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ABSTRACT | Networks derived from matroids have played a

fundamental role in proving theoretical results about the limits

of network coding. In this tutorial paper, we review many con-

nections between matroids and network coding theory, with

specific emphasis on network solvability, admissible network

alphabet sizes, linear coding, and network capacity.
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I . INTRODUCTION

The field of network coding was essentially born with the
foundational paper by Ahlswede et al. [2] in 2000. The
main idea in network coding is to allow each node of a
network to combine together data from its in-edges in
order to determine what data to transmit on its out-edges.
This concept contrasts with the traditional operations of
packet-switched networks, such as the Internet, in which
each node must relay data (i.e., using Brouting[) from
selected in-edges to selected out-edges. The paper [2]
demonstrated that network coding can in general be
strictly superior to network routing in terms of achievable
throughput rates.

During the decade following the publication of [2],
network coding research has been focused in two general

directions: 1) applications of network coding to practical
networks, and 2) understanding the theoretical possibil-
ities and limitations of network coding. In this paper, we
focus on the theory of network coding, specifically on the
connection between matroids and network coding.

Matroid theory is a branch of mathematics, founded in
1935 by Whitney [38], that generalizes many concepts in
both linear algebra and graph theory and has some close
connections with the information-theoretic notion of
entropy. At the heart of matroid theory is the abstraction
of Bindependence relation.[ This is motivated by various
notions of independence throughout mathematics, such as
linear independence in vector spaces or the acyclic
property in graph theory.

Network coding also contains a notion of dependence.
For a particular network node n, there are four types of
data to deal with:

• data from packets received along the in-edges of n;
• data from messages that originate at n;
• data from packets sent along out-edges of n;
• data from messages demanded by n.

We require that data of the last two types be produced
by deterministic functions of the first two types. So we
say, for example, that the incoming packets, the origi-
nated messages, and any outgoing packet form a
dependent set.

By connecting this network form of dependence with
the matroid definition of dependence, a general method of
constructing networks from matroids has been developed.
Using this method, several interesting and well-known
examples of matroids have been turned into networks that
exhibit similar properties. This has increased our knowl-
edge about the limitations of network coding. In addition,
many large classes of networks studied in the literature
turn out to be constructible from matroids, even though
many of them have been discovered with nonmatroid
methods.

In what follows, we review the main concepts of net-
work coding and of matroid theory and the connection
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between them. Then, we discuss the constructions of
several particular networks from matroids and the results
obtained from these constructions. Most proofs are
omitted in this paper, but references are given to the
original sources where complete proofs can be found.

II . NETWORK CODING FUNDAMENTALS

For the purposes of this paper, an alphabet A is a finite
set. Informally, we think of a message as an arbitrary
string of k alphabet symbols and a packet is a string of m
alphabet symbols. More precisely, a message is a variable
with domain Ak and a packet is a variable with domain
Am. A network is based on a finite, directed, acyclic
multigraph. A network is also assigned a finite set of
messages. Each message originates at a particular node,
called the source node for that message, and is required by
one or more demand nodes. Information about the
messages is passed from node to node in the form of
packets; there is one packet for each edge of the graph.
Thus, all edges have the same bandwidth, and the
bandwidth between two nodes can only be increased by
adding additional edges. For any given network, we may
consider different values of k and m, but these must be
kept consistent throughout the entire network.

The first interesting example of network coding is the
butterfly network illustrated in Fig. 1. (In all networks
drawn in this paper, unless otherwise indicated, a letter
above a node indicates a message whose source is that
node, and a letter below a node indicates a message
demanded at that node. Letters beside certain edges
denote the packets carried by those edges. A node marked
with numeral i will be referred to as ni, and an edge from ni
to nj may be referred to as ei;j.) The butterfly network was
introduced in 2000 by Ahlswede et al. [2] to demonstrate
the utility of network coding. This network has no routing
solution. But with k ¼ m ¼ 1 and any size alphabet
A ¼ f0; 1; . . . ; a" 1g, there is a simple coding solution.
To see this, let node n1 emit the message x along its two
out-edges (it has no other viable choice). Similarly, let

node n2 emit message y along its two out-edges. Node n3
will emit z ¼ ðxþ yÞ ðmod aÞ, and, having no sensible
alternative, node n4 will emit z along its two out-edges.
Then, node n5 recovers y from y ¼ ðz" xÞ ðmod aÞ, and
node n6 recovers x from x ¼ ðz" yÞ ðmod aÞ.

More generally, the inputs to a network node n are the
packets carried on its in-edges, together with any messages
generated at n. We will denote this set by InðnÞ. The
outputs of n are all of the packets carried on its out-edges,
together with any messages demanded at n. We will denote
this set by OutðnÞ. Each output of a node must be a
function of its inputs. A coding solution for the network is
an assignment of such functions (one for each output of
each node) which gives the correct results: if edge packets
and demand values are computed according to the assigned
functions, then the demand values match the messages
that were demanded. When the values of k and m need to
be emphasized, it will be called a ðk;mÞ-solution.
Informally, a network coding solution allows each demand
node to deduce its demanded messages by having
information from the sources propagate through the
network in the form of packets. Note that each edge is
allowed to be used only once (i.e., at most one packet can
travel across each edge).

Two special types of coding solutions are routing
solutions and linear solutions. In a routing solution, all
packets must be strings of message symbols, though they
are allowed to mix different messages together. In a linear
solution, we assume the alphabet A consists of the
elements of a finite ring, and usually, it will be a finite
field. Hence, all messages are k-long vectors of ring
elements while the packets are m-long vectors. The
functions in a linear solution must only use the operations
of vector addition and multiplication of a vector by a
constant matrix (whose components are ring elements).

The case k ¼ m will be of particular interest. If
k ¼ m ¼ 1, then a coding solution is said to be a scalar
solution. If k ¼ m & 2, it is said to be a vector solution. A
network is said to be solvable if it has a scalar solution over
some finite alphabet, scalar-linearly solvable if it has a scalar-
linear solution, vector-linearly solvable if it has a vector-
linear solution, etc. (Note that if a network has a
ðk; kÞ-solution over an alphabet A, then it has a scalar
solution over alphabet Ak, so a network having a vector
solution is solvable. BSolvability[ refers specifically to the
case where the edge capacity matches the message size;
without such a restriction, any sufficiently connected
network would be solvable simply by using a packet large
enough to carry all of the messages.) In fact, when we talk
about coding solutions that are not required to have k ¼ m,
we may emphasize this fact by referring to them as
fractional solutions.

As another example, consider the M-network, illus-
trated in Fig. 2. (The edges labeled u1 through u4 are the
out-edges from node n4.) This network is due to Koetter
and was used by Medard et al. in [31] as an example of aFig. 1. The butterfly network.
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network that is vector-routing solvable, but not scalar-
linear solvable. Their solution with k ¼ m ¼ 2 is as follows.
Let A be any alphabet. Let a ¼ ða1; a2Þ, b ¼ ðb1; b2Þ,
d ¼ ðd1; d2Þ, d ¼ ðd1; d2Þ denote the pairs of alphabet
symbols for each message. Then, let the sources emit the
packets

w1 ¼ða1; b2Þ; w2 ¼ ða2; b1Þ
w3 ¼ðc1; d2Þ; w4 ¼ ðc2; d1Þ

and let node n4 emit the packets

u1 ¼ða2; c1Þ; u2 ¼ ða2; d2Þ
u3 ¼ðb1; c1Þ; u4 ¼ ðb1; d2Þ:

Nodes n3, n4, and n5 have only one input, so they just copy
their input along each outgoing edge. The demands at
nodes n6; n7; n8; n9 are now easily met.

If a network has a ðk;mÞ-solution over an alphabet A,
then it has a ð2k; 2mÞ-solution over the same alphabet.
Indeed, a ð2k; 2mÞ-solution can be constructed from two
disjoint copies of the ðk;mÞ-solution. Because of this
scaling property, we are primarily interested in the ratio
k=m. Therefore, when a ðk;mÞ-solution exists over an
alphabetA, the number k=m is said to be an achievable rate
of the network, with respect to A. That is, k=m is the
amount of source data that is successfully sent through a
network, per network edge bandwidth. An important goal
in network coding is to find an achievable coding rate
which is as large as possible for a network. The coding
capacity of a network over an alphabet A (a related defini-
tion appears in [40, p. 339]) is defined to be the supremum
(least upper bound) of the ratio k=m over all pairs ðk;mÞ
for which the network has a ðk;mÞ-solution over A. If we

restrict attention to routing solutions or linear solutions,
then the coding capacity is referred to as the routing
capacity or linear coding capacity, respectively. In all cases,
if the alphabet A is not mentioned, the capacity is taken to
be the supremum of the capacities over all alphabets A.
The coding capacity of a given network is said to be
achievable if there is some ðk;mÞ-solution for the network
for which k=m equals the capacity (in which case the
supremum of achievable rates equals the maximum of
achievable rates).

A network is multicast if there is only one source node
and every receiver demands every source message. A
network is multiple unicast if every source message is
demanded by exactly one demand node (but a demand
node can demand more than one message). The butterfly
network, as presented above, is multiple unicast. But there
is a multicast version of this network with a single source
node pointing to nodes n1 and n2 where nodes n5 and n6
both demand messages x and y. One of the most important
facts about multicast networks is the following 2003 result
of Li et al. [28].

Theorem II.1: All solvable multicast networks are scalar-
linearly solvable over some finite field.

For more introductory material on network coding, see
[18] and [41].

III . POLYMATROIDS AND
UPPER BOUNDS ON THE
CAPACITY OF A NETWORK

When evaluating a network, we often consider the mes-
sages to be independent random variables. This allows us
to consider the entropy for any collection of messages and
packets, and thus keep track of the information as it flows
through the network. Using this perspective, and letting
HðxÞ denote Shannon’s entropy function (computed using
logarithms to base jAj), the basic requirements of a
network coding solution are summarized by the following
properties.

/ (N1) (source rates): HðMÞ ¼ kjMj for any collec-
tion M of messages.

/ (N2) (edge capacities): HðpÞ ' m for any packet p.
/ (N3) (node input/output functional dependencies):

HðInðnÞÞ ¼ HðInðnÞ [OutðnÞÞ for any node n.
Shannon [34] showed that when we apply the entropy

function HðxÞ to collections of random variables, certain
basic inequalities must be satisfied. These Shannon-type
information inequalities are important in the study of
network coding, as they allow us to deduce upper bounds
on the coding capacity of a network. These basic inequal-
ities are also satisfied by the rank function on linear
subspaces of a vector space, and there are other examples
as well. These basic inequalities are sometimes called the
polymatroidal axioms, and any function fðxÞ that satisfies
these axioms is called a polymatroid.

Fig. 2. The M-network.
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To be more precise, let S be a finite set and let f map
subsets of S to nonnegative real numbers. The conditions
(P1)–(P3) are called the polymatroidal axioms for f .

/ (P1) fð(Þ ¼ 0.
/ (P2) If A ) B ) S, then fðAÞ ' fðBÞ.
/ (P3) If A; B ) S, then fðA [ BÞ þ fðA \ BÞ '

fðAÞ þ fðBÞ.
Alternatively, one can replace conditions (P2) and (P3)

with the following combined version.
/ (P4) If A; B; C ) S, then fðA [ CÞ þ fðB [ CÞ &

fðCÞ þ fðA [ B [ CÞ.
When we consider a polymatroid in connection with a

networkN , the finite set S will always be the collection of
all messages and packets of the network. If such a poly-
matroid f also satisfies the conditions (N1)–(N3) (when H
is replaced by f ), then it will be called a ðk;mÞ-polymatroid
assignment to N . The polymatroid upper bound on the capa-
city of networkN is the supremum of the ratio k=m over all
pairs ðk;mÞ for which the network has a ðk;mÞ-polymatroid
assignment. Note that if N has a ðk;mÞ-coding solution,
then the derived entropy function on S is such a ðk;mÞ-
polymatroid assignment. So the terminology Bpolymatroid
upper bound on the capacity[ of a network is justified.
However, a network may have many polymatroid assign-
ments that are not entropy functions, so it is possible for the
polymatroid upper bound to be greater than the coding
capacity.

The purpose of the polymatroid assignments is to
make precise the meaning of Bbounds that are derivable
from the Shannon inequalities.[ Indeed, if an upper
bound on the coding capacity of N is derived from
Shannon-type information inequalities and uses no
information about entropy other than what is contained
in the inequalities (P1)–(P4) and the network entropy
conditions (N1)–(N3), then it should also be an upper
bound for every polymatroid assignment to N . Thus, we
may say (somewhat loosely) that the polymatroid upper
bound on capacity is the best upper bound on the network
coding capacity obtainable using only Shannon inequalities.
We will see in Section VIII-B that, for some networks, one
can use non-Shannon-type information inequalities to pro-
duce capacity bounds strictly tighter than the polymatroid
upper bound.

IV. MATROID FUNDAMENTALS

A matroid M is an ordered pair ðS; IÞ, where S is a finite
set and I is a set of subsets of S satisfying the following
three conditions.

/ (I1) ( 2 I .
/ (I2) If I 2 I and J ) I, then J 2 I .
/ (I3) If I; J 2 I and jJjG jIj, then there is an element

e of I" J such that J [ feg 2 I .
The set S is called the ground set and the matroid

M ¼ ðS; IÞ is called a matroid on S. The members of I
are called independent sets and any subset of S not in I is

called a dependent set. A maximal independent set of a
matroid is called a base of the matroid and a minimal
dependent set is called a circuit.

There are many equivalent definitions of a matroid.
One such alternate definition, which is particularly useful
for us, uses the notion of a rank function. For any X ) S,
the rank of X, denoted rðXÞ, is the size of any maximal
independent subset of X. It is easy to show using (I3) that
all such subsets are the same size.

The rank function is a function r from subsets of S to
integers satisfying the following three conditions.

/ (R1) If X ) S, then 0 ' rðXÞ ' jXj.
/ (R2) If X ) Y ) S, then rðXÞ ' rðYÞ.
/ (R3) If X; Y ) S, then rðX [ YÞ þ rðX \ YÞ '

rðXÞ þ rðYÞ.
Note the correspondence with the polymatroidal

axioms (P1)–(P3). Thus, the rank function of a matroid
is an example of a polymatroid. We will refer to (I1)–(I3)
as the independence axioms of a matroid and to (R1)–(R3) as
the rank axioms of a matroid. The two sets of axioms give two
equivalent ways to define a matroid. (One can reconstruct I
from r by letting I ¼ fX ) S : rðXÞ ¼ jXjg.)

The primary example of a matroid comes from linear
algebra. Let A be an m* n matrix over a field F. Let
S ¼ f1; . . . ; ng and let X ) S. If the columns indexed by
X are linearly independent over F, then we will say that
X 2 I . The pair ðS; IÞ forms a matroid, called the vector
matroid of A.

Another important example of a matroid is obtained
from graph theory. If S is the set of edges of a finite
undirected graph, and I is the collection of all subforests
(i.e., cycle-free subgraphs), then ðS; IÞ is a matroid. The
spanning forests and cycles of the graph are, respectively,
the bases and circuits in the matroid. The rank of any
subgraph determined by a subset of S is the number of
edges in a spanning forest of the subgraph.

A third useful collection of matroids is the family of
uniform matroids Um;n, defined as follows. The ground set of
Um;n is the set f1; . . . ; ng, and a subset of the ground set is
independent if and only if it has size at most m.

Two matroids ðS; IÞ and ðS0; I0Þ are said to be
isomorphic if there exists a bijection f : S ! S0 such that
I 2 I if and only if fðIÞ 2 I0. If a matroidM is isomorphic
to the vector matroid over a field F, then M is said to be
representable over F or F-representable. A matroid is
representable if it is representable over some field.

Matroids of small rank are often depicted geometri-
cally. A rank-3 matroid is represented by a figure in which
marked points are ground set elements, with any two dis-
tinct points giving a size-2 independent set in the matroid.
Three points in the figure represent an independent set if
and only if they are not collinear in the figure. (Sometimes
the figure will indicate that certain curved Blines[ in the
figure are to be treated as dependent sets.) For a rank-4
matroid, one uses a 3-D diagram where collinear triples
and coplanar quadruples are dependent sets (although
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usually some hints from the text are needed to tell just
which quadruples are supposed to be coplanar).

For example, the matroid depicted in Fig. 3 is called
the Fano matroid.1 The matroid has ground set
fâ; b̂; ĉ; ŵ; x̂; ŷ; ẑg and has rank 3. Any three elements of
the ground set are dependent if and only if they are
collinear in the diagram (where we pretend that points
on the drawn circle are also Bcollinear[).

For a detailed introduction to matroid theory, the
reader is referred to [32] or [36].

V. NETWORKS FROM MATROIDS

In this section, we describe a method for building net-
works from matroids. The method involves a number of
choices and hence does not produce a unique network.

Let N be a network with message set M and packet
set P. Let M ¼ ðS; IÞ be a matroid with rank function r.
A network-matroid mapping from N to M is a function
f : M [ P ! S such that the following conditions are
satisfied.

/ (M1) f jM is one-to-one.
/ (M2) fðMÞ 2 I .
/ (M3 ) rðfðInðnÞÞÞ ¼ rðfðInðnÞ [OutðnÞÞÞ, f o r

every node n.
Conditions (M1) and (M2) reflect that the messages

are independent while (M3) is a reflection of the network
dependencies. When such a mapping exists, we say that
the networkN is matroidal overM and we also say thatN
is a matroidal network. However, the matroid witnessing
that a particular network is matroidal need not be unique.

As an example, let us see that the butterfly network
(Fig. 1) is matroidal over the uniform matroid U2;3. Recall
that U2;3 has ground set f1; 2; 3g, and a subset of the
ground set is independent if and only if it has size at
most 2. To see a network-matroid mapping, let f assign the
element 1 to the message x, which originates at node n1 and
also to the two packets emanating from node n1. Let f
assign the element 2 to the message y, and also to the
packets emanating from node n2. The three remaining
packets are assigned the element 3. The conditions (M1)

and (M2) are easily checked. To see (M3), note that
fðInðnÞÞ ¼ fðInðnÞ [ OutðnÞÞ for nodes n ¼ n1; n2; n4. At
each of the other nodes, n ¼ n3; n5; n6, fðInðnÞ[
OutðnÞÞ ¼ f1; 2; 3g, which has rank 2 while fðInðnÞÞ has
size two and is therefore independent and therefore also
has rank 2.

We now present some basic facts about matroidal net-
works. First, it follows from (M1) and (M2) that:

r fðSÞð Þ ¼ jSj for all message subsets S: (1)

The following fact about matroidal networks will be
used in Section VIII-B.

Lemma V.1 [11, p. 1956]: For any matroidal network, the
polymatroid upper bound on the capacity is at least 1.

So, to show that Shannon inequalities are insufficient for
computing coding capacity, it suffices to find a matroidal
network that has capacity less than 1. This is accomplished
using the Vámos network (to be described later).

The following theorem demonstrates that a large class
of interesting networks are matroidal.

Theorem V.2 [11, p. 1956]: If a network is scalar-linearly
solvable over some finite field, then the network is
matroidal over a representable matroid.

It follows from Theorem V.2 and Theorem II.1 that all
solvable multicast networks are matroidal.

Theorem V.2 suggests a technique for obtaining a
network that has a good chance of not being scalar-linearly
solvable: choose a network that is matroidal over a nonre-
presentable matroid. The Vámos matroid defined in
Section V-D is the smallest example of a nonrepresentable
matroid [32, p. 512], providing inspiration to define and
study a BVámos network.[

A. Constructing Matroidal Networks
A method was given in [11] for constructing matroidal

networks from matroids. Such constructions allow inter-
esting properties of matroids to be transferred to networks.
As matroid theory is a field rich in important results, the
goal in constructing matroidal networks is to obtain some
analogues for networks.

Let M ¼ ðS; IÞ be a matroid with rank function r.
LetN denote the network to be constructed, with message
set M, node set N, and packet set P.

The construction simultaneously constructs the net-
work N , the function f : M [ P ! S, and an auxiliary
function g : S ! N, where for each x 2 S, either

i) gðxÞ is a source node with message m and
fðmÞ ¼ x; or

ii) gðxÞ is a node with in-degree 1 and whose incom-
ing packet p satisfies fðpÞ ¼ x.

The construction is carried out in four stages; each
stage can be completed in many ways. We will first

Fig. 3. Geometric depiction of the Fano matroid.

1Named after the Italian mathematician Gino Fano (1871–1952),
father of the information theorist Robert Fano (1917–).
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describe the entire construction and then illustrate the
steps with an example.

Step 1) Create network source nodes n1; n2; . . . ; nrðSÞ
and corresponding messages m1;m2; . . . ;
mrðSÞ. Choose any base B ¼ fb1; . . . ; brðSÞg
for M and let fðmiÞ ¼ bi and gðbiÞ ¼ ni.

Step 2) (To be repeated until it is no longer possible.)
Find a circuit fx0; . . . ; xjg in M, such that
gðx1Þ; . . . ; gðxjÞ have been already defined,
but gðx0Þ has not yet been defined. Then, we
will add the following.
i) a new node y, edges e1; . . . ; ej, and

corresponding packets p1; . . . ; pj, such
that ei connects gðxiÞ to y, and we define
fðpiÞ ¼ xi.

ii) Another new node n0 with a single in-
edge e0 and corresponding packet p0,
connecting y to n0, and we let fðp0Þ¼x0
and gðx0Þ ¼ n0.

Step 3) (To be repeated as many times as desired.) If
fx0; . . . ; xjg is a circuit in M and gðx0Þ is a
source node with message m0, then add to
the network a new demand node y, which
demands the message m0 and which has in-
edges e1; . . . ; ej with corresponding packets
p1; . . . ; pj where ei connects gðxiÞ to y and
where fðpiÞ ¼ xi.

Step 4) (To be repeated as many times as desired.)
Choose a base B ¼ fx1; . . . ; xrðSÞg of M and
create a demand node y that demands all of
the network messages, and such that y has
in-edges e1; . . . ; erðSÞ with corresponding
packets p1; . . . ; prðSÞ where ei connects gðxiÞ
to y. Let fðpiÞ ¼ xi.

The butterfly network (Fig. 1) was already shown to be
matroidal over the uniform matroid U2;3. To illustrate the
construction procedure, we will show how to construct the
butterfly network from U2;3 using the steps above. The
results of these steps are shown in Figs. 4–6. In order to
avoid confusion, we will first rename the elements of the
ground set of U2;3 so that S ¼ fx; y; zg. Recall that a subset
of S is independent if it has size at most 2. Therefore, the
bases of this matroid are the sets fx; yg, fx; zg, and fy; zg
and the only circuit is fx; y; zg.

Step 1) We choose a matroid base B ¼ fx; yg. We
create source nodes n1, n2, and network mes-
sagesm1 andm2, and we assign fðm1Þ ¼ x and
fðm2Þ ¼ y, and gðxÞ ¼ n1 and gðyÞ ¼ n2.

Step 2) The only circuit in the matroid is fx; y; zg,
and gðxÞ ¼ n1 and gðyÞ ¼ n2 have already
been defined, but gðzÞ has not yet been de-
fined. For Step 2(i), we add a new node n3.
We also add an edge e1;3 from n1 to n3 with
packet p1;3, and an edge e2;3 from n2 to n3
with packet p2;3, and we define fðp1;3Þ ¼ x
and fðp2;3Þ ¼ y. For Step 2(ii), we add
another new node n4 with a single in-edge
e3;4 with packet p3;4 so that e3;4 connects n3
to n4. Then, we let fðp3;4Þ ¼ z and gðzÞ ¼ n4.

Step 3) The only circuit in the matroid is fx; y; zg
and gðyÞ ¼ n2 is a source node with message
m2. We add a new demand node n5, which
demands the message m2 and has in-edges
e1;5 and e4;5 and corresponding packets p1;5
and p4;5. Edge e1;5 connects gðxÞ ¼ n1 to the
new node n5 and edge e4;5 connects gðzÞ ¼
n4 to n5. We then let fðp1;5Þ ¼ x and
fðp4;5Þ ¼ z. We repeat this step once more
with the same circuit fx; y; zg, but this time
using the source node gðxÞ ¼ n1 with mes-
sage m1. We add a new demand node n6,
which demands the message m1 and has in-
edges e2;6 and e4;6 with corresponding
packets p2;6 and p4;6, where fðp2;6Þ ¼ y and
fðp4;6Þ ¼ z.

Fig. 4. After step 1.

Fig. 5. After step 2.

Fig. 6. After step 3.

Dougherty et al. : Network Coding and Matroid Theory

Vol. 99, No. 3, March 2011 | Proceedings of the IEEE 393



The result is the butterfly network. Also constructed is
the network-matroid mapping f showing that this
network is matroidal over the uniform matroid U2;3.
Note that (the optional) Step 4 of the construction was
not needed.

It should be noted that the construction procedure
described here is not quite general enough to fully handle
all matroids. One can reach a situation where there is a
circuit for which all g values have already been defined (so
Step 2 is not applicable) and none of these values is a
source node (so Step 3 cannot be applied), so the
dependency given by this circuit will not be reflected in
the network. There are extensions or alternative construc-
tions that can fully handle all matroids; for instance, see
Section X-C.

We will now describe some additional matroids that
were constructed from well-known matroids using this
procedure. Most of the construction details will be
omitted.

B. The Fano Network
Fig. 3 is a geometric depiction of the well-known

Fano matroid [32]. The network shown in Fig. 7, called
the Fano network, is matroidal over the Fano matroid and
can be constructed using the technique described in
Section V-A.

The Fano matroid is known to be F-representable over
a finite field F if and only if F has characteristic two [32].
Correspondingly, the Fano network was shown in [9] to be
solvable if and only if the alphabet size is an integer power
of two. It, in fact, has a linear solution over any finite field
of characteristic two (by taking w ¼ aþ b, x ¼ aþ c,
y ¼ bþ c, and z ¼ aþ bþ c).

The network-matroid mapping is shown in Fig. 7
(message a is mapped to matroid element â, the packet on
the edge labeled w is mapped to matroid element ŵ, and so
on). As usual, we omit the label on edges emanating from
any node n with only one input. Nodes n1–n3 were
constructed in Step 1 of the construction, nodes n4–n11 in
Step 2, and nodes n12–n14 in Step 3; Step 4 was not
used.

C. The Non-Fano Network
Fig. 8 is a geometric depiction of the well-known non-

Fano matroid [32]. The matroid has ground set
fâ; b̂; ĉ; ŵ; x̂; ŷ; ẑg and has rank 3. Any three elements of
the ground set are dependent if and only if they are
collinear in the diagram. The network shown in Fig. 9,
called the non-Fano network, is matroidal over the non-
Fano matroid and is constructed using the technique
described in Section V-A.

The non-Fano matroid is known [32] to be
F-representable over a finite field F if and only if F has odd

Fig. 7. The Fano network.

Fig. 8. Geometric depiction of the non-Fano matroid.

Fig. 9. The non-Fano network.
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characteristic. Correspondingly, the non-Fano network
was shown in [9] to be solvable if and only if the alphabet
size is odd.2 It, in fact, has a linear solution over any finite
field of odd cardinality, or even any Abelian group of odd
cardinality (by taking w ¼ aþ b, x ¼ aþ c, y ¼ bþ c, and
z ¼ aþ bþ c).

Nodes n1–n3 were constructed in Step 1 of the
construction, nodes n4–n11 in Step 2, nodes n12–n14 in
Step 3, and node n15 in Step 4.

D. The Vámos Network
The Vámos matroid is an 8-element rank-4 matroid

depicted in the 3-D drawing in Fig. 10. The ground set
is S ¼ fâ; b̂; ĉ; d̂; ŵ; x̂; ŷ; ẑg. All subsets of cardinality at
least 5 are dependent. The subsets of cardinality 4,
which are intended to be coplanar in the diagram and
hence dependent in the matroid, are fb̂; ĉ; x̂; ŷg,
fâ; b̂; ŵ; x̂g, fâ; b̂; ŵ; x̂g, fĉ; d̂; ŷ; ẑg, and fb̂; d̂; x̂; ẑg. The
set fâ; d̂; ŵ; ẑg is not considered a coplanar set in Fig. 10
and is independent in the Vámos matroid (though it is
impossible to draw this accurately without distortion).

The Vámos matroid is not representable, but every
matroid smaller than the Vámos matroid is representable
[32, p. 170].

The network shown in Fig. 11 is called the Vámos
network; it is matroidal over the Vámos matroid3 and
constructed using the technique described in Section V-A.
The network has 17 nodes and four message variables.
Nodes n9; . . . ; n13 are demand nodes, each demanding one
source message, except for n11, which demands two source
messages. The network has four hidden source nodes, each
generating exactly one of the messages a; b; c; d. As
depicted in Fig. 11, source messages are carried on hidden
edges from their hidden source to various other network

nodes (e.g., message c is carried by hidden edges from its
hidden source to nodes n1, n5, n7, n10, and n12).

Note: As depicted in Fig. 11, several of the message
variables a; b; c; d appear above some of the nodes.
This is simply a convenience that makes the
depiction easier to draw. When this happens, it is
understood that there is an unshown edge from the
appropriate source node to the node in question. So,
for example, node n1 actually has four in-edges (not
shown), one from each source node (also not
shown).

E. A Non-Matroidal Network
A trivial example of an unsolvable network that is not

matroidal is shown in Fig. 12. The two messages a and b
generated at node n1 and demanded by node n2 cannot
both be sent over the single link between nodes n1 and n2.

2Actually, a slight variation of the non-Fano network was used in [9];
the variation consisted of removing the demands a and b from node n15.
However, the statements here about the solvability of the non-Fano
network are true, since it can be shown that the non-Fano network is
equivalent to the variant network in the sense of being solvable over the
same fields and linearly solvable over the same fields.

3It should be emphasized that there are many other networks which
are matroidal over the Vámos matroid.

Fig. 10. A 3-D geometric depiction of the Vámos network.

Fig. 11. The Vámos network. A message variable a, b, c, or d labeled

above a node indicates an in-edge (not shown) from the source node

(not shown) generating the message.

Fig. 12. An unsolvable nonmatroidal network.
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There are also solvable networks that are not matroidal.
One example is theM-network shown in Fig. 2. Recall that
the M-network was presented in [31] as an example of a
network with no scalar linear solution, but with a simple
vector linear solution. This result can be extended further.
The 2-D vector linear solution to the M-network given in
[31] is a simple routing solution and easily extends to a
vector linear solution over any even vector dimension. In
[11], it was shown that the M-network does not have any
(finite field) vector linear solutions of odd vector dimen-
sion, generalizing the fact that the M-network does not
have a scalar-linear solution.

VI. UNACHIEVABILITY OF CAPACITY
FOR SOME NETWORKS

When one considers the coding capacity of a network by
looking at vectors of symbols over a base alphabet, it turns
out that the size of the base alphabet does not affect the
final computed capacity [6]. Given long enough vectors,
one can simply convert from one alphabet to another at the
sources and do the reverse conversion at the sinks, with a
loss of efficiency less than any prespecified bound. Of
course, these alphabet conversions are highly nonlinear;
we will see later that linear coding capacities can depend
quite strongly on the size of the base alphabet.

We will now show how the incompatibility of repre-
sentations between the Fano and non-Fano matroids (one
is representable only over fields of characteristic 2, the
other only over fields not of characteristic 2) has been
used to produce a network which has coding capacity 1
but is not solvable (so there are fractional coding
solutions which approach the capacity arbitrarily closely,
but no solution that attains it). The argument here comes
from [9].

We have already constructed networks corresponding
to these two matroids. Since the networks are both ma-
troidal, they have coding capacity at least 1. We now want
to see that the incompatibility in the matroids carries over
to a corresponding incompatibility in the networks. So we
must analyze the solutions to the Fano and non-Fano net-
works; note that we are not looking at just linear solutions,
but all solutions.

Somewhat surprisingly, it turns out to be possible to
give complete analyses of the solutions to these two net-
works, and they are both of the same form: up to permu-
tations of the alphabet at each edge, any such solution can
be expressed in terms of an Abelian group. (These permu-
tations are unavoidable; given any solution, one can alter it
by performing an alphabet permutation at the beginning of
an edge and undoing the permutation at the end of the
edge, to get a variant solution.)

The general result is that any solution to either the
Fano or the non-Fano network has the following form:
for some Abelian group operation + on the alphabet A
and some permutations !1; . . . ; !6 of A, the contents of

the edges w; x; y; z are given in terms of the messages
a; b; c by

w ¼!4 !1ðaÞ + !2ðbÞð Þ
x ¼!5 !1ðaÞ + !3ðcÞð Þ
y ¼!6 !2ðbÞ + !3ðcÞð Þ
z ¼!1ðaÞ + !2ðbÞ + !3ðcÞ:

The difference between the two networks shows up as a
restriction on the Abelian group ðA;+Þ. For the Fano
network, all elements of the group must have order 1 or 2;
for the non-Fano network, all elements must have odd
order. Hence, the Fano network is solvable only for
alphabets whose size is a power of 2, while the non-Fano
network is solvable only for odd-sized alphabets.

Now consider a network which is simply a disjoint
union of a Fano network and a non-Fano network. This
network cannot be solvable, because the alphabet size for a
solution would have to be both odd (for the non-Fano part)
and a power of 2 (for the Fano part). However, one can get
a fractional solution coming arbitrarily close to the capa-
city by using a large power-of-2 alphabet for the messages,
handling the Fano side directly, and handling the non-
Fano side via alphabet conversions as described at the
beginning of this section.

We note that it is not pathological that a disjoint union
of two networks was used to construct a network that
cannot achieve its coding capacity. In fact, the Fano and
non-Fano networks can easily be connected by adding
three new source nodes, each producing one of the mes-
sages a, b, or c, and then adding out-edges from these new
source nodes to the corresponding sources of the Fano and
non-Fano networks. This will create a connected network
having the same property of not being able to achieve its
coding capacity.

VII. INSUFFICIENCY OF LINEAR
NETWORK CODING

In this section, we will modify the example from the
preceding section so as to get a network that is solvable
but is not linearly solvable, thus demonstrating that
linear coding does not suffice in general to attain the full
benefits of network coding. The construction here comes
from [8].

The network will again be assembled from two parts,
and one of the two parts will be the Fano network as
before. For the other part, we use the network N 2 shown
in Fig. 13. This is a slightly weakened form of the non-Fano
network; it has two copies of the non-Fano network coop-
erating to meet one demand for message c at the bottom. It
is easy to see that any solution to the non-Fano network
can be copied (twice) to give a solution to N 2, so N 2 is
solvable over all odd-sized alphabets. Also, the proof that
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the non-Fano network has no vector linear solution over
fields of characteristic 2 can be used to show the same fact
for N 2. But it turns out that N 2 does have a nonlinear
solution over an alphabet of size 4. (This will be shown in
Fig. 14.)

Now, as before, we assemble the two parts to form a
combined network N 3, shown in Fig. 14. (This time we
explicitly show how one can make it a connected network
by having the two parts share the three source messages
a; b; c.)

The combined network N 3 cannot have a vector linear
solution, because the base field would have to be of
characteristic 2 for the Fano part and not of characteristic
2 for the N 2 part. But N 3 does have a solution over the
four-element alphabet f0; 1; 2; 3g. This is shown in the
figure; here+ is bitwise addition without carry (xor), þ is
ordinary addition modulo 4, and t is the operation of
interchanging the bits in a two-bit number [so tð0Þ ¼ 0,
tð2Þ ¼ 1, tð2Þ ¼ 1, and tð3Þ ¼ 3]. Nodes n31; n32; n33 have
enough information to reconstruct 2c modulo 4, which
means we get the lower bit of c; and nodes n34; n35; n36
have enough information to reconstruct the lower bit of
tðcÞ, which is the upper bit of c, so together they can
reconstruct all of c. So N 3 is a network that is
(nonlinearly) solvable but has no linear solution over any
finite field and any vector dimension.

The coding capacity of the network N 3 is 1. (We have
already seen a solution attaining capacity 1; the fact that
there is a unique path from the source node n1 for
message a to node n39, which demands a, can be used to
show that the capacity is at most 1. Actually, all that is
needed is that there is some single edge that all paths
from n1 to n39 must pass through.) Given the results of the
preceding section, it is natural to ask whether the network

Fig. 14. The network N 3 demonstrating the insufficiency of linear coding.

Fig. 13. ThenetworkN 2, aweakenedversionof thenon-Fanonetwork.
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N 3 can Balmost[ be solved linearly (i.e., whether there are
fractional linear solutions approaching capacity 1 arbitra-
rily closely). This turns out not to be the case; in fact, we can
compute the linear capacity of N 3 and its parts precisely.

The linear capacities of these networks depend on the
size of the base alphabet (field). For the Fano network, we
have already seen a (scalar) linear solution over any field of
characteristic 2; and the capacity is at most 1 by the argu-
ment of the preceding paragraph, so the characteristic-2
linear capacity of the Fano network is 1. On the other
hand, some rather involved linear algebra can be used to
show that, for a field which is not of characteristic 2, the
linear capacity of the Fano network is at most 4/5. This
value can actually be attained by the solution shown in
Fig. 15. Here message a consists of four components
a1; a2; a3; a4 (and similarly for b and c) from the base field,
and each edge can carry five such components.

The linear coding capacity of the network N 2 is 1 over
any odd-characteristic finite field; this can be attained by
using two copies of the scalar linear solution for the non-
Fano network. But over fields of characteristic 2, the linear
capacity ofN 2 works out to be exactly 10/11. (Again one can
give an explicit linear solution using 10-component mes-
sages and 11-component edge values.) It now follows that
the linear coding capacity of the combined network N 3 is
10/11 over fields of characteristic 2 and 4/5 over all other
fields, so in no case does one have a vector linear solution,

which closely approaches the coding capacity of 1. In fact, the
coding capacity of N 3 is exactly 10% greater than the
maximum linear coding capacity over any finite field.

The fact that network N 3 is solvable but not even
asymptotically linearly solvable (i.e., its linear capacity is
bounded by a number strictly less than 1) allows one to
deduce that even more general coding methods such as
convolutional coding or filter-bank linear coding (see [22]
for the definitions of these) cannot be used to give a linear
solution for network N 3. One also cannot reach the full
coding capacity by Btime sharing[ the network between
linear solutions over different fields. As shown in [8], the
negative results still hold even if the vector spaces over
fields here are generalized to modules over rings.

VIII . BOUNDS ON CAPACITIES OF
SOME NETWORKS

In general, the routing capacity of an arbitrary network can
in principle be determined using a linear programming
approach [6],4 although the computational complexity can
be prohibitive for even relatively small networks. It thus
appears to be generally nontrivial to efficiently determine the
routing capacity. In addition, there are presently no known
techniques for computing the coding capacity or the linear
coding capacity of an arbitrary network.5 In fact, the linear
coding capacity of a network depends, in general, on the
finite field alphabet used [8], whereas the routing capacity
and coding capacity do not depend on the alphabet size [6].

Here we present a few more capacity bounds for the
example networks we have already seen. Most of these
computations come from [8] and [11]; extensions to
computations of rate regions (where messages can have
different sizes) will be presented in [13].

A. The Fano and Non-Fano Networks
For the Fano network, we have already seen the coding

capacity (1) and the linear coding capacity (1 for
characteristic-2 fields, 4/5 for other fields). The routing
capacity is at most 2/3 because each part of all of the
messages a; b; c must pass through at least one of the edges
labeled x and z in Fig. 7. It is not hard to see that the value
2/3 can be attained: just route messages a and c on the
direct paths to their destinations while sending half of
message b via edges w and z and the other half via edges y
and x. So the routing capacity is exactly 2/3.

The non-Fano network can be treated by similar
methods. The routing capacity of this network is 1/3: it is
trivial to attain this value by simply sending all messages
anywhere they can go, and one cannot do better because
all three messages a; b; c must pass through the edge
labeled z in Fig. 9 in order to reach their respective

Fig. 15. A (4,5) fractional linear solution over any field alphabet

for the Fano network.

4This is analogous to the algorithm for achieving multicommodity
flow capacity given in [17].

5An exception is for multicast networks, where it is known that the
coding capacity equals the linear coding capacity and is computable [28].
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destinations n14; n13; n12. The coding capacity is at most 1
(again because of the bottleneck at z, which still applies
to each message separately even in the coding case), and
this is attainable using linear coding over any odd-
characteristic field, as noted in Section V-C. So the coding
capacity and the odd-characteristic linear capacity are
both equal to 1. This leaves the linear capacity for
characteristic-2 fields, which turns out to be 5/6. Again
the upper bound is proved by rather messy linear algebra,
while the lower bound is proved by giving an explicit
(5,6) fractional linear solution.

B. The Vámos Network
For the Vámos network, we first note that the routing

capacity is relatively easy to compute. Referring back to
Fig. 11, we see that, in any routing solution, messages a and d
must both pass in their entirety through both of edges x and y
in order to reach their corresponding demand nodes. Also,
all parts of message bmust pass through either edge x or edge
y to get to demand node n9. Hence, edges x and y must
together have the capacity to carry five messages; this means
that the routing capacity of the network is at most 2/5. It
turns out that the routing capacity is in fact equal to 2/5; this
value is attainable by splitting message b into two halves b1
and b2 and letting edges w, x, y, and z carry combinations
ða; b1; dÞ, ða; b1; dÞ, ða; b2; dÞ, and ða; b2; cÞ, respectively.

Computing the coding capacity of the Vámos network
is much more difficult; in fact, it is an open question at the
moment, though we do have partial results. First, it is easy
to see that the coding capacity is at most 1, because all of
the information in message a must pass through the edge
e8;10 in order to get to demand node n10. Using standard
methods based on the Shannon information inequalities,
we cannot get a better bound than this; since the Vámos
network is matroidal, Lemma V.1 shows that the
polymatroid upper bound on the coding capacity of the
Vámos network is at least 1. [The argument given infor-
mally here using e8;10 and the bottleneck arguments for the
other networks are abbreviations for derivations using
the Shannon inequalities. For instance, the argument for
the Vámos network could be given more formally as fol-
lows: HðaÞ ' Hðe8;10Þ because

Hðe8;10Þ þ Hðb; c; dÞ
& Hðe8;10; b; c; dÞ [from Shannon]

¼ Hðe8;10; b; c; d; aÞ [from (N3)]

& Hða; b; c; dÞ [from Shannon]

¼ 4k [from (N1)]

¼ HðaÞ þ Hðb; c; dÞ; [from (N1)]

so k ¼ HðaÞ ' Hðe8;10Þ ' m by (N1) and (N2), so
k=m ' 1.]

But Shannon inequalities do not tell the whole story. In
1998, Zhang and Yeung [42] gave the first example of an
information inequality on four random variables which is
not of Shannon type; that is, the inequality is true for any
four jointly distributed discrete random variables, but it
does not follow directly from the Shannon inequalities.
The Zhang–Yeung inequality can be written in the
following form:

IðA; BÞ ' 2IðA; BjCÞ þ IðA; CjBÞ
þ IðB; CjAÞ þ IðA; BjDÞ þ IðC;DÞ:

[Here IðA; BÞ and IðA; BjCÞ are shorter ways of writing the
entropy combinat ions HðAÞ þ HðBÞ " HðA; BÞ and
HðA; CÞ þ HðB;CÞ " HðCÞ " HðA; B; CÞ, respectively.]

Using the Zhang–Yeung inequality along with the
Shannon and network inequalities, one can improve the
upper bound on the coding capacity of the Vámos network
to 10/11. In particular, since the coding capacity is strictly
less than 1, the Vámos network is not solvable. This was
the first application of a non-Shannon-type information
inequality to network coding.

Since 1988, many additional non-Shannon-type infor-
mation inequalities have been discovered (see, for instance,
[10], [30], [39], and [41]). In fact, in 2007 Matúš showed
[30] that the list of non-Shannon-type information inequal-
ities on four variables is essentially infiniteVno finite list of
them implies all of the others.

It turns out that most of the inequalities found so far do
not further improve the Vámos network coding capacity
bound. But the inequality

2IðA; BÞ ' 4IðA; BjCÞ þ 3IðA; CjBÞ
þ IðB; CjAÞ þ 2IðA; BjDÞ þ 2IðC;DÞ

from [14] does give a slight further improvement: the
coding capacity of the Vámos network is at most 19/21.

One more inequality that can be used in these com-
putations is the Ingleton inequality [21]. This inequality is
rather opaque in its usual form, but becomes much clearer
when written as in [19]

IðA; BÞ ' IðA; BjCÞ þ IðA; BjDÞ þ IðC;DÞ:

Unlike the preceding inequalities, the Ingleton inequality
is not an information inequalityVthere exist jointly distri-
buted random variables that violate the Ingleton inequal-
ity. However, the Ingleton inequality does hold for the
special case of random variables that vary uniformly and
independently over specified subspaces of a given finite

Dougherty et al. : Network Coding and Matroid Theory

Vol. 99, No. 3, March 2011 | Proceedings of the IEEE 399



vector space. These are precisely the kind of random va-
riables that come up when one is considering linear solu-
tions to a network coding problem. Hence, the Ingleton
inequality can be used to give an upper bound on the linear
capacity of the Vámos network; this bound turns out to be
5/6. This bound is sharp; one can give an explicit linear
(5,6)-solution to the Vámos network (which works over
any field).

So the linear capacity of the Vámos network is 5/6,
while the coding capacity is somewhere between 5/6 and
19/21 (inclusive). Furthermore, the known non-Shannon-
type inequalities provide numerous bounding inequalities
for the rate region of the Vámos network; in fact, since
the closed entropy region for four random variables is
not polytopal [30], it is possible that the Vámos network
rate region is not a polytope. However, no solution to the
Vamos network has yet been found outside the linear
rate region, so it is possible that the coding capacity is
just 5/6 and the coding rate region matches the linear
rate region (which, for the Vámos network, is known to
be a simple polytope not depending on the field).

The Vámos network is not the only network for which
non-Shannon-type information inequalities provide capac-
ity bounds. Chan and Grant [7] prove a quite general
result, showing that, given any non-Shannon-type infor-
mation inequality, one can construct a network for which
the given inequality provides an improvement to the poly-
matroid bounds for the rate-capacity region of the network.

IX. NETWORK SOLVABILITY AND
POLYNOMIAL SYSTEMS

The problem of determining whether a given network is
solvable is quite difficult. Even if the alphabet size is
known in advance and small, a brute-force search of the
possible network codes is almost always computationally
infeasible. One cannot assume that the alphabet will be
small; Lehman and Lehman [27] give examples of solvable
networks for which the minimum alphabet size required
for a solution is extremely large (doubly exponential in the
size of the network).

In fact, since no upper bound is known on the size of
the alphabet that would be required for a given network, it
is possible that there is no algorithm at all for determining
network solvability; the problem could be undecidable.
This could be demonstrated by converting instances of
another known undecidable problem to networks whose
solvability would correspond to a positive answer to the
other problem. One candidate for such a problem is
Rhodes’ problem on identities in finite groups, although
this is not yet known to be undecidable [3].

Even if one restricts to vector linear solutions, no
algorithm is known for determining whether a given net-
work is solvable (and again such an algorithm might not
exist). But the scalar linear case is more tractable. Koetter
and Médard [25] show that, from a given network, one can

produce a system of polynomial equations such that scalar
linear solutions to the network correspond exactly to
solutions to the polynomial system. This reduces the scalar
linear network solvability problem to the polynomial
system satisfiability problem, which is known to be
solvable using the method of Gröbner bases [4].

However, even this is a complicated and time-
consuming algorithm; it is natural to ask whether there
is an alternative, simpler way to determine whether a
network is scalar-linearly solvable. This question is
answered in [12], where a construction is given that is
basically a converse to the Koetter–Médard construction:
given a polynomial system, it produces (constructively,
without much increase in size) a network such that, for any
finite field F, the network is solvable over F if and only if
the polynomial system has a solution over F. Thus, in terms
of computational complexity, the network scalar-linear
solvability problem and the polynomial system satisfia-
bility problem are equally difficult.

This is connected to matroid theory in two ways. First,
it turns out that the network constructed as above is
matroidal. Second, the motivation for the construction
came from a 1936 construction of MacLane [29] in the
early history of matroid theory.

MacLane’s construction is motivated by some simple
geometric constructions in the plane for doing arithmetic.
One can add two lengths by simply concatenating seg-
ments; and constructions involving similar triangles allow
us to multiply numbers. So, given a unit segment and some
other starting lengths, one can do constructions involving
intersections of lines and drawing parallel lines to draw a
segment, which is a polynomial in the given starting
lengths. The parallel lines can be eliminated by moving to
the projective plane, which includes Bpoints at infinity[ and
a Bline at infinity[ so that any two lines intersect at a point.
Then, one replaces the field of real numbers with a finite
field to get finite projective planes. In these finite projective
planes, one gets low-rank matroids just as in the geometric
depictions described in Section IV.

The result of MacLane’s construction is as follows. Let
P be a polynomial collection and let K be a finite field such
that P has a solution over K. Then, MacLane constructs a
matroid M that is representable over K and such that, for
any finite field F, if M is representable over F, then P has
a solution over F.

The construction in [12] uses network elements to
imitate MacLane’s point-and-line constructions in order to
get a network that is fully equivalent to P as stated above.

The difference between the matroid situation and the
network situation needs some further explanation.

Given an instance of a problem that depends on a finite
field F (e.g., matroid representability, network scalar-
linear solvability, or polynomial system satisfiability), the
set of characteristics of the problem instance is the set of
prime numbers p such that the problem instance is
solvable for some field F of characteristic p.
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After a great deal of work built partially on MacLane’s
initial construction, it was shown that a set of primes is the
set of characteristics for representability of a matroid if and
only if the set is finite or cofinite [32, Sec. 6.8]. The cor-
responding fact about polynomial systems can be proved
using quite easy constructions, so the equivalence pre-
sented here shows that the same result holds for network
scalar-linear satisfiability.

But the matroid situation is substantially more com-
plicated than that for the other two problems. MacLane’s
construction did not give a two-way equivalence between
matroids and polynomial systems, and other results show
that such an equivalence is impossible; for instance, a
matroid that is representable over both GFð2Þ and GFð3Þ
must be representable over all fields [32, Th. 6.6.3], while
this is not true for polynomial systems (or networks). One
possible reason for this is that, in amatroid, every set must be
specified to be either definitely independent or definitely
dependent. There is more flexibility in networks; if one has
two edges in different parts of a network; the information
carried by those two edges could be fully independent, fully
dependent, or partially dependent, and the situation could be
different for different solutions to the network. This extra
flexibility allows us to get a full equivalence between
network scalar-linear solvability and polynomial system
satisfiability that could not be attained for matroids.

X. RELATED TOPICS

A. Multiple-Unicast Networks
The special case of multiple-unicast networks (where

each message is sent by only one source and demanded by
only one destination) has received attention for several
reasons: many real-world applications are of this type;
certain additional questions make more sense in this con-
text (see, for instance, Section X-B); and such networks
may be easier to work with (for instance, the algorithm
given by Adler et al. [1] and Harvey et al. [20] for comput-
ing coding capacity bounds of networks applies as stated
only to multiple-unicast networks).

It turns out that, if one is considering only questions of
solvability or linear solvability (where the edge capacity is
the same as the message size), there is no loss of generality
in restricting to the case of multiple-unicast networks. This
is shown in [15], where a technique is given for converting
arbitrary networks into multiple-unicast networks. The
conversion procedure preserves the solvability and linear
solvability properties of the original network; it also pre-
serves the property of a network being matroidal.

We want to convert a given network into an equivalent
network in which each message has only one source and
one demand node. Actually, the network definitions we
presented here did not allow multiple sources for the same
message, but even if they had, eliminating multiple sources
for a given message would be easy: simply add a new node

to be the sole source for this message, together with an edge
from this node to each of the old sources of the message.

We eliminate multiple demand nodes by iterating the
following construction. Suppose that we have two nodes nx
and ny, which both demand message z. Then, we can add a
gadget consisting of the nodes and edges shown in Fig. 16,
so that the two demands for z are replaced with one
demand for z and one demand for a new message w.

A solution to the old network can easily be extended to
the modified network; edges ex;2 and ey;5 will carry z, and,
as with the butterfly, the edge e2;3 will carry the sum of w
and z. Conversely, if one has a solution to the modified
network, then one can use information-theoretic argu-
ments to show that edges ex;2 and ey;5 must be carrying z (or
equivalent forms under alphabet permutation), so the
demands for z in the original network could be satisfied.

If the original network is matroidal over matroid M,
then, as shown in [11], the modified network is matroidal
over a matroid which is an amalgam (see [32]) ofM and the
uniform matroid U2;3.

If a network has k demands for message z, then adding
k" 1 of these gadgets will eliminate the multiple demands
for z (but add k" 1 new messages, each with one demand).
Once this is done for all multiply-demanded messages, the
final network will be multiple-unicast, and equivalent to
the original network for purposes of solvability and linear
solvability.

Fig. 17 shows the result of applying this construction
to the Vámos network; we refer to this as the multiple-
unicast Vámos network. Recall that we defined the Vámos
network to have a single source for each message, but did
not depict these in the diagram in order to avoid clutter;
we use the same convention here, so no further steps are

Fig. 16. A gadget for eliminating a double demand for the message z.
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needed to eliminate multiple sources. There are only two
duplicated demands in the Vámos network, so two gad-
gets suffice to produce a multiple-unicast network. This
new network is matroidal and unsolvable, just as the
original was.

However, the adding of gadgets does not, in general,
preserve capacities, so questions of capacity must be reex-
amined here. The same reasoning as in Section VIII-B
shows that the polymatroid upper bound on the coding
capacity of the multiple-unicast Vámos network is 1. But
the improved bound given by the Zhang–Yeung inequality
is slightly weaker here; one gets an upper bound of 12/13
for the capacity of the multiple-unicast Vámos network.
(This is still enough to show that the algorithm given in [1]
and [20] does not always yield the best possible coding
capacity bound.)

B. Reversibility and Nonreversibility of Networks
The reverse of a network N is a network N 0 satisfying

the following.
1) The nodes of N 0 are the same as in N .

2) The edges of N 0 are the same as in N but each in
the reversed direction.

3) Each node that emits messages in N instead
demands the same messages in N 0.

4) Each node that demands messages in N instead
emits the same messages in N 0.

A network is said to be reversible if its reverse is solvable. A
network is linearly reversible if its reverse is linearly solv-
able. Note that the reverse of a multiple-unicast network is
also multiple-unicast.

Clearly, if a multiple-unicast network has a routing
solution, then it is reversible, by simply reversing the
direction of information flow of the given routing solution.
However, if network coding is used, then reversibility is not
as straightforward. It was shown, however, in [23], [24], and
[33] that all linearly solvable multiple-unicast networks are
linearly reversible over the same alphabet. (This theorem
applies to both the scalar-linear and vector-linear cases.) In
[23] and [24], an elegant Bduality[ principle is given,
connecting algebraic coding theory and linearly reversible
networks, and applications of reversibility are discussed. In
[33], a network is given that has a binary (nonlinear) solution
but whose reverse does not have a binary solution.

This left open the question of whether a solvable net-
work could be fully nonreversible (i.e., over all alphabets).
In light of the results in [23], [24], and [33], such a net-
work could not have a linear solution over any finite field
alphabet.

This question is answered in [8], where it is shown that
one can modify the network N 3 in Fig. 14 (actually, a
variant N 0

3 of this network with the sources of the two
halves separated) by replacing the six-input node n43 with a
suitable cascade of four nodes, to get a new networkN ,

3, as
shown in Fig. 18. Such a modification would not have any
important effect on linear solutions, since a linear
combination of six inputs can easily be separated to fit
on such a cascade. But the nonlinear solution toN 0

3 cannot
be transferred over to N ,

3; it turns out that N ,
3 is un-

solvable. On the other hand, if one looks at the reverses of
the networks N 0

3 and N ,
3, one sees that their only

difference is that a node with one input and six outputs has
been replaced with a four-node fan-out cascade. This
change cannot possibly affect solvability of a network,
since a node with one input cannot do anything useful
other than copy its input to its outputs, and this could be
done just as easily in the cascade. So either both N 0

3 and
N ,

3 are reversible or neither is. This leads to the interest-
ing conclusion that there must be a solvable network that
is not reversible, but it is not immediately clear which
network it is; it is eitherN 0

3 (ifN
0
3 is not reversible) or the

reverse of N ,
3 (if N

0
3 is reversible).

It turns out that N 0
3 is reversible, so the reverse of N

,
3

is the solvable nonreversible network. Furthermore, the
methods of Section X-A can be used to turn this network
into a multiple-unicast network, which is solvable but not
reversible.

Fig. 17. The multiple-unicast Vámos network.
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C. Index Coding
El Rouayheb et al. [16] have recently given a new

approach to the connection between network coding and
matroid theory. Their approach connects these two topics
to a third topic, the index coding problem.

For the index coding problem, we have one source and
multiple receivers. The source has a certain number of
messages, each of which is an element of a fixed finite set
(often a field or a vector space). Each receiver desires one
of these messages, and already knows some of the other
messages (and the source is aware of this knowledge). The
source can now broadcast a limited number of elements of
the finite set (perhaps the given messages, perhaps
combinations of them) to all receivers; the goal is for
the source to broadcast as few such elements as possible
in order to allow the receivers, using the knowledge they
already have, to deduce the messages they desire.

Here is an example from [16]. Suppose the source has
four messages x1; x2; x3; x4, and there are four receivers:
receiver 1 knows x2 and x3 and desires x1, receiver 2 knows
x1 and x3 and desires x2, receiver 3 knows x2 and x4 and
desires x3, and receiver 4 knows x1 and desires x4.

If the source could broadcast four elements, the prob-
lem would be trivial. But it turns out that the source can
satisfy all of the receivers by broadcasting only two ele-
ments, namely x1 þ x4 and x1 þ x2 þ x3, whereþ is a given
group operation on the finite set. (One can show that two
elements is the optimal answer for this problem.) This is
an example of a scalar-linear solution to the index coding

problem; one can also consider vector-linear solutions as
well as nonlinear solutions.

There is a straightforward way to get from an instance of
the index coding problem to an instance of the network
coding problem. One builds the network by starting with a
source node for each source message of the index coding
problem, a demand node for each receiver (demanding the
message that receiver desires), and an internal edge for every
broadcast element. There are edges from each source node to
the tail of each broadcast edge, and from the head of each
broadcast edge to each demand node; also, there is an edge
from each source message node to each demand node
corresponding to a receiver that is supposed to already know
that message. It is easy to see that solutions to this network
(scalar-linear, vector-linear, or arbitrary) correspond pre-
cisely to solutions to the given index coding problem.

El Rouayheb et al. [16] give another construction, which
from a given matroid yields an instance of the index coding
problem in such a way that linear representability of the
matroid over a finite field corresponds exactly to scalar-
linear solvability of the index coding problem, and multi-
linear representability of the matroid (a generalization of
linear representability in which each matroid ground set
element corresponds to multiple columns of a matrix rather
than a single column) corresponds exactly to vector-linear
solvability of the index coding problem. Combining this
construction with the previous one gives a mapping from
arbitrary matroids to network coding instances, which fully
reflects the linearity properties of the matroids.

Fig. 18. The network N ,
3, an unsolvable variant of N 3.
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A converse construction is also given in [16]; given a
network coding instance, it produces an index coding in-
stance that has scalar-linear or vector-linear solutions over
exactly the same fields as the given network coding in-

stance. (A full converse construction back to matroids is not
possible for the reasons given at the end of Section IX.) These
results establish a very close and useful connection between
three apparently quite different types of problem. h
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