ≥ 1. Additionally, H (Z |W, C) = 0 which implies
H (W ) ≥ H (Z) which implies H (A|Z , Y ) = 0 which
implies H (Z) = 2 and therefore RHS ≥ 4.

• (1102): H (A, B, C) = 2 implies that A �= B . LHS = 3
implies H (A|Z , Y ) = 0 or H (B|X, Z) = 0.
If H (B|X, Z) = 0, then H (X)+H (Z) ≥ 1 which implies
RHS ≥ 1 and therefore H (A|Z , Y ) = 0. So it suffices to
assume H (A|Z , Y ) = 0. We have H (Y |B, C) = 0 which
implies Y is a subspace of B , which implies H (Z) ≥ 1.
Thus, H (Z |W, C) = 0 which implies H (W ) ≥ 1, so
RHS ≥ 2. Hence, H (B|X, Z) = 0 and H (X) = 0 which
imply Z = B and therefore H (A|Z , Y ) �= 0.

• (0112): H (A, B, C) = 2 implies B �= C . LHS = 3
implies H (B|X, Z) = 0 or H (C|A, X) = 0. If
H (B|X, Z) = 0, then H (X) + H (Z) ≥ 1 which implies
RHS ≥ 1 and therefore H (C|A, X) = 0. So it suffices to
assume H (C|A, X) = 0. Thus we have H (X) ≥ 1. Also,
H (X |W, Y ) = 0 which implies H (W ) + H (Y ) ≥ H (X)
and so RHS ≥ 2. Thus, H (X) = 1 which implies
X = C , and therefore H (W ) = 1 or H (Y ) = 1.
Since H (W |A, B) = 0, W is a subspace of B and
therefore Y = C . Finally, H (B|X, Z) = 0 which implies
H (Z) ≥ 1 and therefore RHS ≥ 3.

• (1012): H (A, B, C) = 2 implies A �= C . LHS = 4
implies H (A|Z , Y ) = 0 or H (C|A, X) = 0.
Case (1): Suppose H (C|A, X) = 0. Then H (X) ≥ 1 and
X �= A which imply RHS ≥ 1. Thus, H (X |W, Y ) = 0
which implies H (W ) + H (Y ) ≥ H (X), which implies
RHS ≥ 2 and therefore H (A|Z , Y ) = 0. We have
H (W |A, B) = 0 which implies W is a subspace
of A, which implies H (Y ) ≥ 1 and Y �= A. Also,
H (Y |B, C) = 0 which implies Y = C and therefore
H (Z) ≥ 1 and Z �= C . Finally, H (Z |W, C) = 0 which
implies H (W ) ≥ 1 and therefore RHS ≥ 4.
Case (2): Suppose H (A|Z , Y ) = 0. We know
H (Y |B, C) = 0, which implies Y is a subspace of
C which implies H (Z) ≥ 1 and Z �= C and there-
fore RHS ≥ 1. Thus, H (Z |W, C) = 0 which implies
H (W ) ≥ 1 which implies RHS ≥ 2. So, H (C|A, X) = 0
which implies H (X) ≥ 1 and X �= A and therefore
RHS ≥ 3. Also, H (W |A, B) = 0 which implies W = A.

Finally, H (X |W, Y ) = 0 which implies H (Y ) ≥ 1 and
therefore RHS ≥ 4. �

Proof of Theorem 15: We will use the non-Fano network in
Figure 6, derived in [8], from the non-Fano matroid, to help
guide the proof. By Lemma 4, there exist linear functions

f1 : W → A f2 : W → B

f3 : X → A f4 : X → C

f5 : Y → B f6 : Y → C

f7 : Z → A f8 : Z → B f9 : Z → C

f10 : C → W f11 : C → Z

f12 : B → X f13 : B → Z

f14 : A → Y f15 : A → Z

f16 : C → W f17 : C → X f18 : C → Y

such that

f1 + f2 = I on a subspace W ′ of W with

codimW
(
W ′) ≤ H (W |A, B) (A.26)

f3 + f4 = I on a subspace X ′ of X with

codimX
(
X ′) ≤ H (X |A, C) (A.27)

f5 + f6 = I on a subspace Y ′ of Y with

codimY
(
Y ′) ≤ H (Y |B, C) (A.28)

f7 + f8 + f9 = I on a subspace Z ′ of Z with

codimZ
(
Z ′) ≤ H (Z |A, B, C) (A.29)

f10 + f11 = I on a subspace C ′ of C with

codimC
(
C ′) ≤ H (C|W, Z) (A.30)

f12 + f13 = I on a subspace B ′ of B with

codimB
(
B ′) ≤ H (B|X, Z) (A.31)

f14 + f15 = I on a subspace A′ of A with

codimA
(
A′) ≤ H (A|Y, Z) (A.32)

f16 + f17 + f18 = I on a subspace C ′′ of C with

codimC
(
C ′′) ≤ H (C|W, X, Y ). (A.33)

Combining these, we get maps

f7 f15 : A → A (A.34)

f5 f14 + f8 f15 : A → B (A.35)

f6 f14 + f9 f15 : A → C. (A.36)

Note that

f5 f14 + f6 f14 = f14 on the subspace f −1
14 (Y ′) of A

f7 f15 + f8 f15 + f9 f15 = f15 on the subspace f −1
15 (Z ′) of A

so the sum of the functions in (A.34)–(A.36) is equal to I on
the subspace

A′′ .= A′ ∩ f −1
14 (Y ′) ∩ f −1

15 (Z ′)
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and we get

codimA
(

A′′) ≤ codimA
(

A′) + codimA

(
f −1
14 (Y ′)

)

+codimA

(
f −1
15 (Z ′)

)
[from Lemma 2]

≤ codimA
(

A′) + codimY
(
Y ′) + codimZ

(
Z ′)

[from Lemma 3]
≤ H (A|Y, Z) + H (Y |B, C) + H (Z |A, B, C).

[from (A.28), (A.29), (A.32)]
Applying Lemma 6 to

f7 f15 − I

f5 f14 + f8 f15

f6 f14 + f9 f15

we get a subspace Ā of A′′ such that

codimA
(

Ā
) = codimA

(
A′′) + codimA′′

(
Ā
)

≤ �A (A.37)
.= H (A|Y, Z) + H (Y |B, C) + H (Z |A, B, C)

+H (A) + H (B) + H (C) − H (A, B, C)

(A.38)

on which

f7 f15 = I (A.39)

f5 f14 + f8 f15 = 0 (A.40)

f6 f14 + f9 f15 = 0. (A.41)

Similarly, we get a subspace B̄ of B such that

codimB
(
B̄

) ≤ �B (A.42)
.= H (B|X, Z) + H (X |A, C) + H (Z |A, B, C)

+H (A) + H (B) + H (C) − H (A, B, C)

(A.43)

on which

f8 f13 = I (A.44)

f3 f12 + f7 f13 = 0 (A.45)

f4 f12 + f9 f13 = 0 (A.46)

and a subspace C̄ of C such that

codimC
(
C̄

) ≤ �C (A.47)
.= H (C|W, Z) + H (W |A, B) + H (Z |A, B, C)

+H (A) + H (B) + H (C) − H (A, B, C)

(A.48)

on which

f9 f11 = I (A.49)

f1 f10 + f7 f11 = 0 (A.50)

f2 f10 + f8 f11 = 0 (A.51)

and a subspace Ĉ of C such that

codimC

(
Ĉ

)
≤ �̂C (A.52)
.= H (C|W, X, Y ) + H (W |A, B)

+ H (X |A, C) + H (Y |B, C)

+ H (A) + H (B) + H (C) − H (A, B, C)

(A.53)

on which

f4 f17 + f6 f18 = I (A.54)

f1 f16 + f3 f17 = 0 (A.55)

f2 f16 + f5 f18 = 0. (A.56)

Define the following subspaces of Z :

A∗ = f15( Ā)

B∗ = f13(B̄)

C∗ = f11(C̄).

By (A.39), the restriction maps

f15| Ā : Ā → A∗

f7|A∗ : A∗ → Ā

are inverses of each other, and hence are injective. Similarly,
by (A.44), f8|B∗ is the inverse of f13|B̄ and, by by (A.49),
f9|C∗ is the inverse of f11|C̄ , so these are all injective.
In particular,

dim(A∗) = dim( Ā) (A.57)

dim(B∗) = dim(B̄) (A.58)

dim(C∗) = dim(C̄). (A.59)

Now let

A∗∗ = f7(A∗ ∩ B∗) ⊆ Ā.

Then f15 is injective on A∗∗ and

f15(A∗∗) = A∗ ∩ B∗

so f8 f15 is injective on A∗∗. But

f5 f14 + f8 f15 = 0

on Ā, so f5 f14 is injective on A∗∗, and hence so is f14. This
gives

dim( f14 A∗∗) = dim(A∗∗) = dim(A∗ ∩ B∗). (A.60)

Similarly, let

B∗∗ = f8(A∗ ∩ B∗) ⊆ B̄;
then f7 f13 is injective on B∗∗ and

f3 f12 + f7 f13 = 0

on B∗∗, so f12 is injective on B∗∗ and

dim( f12 B∗∗) = dim(B∗∗) = dim(A∗ ∩ B∗). (A.61)

And let

C∗∗ = f9(B∗ ∩ C∗) ⊆ C̄;
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then f8 f11 is injective on C∗∗ and

f2 f10 + f8 f11 = 0

on C∗∗, so f10 is injective on C∗∗ and

dim( f10C∗∗) = dim(C∗∗) = dim(B∗ ∩ C∗). (A.62)

Let us define the following subspaces of C:

S1 = {u ∈ C : f16u ∈ f10C∗∗}
S2 = {u ∈ C : f17u ∈ f12 B∗∗}
S3 = {u ∈ C : f18u ∈ f14 A∗∗}
S = Ĉ ∩ S1 ∩ S2 ∩ S3. (A.63)

Then we have the following:

codimC(S1)

≤ codimW
(

f10C∗∗) [from Lemma 3]
= dim(W ) − dim(B∗ ∩ C∗) [from (A.62)]
= codimZ

(
B∗ ∩ C∗) + dim(W ) − dim(Z)

≤ codimZ
(
B∗) + codimZ

(
C∗) + dim(W ) − dim(Z)

[from Lemma 2]
= codimB

(
B̄

) + codimC
(
C̄

) + dim(W ) + dim(Z)

−dim(B) − dim(C) [from (A.58), (A.59)]
≤ �B + �C + H (W ) + H (Z) − H (B) − H (C)

[from (A.42), (A.47)]
(A.64)

codimC(S2)

≤ codimX
(

f12 B∗∗) [from Lemma 3]
= dim(X) − dim(A∗ ∩ B∗) [from (A.61)]
= codimZ

(
A∗ ∩ B∗) + dim(X) − dim(Z)

≤ codimZ
(
A∗) + codimZ

(
B∗) + dim(X) − dim(Z)

[from Lemma 2]
= codimA

(
Ā
) + codimB

(
B̄

) + dim(X) + dim(Z)

−dim(A) − dim(B) [from (A.57), (A.58)]
≤ �A + �B + H (X) + H (Z) − H (A) − H (B)

[from (A.37), (A.42)]
(A.65)

codimC(S3)

≤ codimY
(

f14 A∗∗) [from Lemma 3]
= dim(Y ) − dim(A∗ ∩ B∗) [from (A.60)]
= codimZ

(
A∗ ∩ B∗) + dim(Y ) − dim(Z)

≤ codimZ
(
A∗) + codimZ

(
B∗) + dim(Y ) − dim(Z)

[from Lemma 2]
= codimA

(
Ā
) + codimB

(
B̄

) + dim(Y ) + dim(Z)

−dim(A) − dim(B) [from (A.57), (A.58)]
≤ �A + �B + H (Y ) + H (Z) − H (A) − H (B).

[from (A.37), (A.42)]
(A.66)

Suppose t ∈ S. Then there exist

a ∈ A∗∗

b ∈ B∗∗

c ∈ C∗∗

such that

f14a = f18t

f12b = f17t

f10c = f16t .

Since t ∈ Ĉ , we have from ((A.54))–((A.56)) that

f1 f16t + f3 f17t = 0

f2 f16t + f5 f18t = 0

f4 f17t + f6 f18t = t

which gives

f1 f10c + f3 f12b = 0 (A.67)

f2 f10c + f5 f14a = 0 (A.68)

f4 f12b + f6 f14a = t . (A.69)

But we also have

f5 f14a + f8 f15a = 0 [from (A.40)] (A.70)

f6 f14a + f9 f15a = 0 [from (A.41)] (A.71)

f3 f12b + f7 f13b = 0 [from (A.45)] (A.72)

f4 f12b + f9 f13b = 0 [from (A.46)] (A.73)

f1 f10c + f7 f11c = 0 [from (A.50)] (A.74)

f2 f10c + f8 f11c = 0 [from (A.51)] (A.75)

so

f7 f11c + f7 f13b = 0 [from (A.67), (A.72), (A.74)]
(A.76)

f8 f11c + f8 f15a = 0 [from (A.68), (A.70) (A.75)]
(A.77)

f9 f13b + f9 f15a = −t . [from (A.69), (A.71), (A.73)]
(A.78)

Since f11c and f15a are both in B∗, and f8 is injective on
B∗, we get from (A.77) that f11c = − f15a. This implies that
f11c is also in A∗, and since f13b ∈ A∗ and f7 is injective
on A∗, we get from (A.76) that f11c = − f13b and hence
f15a = f13b.

Hence, since the field has characteristic 2, we have

t = −( f9 f13b + f9 f15a)

= −( f9 f13b + f9 f13b)

= 0.
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Since the choice of t was arbitrary, this implies S = {0}, and
therefore

H (C) = codimC(S)

≤ codimC

(
Ĉ

)
+

3∑
i=1

codimC (Si )

[from (A.63), Lemma 2]
≤ �̂C + 2�A + 3�B + �C + H (W ) + H (X)

+H (Y ) + 3H (Z) − 2H (A) − 3H (B) − H (C)

[from (A.52), (A.64), (A.65), (A.66)].
The result then follows from (A.38), (A.43), (A.48),
and (A.53). �
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