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Abstract—If � and � are nonnegative integers and � is a field,
then a polynomial collection ���� � � � � ��� � ������� � � � � �� � is said
to be solvable over � if there exist ��� � � � � �� � � such that for
all 	 � �� � � � � � we have ������ � � � � ��� � �. We say that a net-
work and a polynomial collection are solvably equivalent if for each
field � the network has a scalar-linear solution over � if and only
if the polynomial collection is solvable over � . Koetter and Mé-
dard’s work implies that for any directed acyclic network, there
exists a solvably equivalent polynomial collection. We provide the
converse result, namely, that for any polynomial collection there
exists a solvably equivalent directed acyclic network. (Hence, the
problems of network scalar-linear solvability and polynomial col-
lection solvability have the same complexity.) The construction of
the network is modeled on a matroid construction using finite pro-
jective planes, due to MacLane in 1936.

A set	 of prime numbers is a set of characteristics of a network if
for every 
 � 	, the network has a scalar-linear solution over some
finite field with characteristic 
 and does not have a scalar-linear
solution over any finite field whose characteristic lies outside of 	.
We show that a collection of primes is a set of characteristics of
some network if and only if the collection is finite or co-finite.

Two networks � and � � are ls-equivalent if for any finite field
� , � is scalar-linearly solvable over � if and only if � � is scalar-
linearly solvable over � . We further show that every network is
ls-equivalent to a multiple-unicast matroidal network.

Index Terms—Flow, information theory, matroids, network
coding, polynomial equations.

I. INTRODUCTION

I N this paper, we first demonstrate a certain equivalence be-
tween networks and collections of polynomials. Specifically,

we show that associated with every finite collection of polyno-
mials with integer coefficients is a corresponding network which
is scalar-linearly solvable precisely over those finite fields where
the polynomials have a common root. A consequence is that the
complexity of determining whether networks are scalar-linearly
solvable over particular finite fields is equivalent to the com-
plexity of determining whether collections of polynomial have
common roots over the corresponding fields. Second, we show
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that the collections of prime numbers corresponding to the field
characteristics of scalar-linearly solvable network alphabets are
precisely those which are finite or co-finite. Finally, we show
that for every network, there exists a multiple-unicast network
which is matroidal (i.e., obtained from a certain matroid-to-net-
work construction), such that the two networks are scalar-lin-
early solvable over exactly the same finite fields. A network is
a finite, directed, acyclic multigraph with node set and edge
set , together with a finite set called the message set, a source
mapping

and a receiver mapping

where is the power set of . For every node , if is
nonempty, then is called a source, and if is nonempty,
then is called a receiver. The elements of are called the
messages generated by and the elements of are called
the messages demanded by .

An alphabet is a set with at least two elements.
For each network node , let (the inputs) denote the

union of the set of messages generated by with the set of
in-edges of , and let (the outputs) denote the union
of the set of messages demanded by with the set of out-edges
of . For every node , fix an ordering of such that all
messages in the resulting list occur before the edges in the list;
the resulting ordered list is called the input list of . For every
edge , an edge function is a map

where and are the number of messages and edges, respec-
tively, in the input list of (note that and are functions of ).
For every and , a decoding function is a map

where and are the number of messages and edges, respec-
tively, in the input list of .

Given an alphabet , a code for a network is an assignment of
edge functions to the network’s edges and an assignment of de-
coding functions to the network’s receiver/demanded-message
pairs. If the edge functions and decoding functions in a code are
linear maps with respect to a field alphabet , then the code is
called a scalar-linear code.

A message assignment is a map . For any code
and for any message assignment, we recursively extend to a
map as follows. For every edge , let
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where are the messages generated by and
are the in-edges of . We further extend the domain of

to include nodes with , by defining
if ’s only input is . If is a node with in-degree one or an
edge, we say that carries the symbol . When a node has
exactly one in-edge , we will assume without loss of generality
that every out-edge of carries the same symbol as .

For a given network, a given code, receiver , and message
demanded by , if for every message assignment

we have

then we say that ’s demand is satisfied. In other words, the
receiver can recover an arbitrary instance of the message
generated by its source. A code is said to be a solution (over the
alphabet ) if every demand of every receiver is satisfied. If a
scalar-linear code over a field alphabet is a solution, then the
code is called a scalar-linear solution over .

A network is said to be solvable if it has a solution over some
finite alphabet and is scalar-linearly solvable if it has a scalar-
linear solution over some finite field alphabet.

Throughout the remainder of the paper, for brevity, we will
drop the notation and simply refer to as . For example,
if and are network messages, and is an edge satisfying

, then we would instead write .
Informally, a network coding solution allows each receiver

to deduce its demanded messages from its in-edges and source
messages by having information propagate from the sources
through the network. Each edge is allowed to be used at most
once (i.e., at most one symbol can travel across each edge). For
introductory material on network coding, see [11], [25].

There has been significant interest in determining the solv-
ability, scalar-linear solvability, and vector-linear solvability of
an arbitrary network with respect to a chosen alphabet. For the
special case of multicast networks, Li, Young, and Cai [16]
showed that if the network is solvable, then it has a scalar-linear
solution over all sufficiently large finite field alphabets. Jaggi
et al. [14] and Ho et al. [12] showed that every solvable multi-
cast network with at least two receiver nodes has a linear solu-
tion with some finite field alphabet of size at most equal to the
number of receiver nodes. Feder, Ron, and Tavory [10] showed
that to achieve a linear solution, some solvable multicast net-
works asymptotically require finite field alphabets to be at least
as large as twice the square root of the number of receiver nodes.
Rasala Lehman and Lehman [21] constructed a similar multi-
cast network as in [10] (in independent work) and also achieved
essentially the same square root lower bound as in [10]. The re-
sult in [21] actually shows that the square root lower bound on
alphabet size applies to finding any solution, not just a linear so-
lution. They also gave an example of a multicast network which
is solvable over a ternary alphabet but which has no linear so-
lution for alphabets of cardinality less than five. Furthermore,
it was shown in [21] that the problems of determining the min-
imum alphabet size for both linear and nonlinear solutions to a
multicast network are NP-hard. Riis [22] noted in particular that
every solvable multicast network has a binary linear solution in
some vector dimension.

We next summarize a number of results regarding the solv-
ability and linear solvability of general (i.e., not necessarily mul-
ticast) networks. Riis demonstrated in [22] solvable networks
which can achieve binary linear solutions only if the vector di-
mension grows at least linearly with the number of nodes in the
network. It was shown in [5], [22] that a network might have a
binary nonlinear solution, but no binary linear solution. It was
shown in [5] that a network might be solvable over a certain al-
phabet, but not over all larger alphabets. Rasala Lehman and
Lehman [21] and Médard et al. [19] showed that a network
might be solvable over all alphabets, but not linearly solvable
over any alphabet. It was shown in [6] that a network might
be solvable, but not vector-linearly solvable over any vector di-
mension or any finite field (or more general algebraic structure)
alphabet. It was shown in [8] that a network might be vector-lin-
early solvable only over even vector dimensions. It was shown
in [7] that a network might be solvable only over alphabets with
odd (or alternatively, a power of two) cardinality. It was shown
in [6] that a network might be scalar-linearly solvable only over
finite field alphabets with odd (or alternatively, even) character-
istic. In [21], Rasala Lehman and Lehman gave solvable net-
works whose minimum alphabet size required for a solution
could be made arbitrarily large.

For a given finite alphabet, to determine whether a network
is solvable or scalar-linearly solvable, one can (in principle)
perform a finite exhaustive search of all possible codes for the
network. If a vector dimension is also fixed, a finite search
can also establish if a network is vector-linearly solvable over
that dimension. There is presently no known algorithm for
determining the general solvability or vector-linear solvability
of an arbitrary network. The existence of an algorithm (which
is apparently not computationally efficient) to determine
scalar-linear solvability of an arbitrary network follows from
work in [15] by Koetter and Médard, and will be discussed in
Section VII. Their technique was to construct a finite collection
of polynomials from an arbitrary network, such that for each
finite field, the polynomials have a common root over the field
if and only if the network has a scalar-linear solution over the
field.

Throughout this paper, polynomials will have integer coef-
ficients and will use the variables . For nonnegative
integers and , any finite set

will be called a polynomial collection. If is a field, then a
polynomial collection is said to be solvable over if there exist

such that for all we have

We say that a network and a polynomial collection are solvably
equivalent if for each field the network has a scalar-linear so-
lution over if and only if the polynomial collection is solvable
over .

In this paper, we present an algorithm in Section II for
constructing a network from any polynomial system. Our main
results are as follows: the network is scalar-linearly solvable
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over the same fields as those for which the polynomials have
common roots (Theorem I.2), the constructed network is always
matroidal (Theorem I.3), every network is scalar-linearly solv-
able on the same set of fields as a multiple-unicast matroidal
network (Corollary I.8), and the collections of prime numbers
corresponding to the field characteristics of scalar-linearly
solvable network alphabets are characterized as either finite
or co-finite (in Theorem I.9). The remainder of this section
discusses the results in more detail. The proof of Theorem I.3
appears in Section IV, and the proofs of Theorem I.2 and
Theorem I.9 appear in Section V.

In the construction in [15], for each out-edge of a node, the
coefficients multiplying the in-edges of that node correspond
to variables in the resulting polynomials. The form of their
polynomials is restricted—for example, no variables can occur
to a power greater than one. In contrast, in our construction the
polynomials are located at only specific places in the network
and are combined by different rules and any polynomial can be
used.

Let be an arbitrary collection of integers of the form ,
where is prime and . We say that is the solvability set
for a network (respectively, polynomial collection) if for every
finite field , the network is scalar-linearly solvable (respec-
tively, polynomial collection is solvable) if and only if .
The set of primes , such that lies in the solvability set for
some , is called the set of characteristics1 for a network
(respectively, polynomial collection). (It will be shown in Sec-
tion VI, part 7, that for any prime and any positive integer ,
one can find a network such that is the smallest power of in
the solvability set of the network. However, one can ask, given
a network and a prime in the set of characters of the network,
whether one can give a reasonable bound on the smallest such
that is in the solvability set of the network. We have no answer
to this question at present, but some related results are given in
the Appendix of [2].)

The following theorem leads to an algorithm (via Gröbner
bases [2]) for determining whether a network has a scalar-linear
solution. No such algorithm is presently known for determining
whether a network has a general nonlinear solution.

Theorem I.1: (follows from Koetter–Médard [15])
Every directed acyclic network has a solvably equivalent

polynomial collection.

In this paper, we provide the following converse result.

Theorem I.2: (Converse to Theorem I.1)
Any polynomial collection has a solvably equivalent directed

acyclic network.

Furthermore, the solvably equivalent network in Theorem I.2
is given constructively and is matroidal, as stated in the next
theorem.

Theorem I.3: If a polynomial collection is solvable over
some finite field, then any network constructed, as in Section II,
from is matroidal.

The next definition is taken from [9] (the acronym “CSLS”
stands for “coding solvability, linear solvability”).

1This terminology is taken from [1].

Definition I.4: Two networks and are CSLS-equivalent
if the following two conditions hold.

1) For any finite alphabet , is solvable over if and only
if is solvable over .

2) For any finite field and any positive integer , is
vector-linearly solvable over in dimension if and only
if is vector-linearly solvable over in dimension .

The following definition gives a type of equivalence that is
weaker than CSLS (the acronym “ls” stands for “(scalar) linear
solvability”).

Definition I.5: Two networks and are ls-equivalent if
for any finite field , is scalar-linearly solvable over if and
only if is scalar-linearly solvable over .

Theorem I.6: (see [9, Theorem II.1])
Any network is CSLS-equivalent to a multiple-unicast net-

work.

The next theorem shows that if Theorem I.6 is applied to a
matroidal network, then the resulting multiple-unicast network
can also be taken to be matroidal.

Theorem I.7: (see [8, Corollary VII.8])
Any matroidal network is CSLS-equivalent to a multiple-uni-

cast matroidal network.

The next corollary follows from our main result in The-
orem I.2 together with several previous results. It demonstrates
that, when considering which finite fields arbitrary networks
are scalar-linearly solvable over, it suffices to restrict attention
to the subclass of networks which are simultaneously mul-
tiple-unicast and matroidal.

Corollary I.8: Any network is ls-equivalent to a multiple-
unicast matroidal network.

Proof: Let be an arbitrary network. In [8, Theorems
VIII.1 and VIII.2] it was shown that there exists a network
(namely, a version of the “Vámos network”) which is multiple-
unicast and matroidal, but not scalar-linearly solvable. If is
not scalar-linearly solvable, then it is clearly ls-equivalent to .

Now suppose is scalar-linearly solvable. Then, by The-
orem I.1, there exists a polynomial collection which is solv-
ably equivalent to . By Theorems I.2 and I.3, there exists a
network which is matroidal and solvably equivalent to ,
and therefore ls-equivalent to . By Theorem I.7, there exists a
multiple-unicast matroidal network which is CSLS-equiv-
alent to , and thereby ls-equivalent to .

Theorem I.9: A set of prime numbers is the set of character-
istics of some network if and only if the set is finite or co-finite.

Theorem I.1 and our Theorem I.2 together indicate that
determining the scalar-linear solvability of a directed acyclic
network over a field is computationally equivalent to deter-
mining whether a collection of polynomials has a common root
over . Given any algorithm for determining scalar-linear net-
work solvability, our result gives an algorithm for determining
polynomial solvability. This is a “many-to-one reduction”
(i.e., it converts a single instance of the polynomial solvability
problem to a single instance of the network scalar-linear solv-
ability problem with the same answer). The reduction causes at



2306 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 5, MAY 2008

TABLE I
INSTANTIATIONS OF THE GENERIC NETWORK COMPONENT SHOWN IN FIG. 2. EACH LINE IN THE TABLE GIVES THE FIVE VALUES THAT ARE USED TO FORM A

SPECIFIED COMPONENT

most a linear blowup in input size, in the following sense: the
number of nodes and edges in the resulting network is at most
a linear function of the number of steps (variable retrievals
and arithmetic operations) needed to compute the values of the
polynomials in the collection. In terms of bit representations,
it is at most an blowup. This many-to-one reduction
has the additional property that, given a scalar-linear solution
to the network, we can directly reconstruct a solution to the
polynomial collection (shown in part 2 of Section V).

It can be shown (via Gröbner bases) that the sets of character-
istics of polynomial collections are precisely the sets of primes
which are finite or co-finite (by Lemma V.1 and Examples (1a)
and (1b) in Section VI). In contrast, there has been no known
characterization of the sets of characteristics or the solvability
sets of networks. If is the solvability set of a network and

, then for all positive integers (by using Carte-
sian product codes). While there are an uncountable number
of sets of powers of primes closed under exponentiation, there
are only a countably infinite number of solvability sets since
there are only a countable number of networks and polynomial
collections.

A fundamental problem is to determine which sets of integers
can be solvability sets and which can be sets of characteristics
for networks. Theorem I.1 shows that every network solvability
set is also a polynomial collection solvability set. Our Theorem
I.2 shows that every polynomial collection solvability set is also
a network solvability set. Thus, the network solvability sets are
the same as the polynomial collection solvability sets. Our The-
orem I.9 shows that a set of primes is the set of characteristics
of a network if and only if the set of primes is finite or co-finite.

We note that throughout this paper, whenever we refer to a
field without the modifier “finite,” we have done so intentionally
so as not to imply a restriction to finite fields in such cases.

In Section II, the formal construction of networks from poly-
nomial collections is given, and in Section III, a concrete ex-
ample of the construction is demonstrated. In Section IV, the ma-
troidality of the constructed networks is derived in terms of a fi-
nite projective geometry. In Section V, the main theorem, about
polynomial collections having solvably equivalent networks, is
given. Finally, Section VI gives examples of various polynomial
collections, and Section VII discusses the complexity of various
network and polynomial collection problems.

II. NETWORK CONSTRUCTION FROM POLYNOMIAL SYSTEM

In this section, we present an algorithm for constructing a di-
rected acyclic network from a finite polynomial collection

, for . The

Fig. 1. Network component � . The leftmost three nodes are sources, gener-
ating messages �, �, and � from top to bottom, respectively. The rightmost four
nodes are receivers and demand messages �, �, �, and �, respectively. Five of
the nodes are labeled by � , � , � , � , or � .

Fig. 2. A generic network component � for � � � � �. ����� , ����� , and
����� are existing nodes in the network and the remaining nodes and edges in
component � are new. The rightmost node, “New receiver,” demands one mes-
sage. Table I lists seven different instantiations of this generic network compo-
nent that are used in a network construction.

network will be built piece by piece from eight building block
components, , which are shown in Figs. 1 and 2 (using
Table I). The messages will be , , and . Certain nodes of the
network will be labeled by , , , or , where for each such
node, is some polynomial in . For example, the
sources for , , will be nodes , , , respectively. The rea-
soning behind the notation for the nodes will be explained later.
During the construction, we will label various nodes with poly-
nomials and will later demonstrate a connection between these
polynomials and the alphabet symbols carried by these nodes.
It will be demonstrated in Section V that this construction algo-
rithm produces a network such that for any field , the network
has a scalar-linear solution over if and only if the polynomial
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collection has a solution over . The motivation for the steps
in the construction will be clarified in Section IV.

The network construction process consists of the following
steps.

Step (1): Start with component which creates nodes ,
, , , and . (See Fig. 1.)

Step (2): If , then add components ,
creating nodes . Each of these components is
adjoined to the network at the nodes , , , which
have already been created at Step (1). (See Fig. 2 and
Table I.)
Step (3): Repeatedly add components to create
nodes . Steps (3a)–(3d) de-
scribe the creation of as
well as many intermediate nodes. (See Fig. 2 and Table I.)

Step (3a): For any positive integer , to create a node
labeled : First, add component to create node

. Then, for , add component
to create node and add component to create
node . This is possible since , , have al-
ready been created.
Step (3b): For any positive integer , to create a node
labeled : First, add component to create node

, and add component to create node . Then,
for , add component to
create node and add component to
create node .
Step (3c): For any positive integer and any

to create a node labeled : First, add
component to create node . Then, for

, add component to create node
and add component to create node .
Step (3d): To create nodes labeled by an arbitrary
polynomial in : Add various instances
of components and to create nodes labeled by
sums and products of labels of existing nodes created
above. (Some instances of components , , and
may also have to be added in order to use and .)

Step (4): Force each of the nodes
to demand message .

To construct nodes labeled by arbitrary polynomials in
in Step (3) of the algorithm, one can use Step

(3a) to create all positive integer coefficients of the polynomials,
use Step (3b) to create all negative integer coefficients of the
polynomials, use Step (3c) to create all variable powers occur-
ring in the polynomials, and finally use Step (3d) to combine
the existing network nodes to create the desired polynomials.

This algorithm converts a single instance of the polynomial
solvability problem to a single instance of the network scalar-
linear solvability problem with the same answer. The proce-
dure above is not the most efficient method to create the net-
work from the polynomial collection . A smaller network
can in general be constructed. For example, to more efficiently
create a node labeled , where is a positive integer, one could
first create nodes and then use on a
subset of these nodes (corresponding to the binary expansion
of ) to create . This will add nodes to obtain ,
rather than nodes as specified above. The same idea works

Fig. 3. A network constructed from the polynomial ���� � �. All edges point
downward. The top three nodes are sources generating messages �, �, and � from
left to right, respectively. The seven solid nodes are receivers, each demanding
one of the messages, as indicated below the receiver node.

for creating as well. With these improvements, the con-
struction produces a network whose size is linear in the size of
the representation of the polynomial collection.

III. A NETWORK CONSTRUCTION EXAMPLE FOR

In this section, we give a concrete example of constructing a
network from a polynomial collection, specifically, a collection
consisting of exactly one polynomial.

We illustrate here the construction of a network which has a
scalar-linear solution over finite field if and only if the con-
stant polynomial is solvable over . Since if
and only if has even characteristic, the constructed network
has a scalar-linear solution precisely for fields of order for
all positive integers .

We construct the network by adding, in the order listed, the
following components: (creating nodes , , , , ),

(creating node ), (creating node ), and
(creating node ). We then force node to be a receiver de-
manding message (as a result, we can eliminate the out-edges
from and in ). The resulting network is shown in
Fig. 3 after some simplifications. We note that with a few minor
alterations, the network in Fig. 3 can be redrawn to give us the
Fano network, which was shown in [7] to be solvable precisely
on power-of-two alphabet sizes and was constructed from the
Fano matroid in [8].

One could also construct a network that has scalar-linear so-
lutions precisely when the finite field has odd characteristic,
by using the polynomial collection . One way to
construct such a network is to add the following components in
the order they are listed:

• (creating nodes , , , , );
• (creating node );
• (creating node );
• (creating node );
• (creating node );
• (creating node );
• (creating node );
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• (creating node );
• (creating node );
• (creating node );
• (creating node ).

Finally, node would be forced to be a receiver de-
manding message . This would involve adding ten new pieces
to the network after the initial piece.

It was pointed out in [15] that a system of polynomials can
be obtained from a network, such that the polynomial system is
solvably equivalent to the network. It is interesting to illustrate
this idea for the network in Fig. 3. There is one equation for
each out-edge emanating from a node with at least two inputs
(i.e., four equations, corresponding to the edges , , , and

) and one equation for each message demand in the network
(i.e., seven equations, corresponding the the demands of , , ,

, , , ). For each equation, there is a new variable introduced
for each input associated to the out-edge or demand. In Fig. 3,
each of the seven demands and each of the four edges , ,

, and has two inputs, so there are 22 variables among the
equations. Note that since the network is acyclic, no variable
will ever get multiplied by itself. Thus, the terms in the resulting
polynomials will be either or else products of variables, so
no powers above one of variables will occur.

For this example network, we get the following conditions:

Thus, we get the system of polynomial equations:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

This rather complicated set of equations is solvably equivalent
to the single constant polynomial , since they are both
solvably equivalent to the network in Fig. 3.

Let us now verify this equivalence directly. The variables ,
, , , , , are invertible from (4), (1), (7), (11),

(17). Therefore, from (9), and so (12) reduces
to , implying that is invertible. Thus, is
invertible from (14). Now we can solve for , ,

in terms of the remaining variables in (1)–(8), (10)–(12),
(17). Substituting these variables into (9), (13)–(16) gives the
equivalent set of equations

(18)

(19)

(20)

(21)

(22)

Now is invertible from (21) and is invertible from (22).
Combining (19) and (20), and then (21) and (22) gives

(23)

(24)

Multiplying (23) by and (24) by , and then adding the
resulting equations together gives . So we must
have , which implies the field size is even. Conversely, if

, then we get a solution to (1)–(17) by setting

IV. MATROIDALITY OF CONSTRUCTED NETWORKS

First we review the concepts of matroids, matroidal networks,
and the finite projective plane, each of which will be used in
what follows.

A matroid (e.g., see [20]) is an ordered pair , where
is a finite set and is a set of subsets of satisfying the

following three conditions:

(11) .

(12) If and , then .

(13) If and , then such
that

The set is called the ground set, the members of are called
independent sets, and any subset of not in is called a de-
pendent set. For any matroid and any ,
let , and let .
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Fig. 4. Graphical depiction of the Fano matroid. The ground set is
� ��� ��� ��� ��� ��� �� � ���.

Then is a matroid and the rank of , denoted , is
the (unique) size of a maximal independent set of . The
rank of the matroid is defined to be .

Let be a network with message set , node set , and edge
set . Let be a matroid with rank function . The
network is a matroidal network (see [8]) associated with
if there exists a function such that the following
conditions are satisfied.
(M1) is one-to-one on .

(M2) .

(M3) , .

Example: The Fano matroid is depicted in Fig. 4. Each vertex
represents a ground set element and any collection of vertices is
an independent set if and only if it has at most three elements and
is not one of the seven “lines” (i.e., , , , ,

, , and the circle ). The network in Fig. 3 is
matroidal, associated with the Fano matroid, as witnessed by
the function that satisfies

and for every network node with only one input (i.e., edge or
message) and out-edges , we have

It is straightforward to verify (M1)–(M3) for this mapping.

It was shown in [8] that many interesting networks are ma-
troidal, including all networks that are scalar-linearly solvable
over a finite field (e.g., solvable multicast networks). The ma-
troid used is a vector space over the finite field (with dimension
the number of messages); the function maps the messages to
elementary vectors (vectors which are all except for a single

) and maps the edges to the corresponding “global coding vec-
tors” (see, e.g., [14]) for the given scalar-linear code. (So this
is quite different from the local coding functions at each node.)

In [8], a method was presented for constructing, from given
matroids, (matroidal) networks which reflect some of the ma-
troids’ properties. This construction was used to obtain net-

works used to prove various results in the literature [6], [7], [9].
For example, in [8], a network was constructed from the Vámos
matroid that demonstrates the insufficiency of using Shannon-
type information inequalities to compute network coding ca-
pacity. In what follows, we will prove that if a network is con-
structed from a solvable polynomial collection as in Section II,
then the network is matroidal.

The network construction algorithm given in Section II was
inspired by the 1936 work of Saunders MacLane in [17]. The
proof of Theorem I.3 demonstrates the connection between the
network construction, finite projective planes, and matroids.

For any positive integer , a projective plane (e.g., see [3])
comprises a set of points, a set of lines, and an incidence relation
between points and lines satisfying the following axioms.

(P1) Any two points are incident to exactly one line.

(P2) Any two lines are incident to exactly one point.

(P3) There exist four points, no three of which are incident
to the same line.

One can show that, for any finite projective plane, there is a
number such that the plane has exactly points and

lines, each line contains points, and each point
lies on lines; is called the order of the projective plane.
A well-known (and presently unresolved) conjecture states that
the order of any finite projective plane is a power of a prime.

Every finite projective plane induces a rank-three matroid as
follows. Let be the set of all points in the projective plane, let

be the collection of subsets of of cardinality at most that
do not contain three collinear points, and let . It
is easy to see that satisfies (I1) and (I2). Suppose
where . Then . If , then for any

, we trivially have . If and if for
each we have , then the three points in
are collinear, contradicting . Thus, also satisfies (I3),
and therefore is a rank- matroid.

For any field , one can construct a projective plane (of
order if is finite) as follows. Let

where two points and in are said to have
slope if and

and slope if . A line in consists of an ele-
ment of (called a point at infinity) together with a
maximal set of points in such that every two of them
have slope (where we make the convention that
and , for all nonzero ). The set of all points at
infinity is also considered a line. It can be verified that axioms
(P1)–(P3) hold for .

In the case where is the field of real numbers, one can depict
the projective plane as the usual Euclidean plane together
with the points at infinity, each of which represents the ”inter-
section point” of a set of parallel lines; see Fig. 5. Many results
that are intuitively clear from these depictions will carry over
to the case where is a finite field. (The geometric intuition
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Fig. 5. The points � , � , � , and � in the projective plane.

from these depictions is useful, but is not a necessary part of
the proofs to follow; one can simply verify the given formulas.)
Some particular points to be used in what follows are the point

at offset on the -axis, the point at offset on the -axis,
the point at offset on the line , and the point which
is the point at infinity for the line through and (or any line
parallel to it). In particular, is on all vertical lines. The point
at infinity for horizontal lines is denoted .

Given some initial points in the projective plane, one can de-
termine additional points by drawing lines through the known
points and finding their intersections. For instance, suppose we
are given points , , , , and , as well as some other
point on the -axis. Then we can construct as the inter-
section of two lines, the vertical line through (i.e., the line
through the points and ) and the horizontal line through
(i.e., the line through and ). We can construct as the in-
tersection of the line through and with the line at infinity
(the line through and ). We can get in the same way.
Then we can get by intersecting the line through and
with the line through and .

Then we can use these auxiliary points to construct additional
points on the -axis or elsewhere. Three cases of this are shown
in Figs. 6–8. Fig. 6 shows the construction of as the inter-
section of the horizontal line (determined by points and

) with the line through the origin parallel to the line through
and (i.e., the line through and ). Fig. 7 shows addi-

tion of subscripts; the line through parallel to the line through
and (i.e., the line through and ) meets the -axis at

point . Fig. 8 shows multiplication of subscripts; the line
through parallel to the line through and (i.e., the line
through and ) meets the -axis at point (note the sim-
ilar triangles).

These are the constructions that we are imitating in the net-
work context using the components in Section II. The network
construction in [8] uses two basic methods for enforcing in the
network a matroid dependency: a direct network dependency
where the network is drawn so that one of the dependent values
is put on an out-edge from a node whose inputs are the other
members of the dependency, or an extra receiver node where

Fig. 6. Negation in the projective plane.

Fig. 7. Addition in the projective plane.

Fig. 8. Multiplication in the projective plane.

one member of the dependency (which must be a message) is
demanded and the other members are inputs. Here the notion of
dependency is collinearity in the projective plane. Given points

, , , , if point is to be the intersection of the line
through and with the line through and , then this
can be modeled in the network by making a direct descen-
dant of and and putting in a demand for from and

. The messages , , of the network are assigned to points
, , , respectively; this gives enough flexibility that, for

the cases we need, we can always arrange for to be one of
these three points. This shows how the components to in
Section II were constructed. (Components and construct
points which are actually arbitrary points on only one known
line, so the demand dependency line is the same as the direct
dependency line.)
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TABLE II
MAPPING UNDER � OF ����� � ������ FOR NODES � WITH IN-DEGREE TWO IN THE NETWORK � TO THE PROJECTIVE PLANE MATROID WITH GROUND

SET � , IN THE PROOF OF THEOREM I.3. IN THE FOURTH AND SEVENTH COLUMNS: IT CAN BE SEEN THAT THE THREE OUTPUT POINTS OF � ARE ALWAYS

COLLINEAR IN THE PROJECTIVE PLANE � , AND THUS HAVE RANK TWO IN THE MATROID

The demand of message at each receiver node
corresponds to enforcing a two-point dependency between the
points (i.e., from node which carries message ) and

.
As already noted, any network which is scalar-linearly solv-

able over a finite field is matroidal, so Theorem I.3 is a con-
sequence of the proof of Theorem I.2 (to be given in the next
section). However, we will give a direct proof here, because it
completes the motivation for the construction in Section II.

Proof of Theorem I.3: Let

be a polynomial collection and let be a network constructed
from as in Section II. Let and , respectively, be the sets of
nodes and edges of . Suppose is a finite field such that is
solvable over . Let be such that

for all .
Define a map from the labeled nodes of to as follows.

For each polynomial , let
and let

whenever these nodes appear in . By construction, every edge
in is either an in-edge or out-edge of some node , , ,
and . Now define a map

such that for each node , if is an in-edge
or out-edge of , then , and if is a message
generated by , then .

As noted earlier, the projective plane’s set of points form
the ground set of a rank-three matroid, whose independent
sets are the collections of three or fewer noncollinear points.
Thus, to show is matroidal, it suffices to verify that axioms
(M1)–(M3) hold for the function .

Since

we see that is one-to-one on , so (M1) is satisfied. Also
, , and do not lie on a line so they form an

independent set in , and therefore (M2) is satisfied. Now,
let be an arbitrary node in . If has in-degree zero or
one, then , so trivially

.
We next examine in Table II every case where has in-degree

two (the maximum in-degree of any node in ). In each case, it
can be seen that maps the two inputs of to distinct points
in implying that , and maps the two
inputs of and the output of to three collinear points in
(i.e., a dependent set in the matroid) implying that

. This thus establishes that (M3) holds.
Finally, suppose and let be the node labeled
. Then is a receiver with in-degree one that demands mes-

sage , i.e., and . We have

so .
Thus, the function satisfies axiom (M3), so the network

is matroidal.

MacLane [17] (see also [23, pp. 18–21]) used this construc-
tion as follows. Let be a polynomial collection and let be
a finite field such that has a solution over . Then MacLane
constructs a matroid that is representable over and such
that, for any finite field , if is representable over , then
has a solution over . However, it is not necessarily true that, if

has a solution over , then is representable over . Such
an if-and-only-if result is not attainable in general for matroids;
for instance, it is known that, if a matroid is representable over
the two-element field and the three-element field, then it is rep-
resentable over all finite fields [20, Theorem 6.6.3]. The extra
flexibility of networks allows us to construct a network solv-
ably equivalent to any given polynomial collection.
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TABLE III
EDGE FUNCTIONS AND DECODING FUNCTIONS FOR THE COMPONENTS OF NETWORK � . THE ARGUMENT OF � IS � � ��� � � � � ��. THE ARGUMENTS OF

� � � � � � � ARE ARBITRARY POLYNOMIALS �� � � ����� � � � � � � �

V. NETWORK ALPHABETS AND POLYNOMIAL ROOTS

In this section, we prove our main result, namely, that the set
of fields for which an arbitrary polynomial collection is solv-
able is identical to the set of fields for which a certain network
(which depends on the polynomial collection) is scalar-linearly
solvable. Thus, determining over which fields a general network
has a scalar-linear solution is at least as difficult as determining
over which fields a polynomial system is solvable.

Proof of Theorem I.2: Let

be a polynomial collection with integer-valued coefficients and
let be a network constructed from , using the network con-
struction algorithm in Section II. Let have message set and
edge set and let be a field.

Part (1): Assume is Solvable Over :
Suppose are such that

for all . For any polynomial , let

We will describe a scalar-linear network code for over and
prove it is a solution. The component in has two unspeci-
fied edge functions (at and ) and an unspecified decoding
function at each of four receiver nodes (to recover messages

, , , and , respectively). Each occurrence of the compo-
nents has one unspecified edge function, and, at a
receiver, one unspecified decoding function. Table III specifies
these edge functions and decoding functions in the network code
(these functions only have meaning for those polynomials corre-
sponding to components that are part of the constructed network

). Each edge function output in the table is also written, in the
third column, in terms of the network messages , , and . This
column can be expressed equivalently as: for any polynomial ,
we have

(25)

(26)

(27)

(28)

Also, . (These formulas correspond to the parts
of the definition of in the proof of Theorem I.3, if we assign
messages , , and to the points , , and in the
projective plane and suitably interpret “points at infinity.”)

These formulas are proved from the edge function formulas
by induction on the construction of the network. The base cases
are the source message formulas

We now give the induction argument for each component
added to .

Finally, recall that Step 4 of the construction in Section II
imposed an additional demand on node for each polynomial

. Since (i.e., ), the receiver
node carries the symbol

and thus its demand of message is satisfied. In summary,
Table III demonstrates a code, all of whose demands are met,
so the code is a solution to the network.

Part (2): Assume is Scalar-Linearly Solvable Over :
We will show that the collection must be solvable over . Fix
a specific scalar-linear solution to over . We next consider
the symbols carried by various nodes in this solution.

In network component , node depends only on and
and node depends only on and ; also, receivers demanding
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and have as input and receivers demanding and have
as input. Thus, there exist nonzero constants

(independent of , , and ) such that

(29)

(30)

where

By examining network components and , we see that
for each , there must exist constants (inde-
pendent of , , ) such that

(31)

In component , the demand must be decoded at the re-
ceiver from nodes and , so it follows from (30) and(31)
that , or equivalently

For each , let

Then (31) can be rewritten as

(32)

We now show by induction that for each component added
to we have the following constraints.

(i) If and the new node is , then such
that

(33)

(ii) If and the new node is , then such that

(34)

(iii) If and the new node is , then such that

(35)

(iv) If and the new node is , then such that

(36)

(These formulas are just formulas (25)–(28) with some addi-
tional constants introduced.)

The base cases are as follows.
• After is added: and are immediate (sat-

isfying (33) with ), is immediate (satisfying
(34) with ), and follows from (29) (satisfying
(35) with ).

• After is added (for ): is given in (32)
(satisfying (33) with ).

For the induction step, consider a newly added component
(where ) which creates a new node , , , or

for some . We handle these cases in what
follows.

• Suppose was added to in component , where
, for some . Then, from the

structure of , we conclude that there exist constants
such that

[from (35), (36)] (37)

[from (30)] (38)

The coefficients multiplying message must be equal on
both sides of (38), so, using (37), we get

or, equivalently, (since by (38)).
Then (37) becomes

Alternatively, suppose was added to in component
, where , for some .

Then, from the structure of , we conclude that there
exist constants such that

[from (34), (35)] (39)

[from (30)] (40)

The coefficients multiplying message must be equal on
both sides of (40), so, using (39), we get

or equivalently, (since by
(40)). Then (39) becomes

Thus, (33) is established for .
• Suppose the node was added to in component

after was added to . From the structure of , we
conclude that there exist constants
such that

[from (33), (35)] (41)

[from (29)] (42)

The coefficients multiplying messages , , and must be
equal on both sides of (42), so, using (41), we get

(43)

(44)

(45)
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Note that , for otherwise we would have by
(45) which would then contradict (43). Thus, (44) implies

. Then (41) becomes

Thus, (34) is established for .
• Suppose the node was added to in component

after was added to . From the structure of , we
conclude that there exist such that

[from (30), (29)]

(46)

[from (33)] (47)

The coefficients multiplying messages , , and must be
equal on both sides of (47), so, using (46), we get

(48)

(49)

(50)

Adding times (48) to times (49) gives
or, equivalently, (since

by (50)). Then (46) becomes

Thus, (35) is established for .
• Suppose the node was added to in component

after was added to . From the structure of , we
conclude that there exist such that

[from (29), (33)] (51)

[from (30)] (52)

The coefficients multiplying messages , , and must be
equal on both sides of (52), so, using (51), we get

(53)

(54)

(55)

If we multiply (53) by and add the result to (54), then we
get , or equivalently (since by
(55)), . Then (51) becomes

Thus, (36) is established for .
Alternatively, suppose the node was added to in com-
ponent . From the structure of , we conclude
that there exists such that

[from (35)]

(56)

[from (30)] (57)

The coefficients multiplying messages , , and must be
equal on both sides of (57), so, using (56), we get

(58)

(59)

(60)

If we multiply (58) by and add the result to (59), then we
get , or, equivalently (since by
(60)), . Then (56) becomes

Thus, (36) is established for .
This completes the induction argument establishing the va-

lidity of (33)–(36) for all polynomials corresponding to nodes
in .

Now, for the final demands in to be satisfied, each of the
nodes must be able to recover message . We must therefore
have that for each there exists a nonzero constant

such that , or equivalently (by (33))

(61)

Clearly, since , we must have for all . That
is, for all . Thus, the polynomial
collection is solvable over .

is a Noetherian ring by the Hilbert Basis
Theorem (e.g., see [2, Theorem 4.6]), so every ideal of

is finitely generated. For every infinite set of
polynomials in , there exists a finite set of poly-
nomials in that generates the same ideal. This
implies the two sets of polynomials are solvable over precisely
the same set of fields. Thus, without loss of generality, we
may restrict attention to finite polynomial collections when
determining solvable equivalence with networks.

The following lemma was given in 2003 by Baines and
Vámos.

Lemma V.1: [1, Theorem 1.1] If a set of prime numbers is the
set of characteristics of some polynomial collection, then the set
is finite or co-finite.

Proof of Theorem I.9: It follows immediately from The-
orem I.2, Lemma V.1, and Examples (1a) and (1b) in Sec-
tion VI.

We note that our definition of a network is slightly more gen-
eral than other definitions in the literature, as we allow source
nodes to have in-edges (so the edge functions at these nodes
have both messages and in-edges as inputs) and receiver nodes
to have out-edges. But it is easy to convert a network using these
features to an equivalent network that does not (by adding some
new output-only source nodes and input-only receiver nodes),
so the results here also hold for the more restrictive definition
of network. Also, it is easy to see that the Koetter–Médard map-
ping from networks to polynomial systems works just as well
for the more general definition of network.

Part (2) of the proof of Theorem I.2 actually gives a corre-
spondence (not one-to-one) between solutions to the polynomial
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collection over a field and scalar-linear solutions to the net-
work over . Given a scalar-linear solution to , the proof
shows how to extract a solution to ; it also gives
nonzero constants and a list of nonzero constants

such that formulas (30) and (33)–(36) hold, and completely
define the network solution. (One constant is needed for each

, , , and appearing in the network, except for , ,
and at the sources. Recall that we have been assuming that
each single-input node simply copies its input to all of its out-
puts; if we drop this assumption, then there will be additional
constants specifying what happens at single-input nodes.) On
the other hand, given a solution to over , one
can choose the nonzero constants and the ’s arbi-
trarily and then use formulas (30) and (33)–(36) to define a so-
lution to . The number of network solutions corresponding to
each polynomial solution is , where is the number
of ’s used. (Alternatively, one could consider two solutions to a
network to be “equivalent” if it is possible to get from one to the
other by certain simple transformations. One such transforma-
tion is to fix a nonzero constant and change the code by
multiplying all coefficients being applied to a particular source
message by , and then multiplying all coefficients of decoding
functions for that message by . Another is to multiply all
input coefficients for a particular edge by and then multiply
each coefficient of that edge where it is used as an input for
something else by . Then the equivalence classes of solu-
tions to the network are in one-to-one correspondence with
the solutions to the polynomial collection .)

VI. EXAMPLES OF POLYNOMIAL COLLECTIONS

In this section, we examine over which fields certain collec-
tions of polynomials are solvable.

All polynomials listed in this subsection are over a single in-
determinate variable (except in part (8), where the variables
are ). When only a single polynomial is given in

, the polynomial is referred to as . By Theorem I.2, for each
polynomial collection given below, there is a directed acyclic
network which is solvable over precisely those fields where the
polynomial collection is solvable. For any field , let
denote the characteristic of .

(1) for some fixed .
If , then in which case
is solvable if and only if . If ,
then is invertible in , in which case is
solvable over by choosing . In summary,
the polynomial is solvable over if and only if either

or .
Some special cases include:
(a) , where is prime for each

.
Then is solvable over field if and only if

.
(b) , where is prime for

each .
Then is solvable over field if and only if

.
(2) .

Then is solvable over field if and only if has
a square root in .

(3)
Then is not solvable over the binary field GF ,
but is solvable over GF .

(4)
Then is not solvable over , but is solvable over

, GF , and GF for odd primes if and only if
.

(5) If and are solvable exactly over field collections
and and the variables in are distinct from the

variables in , then is solvable exactly over
the fields in .

(6) If and are solvable exactly over field collections
and , then is solvable

exactly over the fields in .
(7) , is prime, , is an irreducible

polynomial of degree over GF .
Then is solvable over finite field if and only if

and . Thus, using the previous example, for
any primes and positive integers ,
we can create a polynomial collection which is solvable
over if and only if for some and such that

and .

(8)

Then is solvable over field if and only if .

VII. COMPLEXITY QUESTIONS

In this section, we briefly discuss some complexity questions
relating to network scalar-linear solvability and polynomial col-
lection solvability. First, we state four decision problems and
then we present the status of various questions concerning their
decidability.

(i) Problem
Given a directed acyclic network and field .
Is scalar-linearly solvable over ?

(ii) Problem (network scalar-linear solvability)
Given a directed acyclic network .
Does there exist a finite field such that is scalar-
linearly solvable over ?

(iii) Problem
Given a directed acyclic network .
Is scalar-linearly solvable over all sufficiently large
prime finite fields?

(iv) Problem
Given rings and (where or there is a
canonical homomorphism from to ) and polyno-
mials .
Does there exist such that

for all ?
The following facts summarize some of the present knowl-

edge about the decidability of the four problems above and their
relationship to each other.

• For any finite field , Problem is decidable by
exhaustively searching over all possible (finitely many)
scalar-linear network codes.

• If is a field, then Problem denotes what we
have termed in this paper as a polynomial collection being
solvable over a field. A restatement of our Theorem I.2
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is that for every polynomial collection there exists a net-
work such that for every field , the answer to Problem

is “yes” if and only if the answer to Problem
is “yes.” In other words, the construction gives a

map from polynomial collections to networks which re-
duces to , uniformly for all fields . Con-
versely, the construction of Koetter and Médard [15] gives
a map from networks to polynomial collections which re-
duces to , uniformly for all fields . Both
of these reductions are many-to-one with linear input space
blowups. (Actually, the unmodified Koetter–Médard re-
duction can lead to polynomial equations of size exponen-
tial in the size of the given network, but one can avoid this
by adding auxiliary variables to the polynomial system.)

• Problem is Hilbert’s Tenth Problem (HTP) [4],
given in 1900, which was proven in 1973 to be undecid-
able [18]. Various generalizations of HTP have been areas
of active research over the last century. For example, it is
known that is decidable and it is presently not
known whether is decidable.

• Problem is decidable if and only if Problem
is decidable. Thus, determining the decidability

of scalar-linear solvability of networks over rational alpha-
bets is of the same difficulty as the presently open question
of the decidability of theHTP generalization to the rationals.

• If the answer to Problem is “yes,” then the answer
to Problem is “yes,” since any scalar-linear network
solution over is also a solution over sufficiently large
prime finite fields. However, the converse need not be true.
For example, the polynomial

cannot equal zero when the variables are restricted to ,
but can equal zero over every prime field GF since the
integer can always be written as a sum of four per-
fect squares [13]. Thus, if we construct a network from
as in Section II, then Problem will answer “yes,” but
Problem will answer “no.”

• Problem is decidable. To obtain an algorithm for , one
can first generate polynomials from a network, as indicated
in [15] and then use a Gröbner basis calculation (which de-
cides , where denotes the algebraic closure of
the rationals). There are only finitely many primes which
occur as a factor of a denominator in this calculation (call
these the “exceptional primes”). If the calculation indicates
that there is a solution to the polynomial collection over an
algebraic extension of , then for any nonexceptional prime

the same computation will show that there is a solution
over a finite algebraic extension of GF (i.e., over some
finite field of characteristic ). If the calculation shows that
there is no solution in any algebraic extension of , then
there will also be no solution in any finite field whose char-
acteristic is a nonexceptional prime; for each exceptional
prime , we can then run a separate Gröbner basis calcula-
tion modulo to determine whether there is a solution over
a finite field of characteristic . (See [1] for more details.)

• If the word “scalar” is changed to “vector” in Problem
, then the decidability of the problem is no longer

known (this assumes an unspecified vector dimension, since
a fixed vector dimension would clearly yield a finite search).

• If the phrase “scalar-linearly” is omitted from Problem
(and “field” is changed to “alphabet”), then it becomes the
network solvability problem, whose decidability also re-
mains unknown.
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