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Abstract—We define a class of networks, called matroidal net-
works, which includes as special cases all scalar-linearly solvable
networks, and in particular solvable multicast networks. We then
present a method for constructing matroidal networks from known
matroids. We specifically construct networks that play an impor-
tant role in proving results in the literature, such as the insuffi-
ciency of linear network coding and the unachievability of net-
work coding capacity. We also construct a new network, from the
Vámos matroid, which we call the Vámos network, and use it to
prove that Shannon-type information inequalities are in general
not sufficient for computing network coding capacities. To accom-
plish this, we obtain a capacity upper bound for the Vámos net-
work using a non-Shannon-type information inequality discovered
in 1998 by Zhang and Yeung, and then show that it is smaller than
any such bound derived from Shannon-type information inequali-
ties. This is the first application of a non-Shannon-type inequality
to network coding. We also compute the exact routing capacity
and linear coding capacity of the Vámos network. Finally, using
a variation of the Vámos network, we prove that Shannon-type in-
formation inequalities are insufficient even for computing network
coding capacities of multiple-unicast networks.

Index Terms—Flow, information theory, matroids, multiple uni-
cast, network coding.

I. INTRODUCTION

I N this paper, a network is a finite, directed, acyclic multi-
graph with node set and edge set , together with a finite

set called the message set, a source mapping

and a receiver mapping

For every node , if is nonempty, then is called a source,
and if is nonempty, then is called a receiver. The ele-
ments of are called the messages generated by and the
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elements of are called the messages demanded by . For
convenience in definitions of capacity, we will assume that for
each message , every receiver demanding is reachable from
at least one source generating .

An alphabet is a finite set with at least two elements. For
each network node , let denote the union of the set of
messages generated by with the set of in-edges of , and let

denote the union of the set of messages demanded by
with the set of out-edges of .

Let and be positive integers, called the source dimension
and the edge capacity, respectively. For every node , fix an
ordering of such that all messages in the resulting list
occur before the edges in the list; the resulting ordered list is
called the input list of . For every edge , an edge
function is a map

where and are the number of messages and edges, respec-
tively, in the input list of (note that and are functions
of , wheareas and are constants). For every and

, a decoding function is a map

where and are the number of messages and edges, respec-
tively, in the input list of .

Given an alphabet , a code1 for a network is an as-
signment of edge functions and decoding functions to the net-
work’s edges and receivers, respectively. A message assignment
is a map . For any code and for any message
assignment, we recursively define the function

as follows. For every edge , let

where are the messages generated by and
are the in-edges of . We say that each edge

carries the symbol vector .
For a given network, code, receiver , and message

demanded by , if for every message assignment
we have

then we say that ’s demand is satisfied. In other words, the
receiver can recover an arbitrary instance of the message

1Sometimes called a fractional code [17] or simply a code.
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generated by its source. A code is said to be a
solution if every demand of every receiver is satisfied.

Informally, a network coding solution allows each receiver
to deduce its demanded messages from its in-edges and source
messages by having information propagate from the sources
through the network. Each edge is allowed to be used at most
once (i.e., at most symbols can travel across each edge).
Special codes of interest include linear codes, where the edge
functions and decoding functions are linear, and routing codes,
where the edge functions and decoding functions simply copy
input components to output components. Special networks
of interest include multicast networks, where there is only
one source node and every receiver demands all of the source
messages, and multiple-unicast networks, where each network
message is generated by exactly one source node and is de-
manded by exactly one receiver node. The network coding
terminology used here generally follows that of [3].

If a network has a solution over some alphabet, then we
say the ratio is an achievable coding rate for the network.
A network is said to be solvable if it has a solution for
the case . (Note that any coding solution on
alphabet yields a coding solution on alphabet , so
we do not need to distinguish between scalar and vector solv-
ability.) A network is said to be scalar-linearly solvable if it has
a linear solution for the case , or vector-lin-
early solvable if it has a linear solution for the case
(here we do need to distinguish).

An important goal in network coding is to find an achiev-
able coding rate which is as large as possible for a network. The
coding capacity of a network with respect to (or over) an al-
phabet and a class of network codes (a related definition
appears in [32, p. 339]) is

coding solution in over

If consists of all network codes, then we simply refer to the
above quantity as the coding capacity of the network with re-
spect to . If the class of network codes consists of all routing
codes or all linear codes, then the coding capacity is referred to
as the routing capacity or linear coding capacity, respectively.
(In all cases, if the alphabet is not mentioned, the capacity
is taken to be the supremum of the capacities over all alphabets

.) The coding capacity of a given network is said to be achiev-
able if there is some solution for the network for which

equals the capacity.
Ahlswede, Cai, Li, and Yeung [2] exhibited a network whose

linear coding capacity is larger than its routing capacity. Li,
Yeung, and Cai [18] showed in the special case of a multicast
network, the coding capacity and the linear coding capacity are
equal. It was shown in [3] that for all networks, the coding ca-
pacity is independent of the alphabet size. Clearly, the routing
capacity is also independent of the alphabet size. However, it
was shown in [5] that the linear coding capacity of a network
can depend on the alphabet size and the largest linear coding ca-
pacity of a network over any finite-field alphabet can be smaller
than the network’s coding capacity. It was also shown in [3]
that the routing capacity is always rational, achievable, and com-
putable by an algorithm.

Although the routing capacity of an arbitrary network is al-
ways computable, there is no known computationally efficient
algorithm for such a task. Unfortunately, it is not even presently
known whether or not there exist algorithms that can compute
the coding capacity or the linear coding capacity of an arbitrary
network. In fact, computing the exact coding capacity or linear
coding capacity of even relatively simple networks can be a non-
trivial task. At present, very few exact coding capacities have
been rigorously derived in the literature. It is also known that
the coding capacity might not be achievable [6].

As an alternative to determining exact coding capacities, it
can be useful to determine bounds on the coding capacity and
linear coding capacity of a network. One approach to obtaining
capacity bounds (and possibly exact capacities) is to use infor-
mation-theoretic entropy arguments. The basic idea is to assume
a network’s source messages are independent and identically
distributed (i.i.d.) uniform random variables on some finite al-
phabet and then to use standard information-theory identities
and inequalities to derive bounds on the largest possible ratio of
the source dimension to the edge capacity .

Standard information inequalities are generally “Shannon-
type” inequalities, which can be derived as special cases of the
nonnegativity of conditional mutual information. These were
the only known types of information inequalities until Zhang
and Yeung in 1998 published a non-Shannon-type informa-
tion inequality [35]. Some other results on non-Shannon-type
information inequalities have been given by Lněnička [19],
Makarychev, Makarychev, Romashchenko, and Vereshchagin
[20], Matúš [23], Zhang [33], and Zhang and Yeung [34].
Previously, non-Shannon-type inequalities have been applied
by Matúš to probability theory [22], by Chen and Yeung to
group theory [4], and by Zhang to an information-theoretic
optimization problem [33].

However, it has been an open question (e.g., see [14]) whether
standard Shannon-type information-theoretic identities and in-
equalities are sufficient for computing the exact coding capacity
of an arbitrary network, or whether they are sufficient for ob-
taining the best possible capacity bounds from entropy argu-
ments. We answer these questions in the negative.

Specifically, we construct a network (from the well-known
Vámos matroid) which we call the Vámos network, and demon-
strate that no collection of Shannon-type information inequali-
ties can produce an upper bound on the coding capacity which is
as small as an upper bound obtainable using the Zhang–Yeung
non-Shannon-type information inequality. To prove this result,
we first show that Shannon-type information inequalities can
only produce a coding capacity upper bound as low as (The-
orem VI.1), and then show that a non-Shannon-type informa-
tion inequality argument can produce a coding capacity upper
bound of (Theorem VI.2). Additionally, for the Vámos
network, we compute the exact routing capacity (Theorem VI.4)
and the exact linear coding capacity over every finite field (The-
orem VI.8).

We note that Adler, Harvey, Kleinberg, Jain, and Rasala
Lehman [1], [14] have recently given an interesting algorithmic
procedure for determining upper bounds on the coding capacity
of multiple-unicast networks. They mention the possibility that
their bounds could be improved by the use of non-Shannon
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inequalities (in fact, they conjecture that their bound is not
sharp for this reason). We will demonstrate in what follows
that this can indeed be accomplished. In Section VIII, we will
give a specific multiple-unicast network and prove that there is
a bound on its capacity using a non-Shannon-type inequality
that is strictly better than any bound that can be obtained from
Shannon-type inequalities alone. It can be shown [13] that the
algorithm in [1], [14] is based on purely Shannon-type informa-
tion inequalities and network entropy conditions, although this
fact was not explicitly stated there. Thus, the capacity bounding
algorithm in [1], [14] is not in general optimal.

The Vámos network is one of many networks that are closely
related to matroids. The field of matroid theory has had many
interesting results discovered over the last several decades. We
explore the connection between matroids and networks and
present a method of constructing networks from matroids. In
addition to the Vámos network, we demonstrate that some spe-
cific known networks can be constructed from matroids. These
include the Butterfly network from [2], and parts of networks
used to establish the insufficiency of linear network coding in
[5] and the unachievability of network coding capacity in [6].

Our use of the Vámos matroid was motivated by the im-
portant connection between non-Shannon-type information in-
equalities and the Vámos matroid, as presented by Hammer, Ro-
mashchenko, Shen, and Vereshchagin [12], and based partly on
the work of Matúš [21], and Matúš and Studený [24]. Related
ideas for building networks from matroids were explored by El
Rouayheb, Georghiades, and Sprintson [8].

The paper is organized as follows. Sections II, III, and IV
give overviews and lemmas relating to information-theoretic in-
equalities, networks, and matroids, respectively. Section V de-
scribes how to construct networks from matroids and gives var-
ious examples and demonstrates that Shannon-type inequali-
ties cannot give a capacity upper bound smaller than for a
matroidal network. Section VI discusses the coding capacity,
routing capacity, and linear coding capacity of the Vámos net-
work. In particular, a non-Shannon-type information inequality
is used to obtain a tighter upper bound on the capacity of the
Vámos network than is achievable using only Shannon-type in-
formation inequalities. Section VII discusses converting arbi-
trary matroidal networks into multiple-unicast matroidal net-
works. Section VIII gives a multiple-unicast variation of the
Vámos network and uses it to show that Shannon-type infor-
mation inequalities are insufficient to compute the coding ca-
pacity of arbitrary multiple-unicast networks. Section IX men-
tions some open questions.

II. INFORMATION INEQUALITIES

Let , , and be collections of discrete random variables
over alphabet , and let be the probability mass function of

. Denote the entropy of by

the conditional entropy of given by

(1)

the mutual information between and by

(2)

and the conditional mutual information between and given
by2

(3)

We will make use of the following basic information-theoretic
facts [32]:

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

It is obvious from (10) and (11) that and
are symmetric in and .

Definition II.1: Let be a positive integer, and let
be subsets of . Let for . A linear
inequality of the form

is called an information inequality if it holds for all jointly dis-
tributed random variables .

As an example, taking , , , ,
, , , and using (8) shows that

is an information inequality;
this can be more succinctly expressed using (10) as

.
Since all conditional entropies and all conditional mutual in-

formations can be written as linear combinations of joint en-
tropies, any valid linear inequality involving conditional en-
tropies and conditional mutual informations will also be called
an information inequality. The textbook [32] refers to informa-
tion inequalities as “the laws of information theory.”

The information inequalities in (5)–(9) were originally given
in 1948 by Shannon [28] and can all be obtained as special cases
(e.g., see [32]) of the inequality

(13)

or equivalently (by (11)) of the inequality

(14)

2We will often use abbreviations such as “A, B” for A [ B, “A, x” for
A [ fxg, and “A � x” for A � fxg.
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A Shannon-type information inequality is any information in-
equality that is (or can be rearranged3 to be) a finite sum of the
form

(15)

where each is a nonnegative real number. Virtually every
known result in information theory that makes use of an infor-
mation inequality only makes use of Shannon-type information
inequalities.4

Any information inequality that cannot be expressed in the
form (15) will be called a non-Shannon-type information in-
equality. It is known [32, p. 308] that all unconstrained informa-
tion inequalities containing three or fewer random variables are
Shannon-type inequalities. The first known non-Shannon-type
information inequality was published in 1998 by Zhang and
Yeung and is stated in the following theorem.

Theorem II.2: [35] The following is a non-Shannon-type in-
formation inequality:

Let be a finite set and let

be a function. Conditions (P1)–(P3) below are called the poly-
matroidal axioms for (and (P4) is an alternate version, as ex-
plained by Lemma II.3).

(P1)

(P2) If , then .

(P3) If , then .

(P4) If ,

then .

Lemma II.3 below appears to be part of the informa-
tion-theory folklore, and was proven in part by Fujishige [10]
(also see Yeung [32, p. 297] and Welsh [30, p. 342]). For
completeness, we provide a proof of the lemma here.

Lemma II.3: Conditions (P1)–(P3) hold if and only if condi-
tions (P1) and (P4) hold.

Proof: Suppose (P1)–(P3) hold. Then

[from (P3)

[from (P2)

which gives (P4).

3We allow replacement of 0 by H(;). This seemingly trivial technicality is
needed, for example, in order to be able to assert that I(A;B) � 0 is of the
form I(A;Bj;) � 0. Yeung [32] calls the inequalities (5)–(7) and (13) the
“basic Shannon inequalities.”

4The constraints imposed on random variables by Shannon-type information
inequalities define a region referred to in [32] as the LP bound.

Now suppose (P1) and (P4) hold. Then

[from (P4)]

which gives (P3). Finally, suppose . Then

[from (P4)]

which gives (P2).

Lemma II.4: Let be a finite collection of jointly related
discrete random variables. Then the polymatroidal axioms hold
when is replaced by the entropy function .

Proof: It follows from (4), (14), and Lemma II.3.

The polymatroid axioms are closely related to matroids via
the matroid rank function, and so Lemma II.4 expresses a con-
nection between matroids and information theory.

III. NETWORK FUNDAMENTALS

If a network has nodes and (on diagrams these will
usually be marked just and ), then an edge between them will
be written as .

For any node and any , we call the ordered
pair a dependency of the network. This terminology
reflects the fact that the out-edges and demands of each node are
deterministic functions of the in-edges and messages generated
at the node. Using these, one can deduce further dependencies.
For more on this, see [1], [14], [15].

In order to compute capacity bounds for networks, we will
compute various joint entropies, where we take the network
messages to be independent uniform random variables. In that
case, given a network code, which determines the vectors car-
ried by the edges from the messages, we will write to de-
note the joint entropy of any collection of edges and messages.

Lemma III.1: If a network has a coding solution over
alphabet , and the message components are independent
random variables uniformly distributed over (and entropies
are computed using logarithms to base ), then the following
conditions hold.

(N1) (source rates) for any .

(N2) (edge capacities) for any .

(N3) (node input/output functional dependencies)

for any .

Proof: Conditions (N1) and (N2) are trivially true. Condi-
tion (N3) follows from the fact that the vector of alphabet sym-
bols carried on each out-edge of a node or demanded by the
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node must be a deterministic function of the node’s messages
and in-edges.

We call conditions (N1)–(N3) the network entropy condi-
tions.

Definition III.2: We define a polymatroid assignment
to a network to be a map

such that conditions (N1)–(N3) hold when is replaced by
and the polymatroidal axioms for hold. For all
we write

Thus, (4)–(9) hold when is replaced by . The polymatroid
upper bound on the capacity of network is the quantity

polymatroid assignment to

Remark III.3: If a network has a coding solution
over alphabet , then the network has a polymatroid
assignment.

To see this, let the message components be independent
random variables uniformly distributed over , and take to
be the entropy function , in which case the assertion follows
immediately from (14) and Lemma III.1.

Note that by Remark III.3, the terminology “polymatroid
upper bound on the capacity” of a network is justified, since
the coding capacity is the supremum of all such that there
exists a coding solution over alphabet . Also, note that
a network may have many polymatroid assignments that are not
entropy functions, so it is feasible that the polymatroid upper
bound might be larger than a bound obtained using entropy
arguments. The purpose of the polymatroid assignments is
to make precise the meaning of “bounds that are derivable
from Shannon-type information inequalities.” Indeed, if an
upper bound is derived from Shannon-type information in-
equalities and uses no information about entropy other than
what is contained in these inequalities and the network entropy
conditions, then it should also be an upper bound for every
polymatroid assignment. Thus, we may say (somewhat loosely)
that the polymatroid upper bound on capacity is the best upper
bound on the network coding capacity obtainable using only
Shannon-type information inequalities.

Example III.4: To illustrate the calculation of a coding ca-
pacity bound for a network, consider a coding solution to
the Butterfly network5 shown in Fig. 1. Assume that the network
messages and are independent, -dimensional, random vec-
tors with uniformly distributed components. Since the presumed
solution must allow node to deduce message from its in-
puts and , it must be the case (via Remark III.3) that

(16)

5The network’s common name, due to its appearance.

Fig. 1. The Butterfly network has source nodes n and n generating k-di-
mensional messages x and y, respectively. Receiver nodes n and n demand
messages y and x, respectively. The n-dimensional vector carried on edge e
is denoted by z.

We have

[from (N1)]

[from indep. of and ]

[from (9)]

[from (1)]

[from (16)]

[from (8)]

[from (N1) and (N2)]

which implies , and therefore the coding capacity of
the network is at most . A well-known solution for this net-
work (over any alphabet carrying Abelian group operation )
is achieved with and , which implies

is an achievable rate and therefore the coding capacity is at
least . The upper bound on the coding capacity was computed
using only Shannon-type information inequalities and network
entropy conditions, and in this example was exactly equal to the
coding capacity (and also the linear coding capacity).

Although Shannon-type information inequalities were suffi-
cient to compute the best possible upper bound on coding ca-
pacity for the network in Example III.4, an important point of
this paper is to demonstrate that such inequalities are not suffi-
cient in general. In what follows, we will exploit Theorem II.2
to obtain an upper bound on the coding capacity of the Vámos
network and we will then show that this bound is strictly tighter
than any such bound obtainable using only Shannon-type infor-
mation inequalities.

In Lemma III.6, we will provide a useful extension of the net-
work entropy condition (N3). Since we wish to apply this con-
dition when the entropy is replaced by a polymatroid assign-
ment, the lemma will be written for arbitrary functions. Lemma
III.6 appears in equivalent form as [14, Lemma 7]. First we need
a definition.

Definition III.5: Let be a network with message set and
edge set . A set is a cutset for a node in if for
every source that generates a message not in , every path6

from to contains an edge in .

For example, is a cutset for node in Fig. 1.

6This includes paths of length 0; so x cannot be a source for a message not
in C .
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Lemma III.6: Let be a network with message set , node
set , and edge set . If a function satisfies

(17)

and the polymatroid axioms and is a cutset for a node , then

Proof: First, note that

if then (18)

This follows from

[from (P2)]

[from (P4)]

Also, note from (P4) that

if

then (19)

Order the nodes in as such that when-
ever is an edge. Let . We will prove by in-
duction on that if is a cutset for , then

. Suppose for all such that
is a cutset for , and denote the in-edges of by

Suppose is a cutset for , and let

Then, for each , the set is also a cutset for , so

[from the induction hypothesis]

[from(19)]

[from (P2)]

[from (P2)]

so

(20)

Therefore

[from (20), (18)]

[from (17), (18)]

[from (20)].

IV. MATROID FUNDAMENTALS

We review here various definitions and results in matroid
theory, as they will prove useful in the remainder of the paper.

For a detailed introduction to matroid theory, the reader is re-
ferred to [26] or [30]. A matroid is an ordered pair ,
where is a finite set and is a set of subsets of satisfying
the following three conditions.

(I1) .

(I2) If and , then .

(I3) If and , then

such that .

The set is called the ground set and the matroid
is called a matroid on . The members of are called

independent sets and any subset of not in is called a depen-
dent set. A maximal independent set of a matroid is called a base
of the matroid and a minimal dependent set is called a circuit. It
can be easily shown that all bases are of the same cardinality.

There are many equivalent definitions of a matroid. One such
alternate definition, which is particularly useful for us, uses the
notion of a rank function (similar equivalent definitions using
circuits or bases also exist).

For any matroid and any , let

and let

Then is a matroid (called the restriction of to ) and
the rank of , denoted , is the size of a base of .

Lemma IV.1: [26, pp. 22–23] If is the rank function of a
matroid with ground set , then the following three conditions
hold.
(R1) If , then .

(R2) If , then .

(R3) If , then .

We will refer to (I1)–(I3) as the independence axioms of a
matroid and to (R1)–(R3) as the rank axioms of a matroid. The
following lemma shows that the rank axioms suffice to define a
matroid.

Lemma IV.2: [26, p. 23] Let be a set and let
be a mapping satisfying (R1)–(R3). Let

Then is a matroid having rank function .

Some useful facts about matroids are summarized in the fol-
lowing lemmas.

Lemma IV.3: [26, p. 25] Let be a matroid with
rank function and suppose that . Then

(a) if and only if ;
(b) is a base if and only if ;
(c) is a circuit if and only if ; and, for all ,

.

The following lemma follows immediately from Lem-
mas IV.1 and IV.3(a).
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Lemma IV.4: The rank function of any matroid satisfies the
polymatroid axioms (P1)–(P3).

Lemma IV.5: Let be the rank function of a matroid with
ground set , and let , , be subsets of . If

, then .
Proof:

[from (P4), Lemmas IV.4 and II.3]

[from ]

[from (R2)].

One important example of a matroid is obtained from graph
theory. If is the set of edges of a finite undirected graph, and

is the collection of all subforests (i.e., cycle-free subgraphs)
of the graph, then is a matroid. The spanning forests and
cycles of the graph are, respectively, the bases and circuits in the
matroid. The rank in the matroid of any subgraph determined by
a subset of is the number of edges in a spanning forest of the
subgraph.

Another example of a matroid is obtained from linear algebra.
Suppose is an matrix over a field . If
and is the set of all such that the multiset of columns
of indexed by the elements of is linearly independent in the
vector space , then is a matroid, called the vector
matroid of .

For example, if

over the field of real numbers and the columns of are in-
dexed as labeled above the matrix, then is a
vector matroid with and

A very useful collection of example matroids is the family of
uniform matroids , defined as follows. The ground set of

is the set , and a subset of the ground set is
independent if and only if it has size at most .

Two matroids and are said to be isomorphic if
there exists a bijection such that if and only if

. If a matroid is isomorphic to the vector matroid
of a matrix over a field , then is said to be representable
over or -representable. A matroid is representable if it is
representable over some field.

A geometric depiction of any particular rank- ma-
troid is a diagram in consisting of nodes and undirected
edges, where the nodes are in one-to-one correspondence with
the matroid’s ground set elements, and a collection of of the
matroid’s ground set elements is dependent if and only if it cor-
responds to points in the diagram that are depicted as lying on a
common -dimensional plane.7 Geometric depictions will
be given to describe matroids in Figs. 5, 6, 8, and 10.

7A “plane” is sometimes drawn, by necessity, as a circle or other curved item.

A. Matroid Amalgams

Here we review various matroid terminology and results in
the literature that will be used in Section VII. This will allow us
to convert matroidal networks into multiple-unicast matroidal
networks by means of a minor alteration. For a given matroid
with ground set , the closure of an arbitrary set is the
set

A set is said to be a flat if . If and are
flats in a given matroid, then is a modular pair of flats if

A flat is called a modular flat if is a modular pair
of flats for all flats . A matroid is modular if all its flats are
modular.

Suppose matroids and have ground sets and ,
and let

and

Furthermore, suppose that . If is a matroid
on such that and , then is
called an amalgam of and . Let , , and be the
rank functions of , , and , respectively, and for all

, let

and

be defined by

(21)

(22)

If a function satisfies (P3), then is called
submodular.

Lemma IV.6: [26, p. 413] If , as given in (22), is submodular
on , then it is the rank function of a matroid on which is an
amalgam of and .

When is submodular, the (unique) matroid on that has
as its rank function is called the proper amalgam of and

.

Lemma IV.7: [26, p. 416] Let and be matroids and
let denote the intersection of their ground sets. If the restric-
tion matroids and are identical and is a
modular matroid, then the proper amalgam of and
exists.

V. NETWORKS FROM MATROIDS

In this section, we give a method for building networks from
matroids. The method involves a number of choices and hence
does not produce a unique network.
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Fig. 2. A network which is matroidal with respect to more than one matroid.
Messages a and b are generated by source n and are demanded by receiver n .

Definition V.1: Let be a network with message set , node
set , and edge set . Let be a matroid with rank
function . The network is a matroidal network associated
with if there exists a function such that the
following conditions are satisfied:

(M1) is one-to-one on ;

(M2) ;

(M3) , for every .

It follows from (M1), (M2), (I2), and Lemma IV.3(a) that

for all (23)

We call the function the network-matroid mapping. Condi-
tion (M1) assigns unique matroid ground set elements to the
network messages, and condition (M2) assures that the network
messages correspond to an independent set. Condition (M3) re-
flects the fact that the out-edges of each network node are com-
pletely determined by the in-edges and source messages of the
node.

The following is a more flexible, but equivalent form of (M3):
For every and for any , we have

To see this, note that

[from (M3)]

[from (R2)]

[from (R2)].

Example V.2: A matroid witnessing a network being ma-
troidal need not be unique. Consider the network shown in
Fig. 2. If we take and ,
then is a network-matroid mapping over the uniform matroid

with ground set , and if we take ,
, and , then is a network-matroid mapping

over the uniform matroid with ground set .

The following fact about matroidal networks will be used in
Theorem VI.1.

Lemma V.3: For any matroidal network, the polymatroid
upper bound on the capacity is at least .

Proof: Let be a matroid with ground set and let be
a matroidal network associated with , and having message set

and edge set . We will give a polymatroid assignment
to . Let

be a network-matroid mapping for and and let be the
rank function of . Define the composition function

The function satisfies conditions (R1)–(R3) in Lemma IV.1,
and, by Lemma IV.4, these conditions imply (P1)–(P3) if we
replace by . Hence, by Lemma II.3, the function satisfies
condition (P4) and hence (14) when is replaced by . Also,

for any , by (M1), (M2), and Lemma IV.3
(a), so network condition (N1) is satisfied with , when
is replaced by . Similarly, for each , by (R1),
so network condition (N2) is satisfied with , when is
replaced by . Furthermore, for any node and any ,
we have

by the equivalent form of (M3) preceeding this lemma, which
implies network condition (N3), when is replaced by . Thus,
the network conditions in (N1)–(N3) are satisfied with

. So, by Definition III.2, the polymatroid upper bound
on the capacity is at least .

So, to show that Shannon inequalities are insufficient for com-
puting coding capacity, it suffices to find a matroidal network
that has capacity less than . This is accomplished using the
Vámos network.

Next, we easily demonstrate that a large class of interesting
networks are matroidal.

Theorem V.4: If a network is scalar-linearly solvable over
some finite field, then the network is matroidal. In fact, the net-
work is associated with a representable matroid.

Proof: Fix a scalar-linear solution to the network over fi-
nite field , and let be the network messages. Let

be the message and edge variables. For each , the
variable can be written as a linear combination

of the messages, where , for all . Form a matrix with
a column

...

for each . Let be the vector matroid for this matrix and let
be the rank function of . Let , for all . The function

is clearly one-to-one, giving (M1). If is message , then
has all components zero except the th component. The

columns associated with such messages are clearly independent,
giving (M2). To prove (M3), suppose ; then is a
linear combination of the elements of , so is the same
linear combination of the for . Therefore

Theorem V.4 suggests a technique for obtaining a network
that has a good chance of not being scalar-linearly solvable.
That is, choose a network that is matroidal over a nonrepre-
sentable matroid. The Vámos matroid defined in Section V-F is
the smallest example of a nonrepresentable matroid [26, p.512],
providing inspiration to define and study a “ Vámos network.”
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Fig. 3. An unsolvable nonmatroidal network. Messages a and b are generated
by source n and are demanded by receiver n . The symbol carried on edge
e is x.

The following corollary follows immediately from Theorem
V.4 and the fact that all solvable multicast networks are scalar-
linearly solvable over some finite field [18].

Corollary V.5: All solvable multicast networks are matroidal.

The following simple lemma immediately gives the capacity
upper bound in Example III.4. It is a slight variation of a lemma
that appears elsewhere (e.g., [32, p. 328], [5]).

Lemma V.6: Suppose a network, with message set and edge
set , has a message which is demanded by a node and is
generated only by source node . Let be a network edge. If
every path in the network from to passes through , then the
polymatroid upper bound for the coding capacity of the network
is at most .

Proof: Let be a polymatroid assignment to the
network. Note that is a cutset for . Then

[from (N1)]

[from (1)]

[from (6)]

[from (1)]

[from (1)]

[from Lemma III.6]

[from (9)]

[from (N2)].

Thus, any polymatroid assignment satisfies , and
therefore the polymatroid upper bound on the capacity of the
network is at most .

We note that a special case of Lemma V.6 is when the network
has a unique directed path from to .

A. The M-Network

A trivial example of an unsolvable network that is not ma-
troidal is shown in Fig. 3. Note that if the network were ma-
troidal with network-matroid mapping and matroid rank func-
tion , then

[from (M1), (M2)]

[from (R2)]

[from (M3)]

[from (R1)]

which gives a contradiction.
Here, we demonstrate that not all solvable networks are ma-

troidal. We call the network shown in Fig. 4 the -network (due
to its shape). The -network was discussed in [25] as an ex-

Fig. 4. The M -network. Messages a and b are generated by source n and
messages c and d are generated by source n . The four messages a; b; c; d are
demanded in various pairs at the receivers n , n , n , and n . The edges e ,
e , e , e , e , e , e , and e , are denoted by w , w , w , w , u ,
u , u , and u , respectively.

ample of a network with no scalar linear solution, but with a
simple vector linear solution.

Lemma V.7: The following is a Shannon-type information
inequality:

Proof: Let the notation mean that is
a Shannon-type information inequality (similarly for ). It is
easy to see that is transitive, since the sum of two Shannon-
type inequalities is a Shannon-type inequality. Now, using

[from (3)]

[from (6)]

[from (12)]

[from (12)]

[from (15)] (24)

we obtain

[from (24) ]

[from (24)].

Theorem V.8: The -network is solvable, but is not ma-
troidal.

Proof: A two-dimensional vector routing solution for the
-network was given in [25], so it remains to show the network

is not matroidal.
Suppose, to the contrary, that the -network is matroidal.

Let be the rank function of the associated matroid, let be the
network-matroid mapping, let , and let
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Then we have

[from (M3) and (R2)] (25)

[from (M3) and (R2)] (26)

[from (23)] (27)

By Lemma IV.4, the rank function of any matroid obeys the
polymatroidal axioms (P1)–(P3), so we can apply Lemma V.7
(letting the map play the role of the entropy ) to obtain

[from (R1) and (R3)]

[from Lemma V.7]

[from (25)–(27)]. (28)

Thus, we have

[from (28)]

[from (R2)]

[from (M3) at ]

[from (R1)].

Similar arguments yield

[from (M3) at ]

[from (M3) at ] (29)

[from (M3) at ] (30)

Since is a cutset for node and for node ,
we have

[from Lemma III.6] (31)

[from Lemma III.6] (32)

Therefore

[from(23)]

[from (R2)]

[from (31) and Lemma IV.5]

[from (32)]

[from (R3)]

and

for all [from (R1)]

so

(33)

We also have

[from (R3)]

[from (R2)]

[from (23), (33)] (34)

By a similar argument

(35)

Adding (29) and (30), subtracting (35), and then dividing by
gives

(36)

Similar arguments show that

(37)

However, in order to satisfy (34)–(37), it must be the case that

But since the rank function is integer-valued, we have obtained
a contradiction. Thus, the -network is not matroidal.

For Lemma V.9 and Theorem V.10, is a finite field. The
following lemma is given in [31, Theorem 7.3].

Lemma V.9: Let be a linear map, and let
be a uniformly distributed random variable on . Then
is uniformly distributed on the range of , and

.
Proof: For each in the range of , is a coset of the

kernel of . All such cosets have the same cardinality, and each
element of has the same probability for , so each element
of the range of has the same probability for . So is
uniformly distributed on the range of . This range is a subspace
of , say of dimension , so it has cardinality ; hence, we
have .

The two-dimensional vector-linear solution to the -net-
work given in [25] is a simple routing solution and easily
extends to a vector-linear solution over any even vector dimen-
sion. We next show that no other vector dimensions are possible
for vector-linear solutions to the -network.

Theorem V.10: The -network does not have any vector-
linear solutions of odd vector dimension.

Proof: Suppose we have a vector-linear solution of dimen-
sion over the field . We assume all logarithms for entropies
are taken to be base so that . Any edge vari-
able, or any finite collection of messages and edge variables, is
a linear function of the messages. Hence, if the messages are
independent uniform random variables over , then Lemma
V.9 implies that is an integer for any messages
and/or edge variables . But if we let

then the proof of Theorem V.8 can be repeated to give
and hence, . Therefore,

must be an integer, so must be even.

In particular, the -network does not have a scalar-linear
solution.

B. Method for Constructing Networks From Matroids

We will next describe a method that can be useful for con-
structing a matroidal network associated with a matroid. Such
constructions allow us to transfer various interesting properties
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of matroids to networks. As matroid theory is a field rich in im-
portant results, the goal in constructing matroidal networks is to
obtain some analogues for networks.

Let be a matroid with rank function . Let
denote the network to be constructed, its message set, its
node set, and its edge set.

The construction will simultaneously construct the network
, the function

and an auxiliary function

where for each , either
(i) is a source node with message and ; or

(ii) is a node with in-degree 1 and whose in-edge sat-
isfies .

The construction is carried out in four stages; each stage can
be completed in many ways.

Step 1: Create network source nodes and
corresponding messages . Choose any
base for and let and

.

Step 2: (to be repeated until it is no longer possible).
Find a circuit in , such that
have been already defined, but has not yet been defined.
Then we will add the following:

(i) a new node and edges , such that connects
to , and we define .

(ii) another new node with a single in-edge connecting
to , and we let and .

Step 3: (to be repeated as many times as desired).
If is a circuit in and is a source node
with message , then add to the network a new receiver node

which demands the message and which has in-edges
where connects to and where .

Step 4: (to be repeated as many times as desired).
Choose a base of and create a re-
ceiver node that demands all of the network messages, and
such that has in-edges where connects
to . Let .

Note that after each of the preceding steps, the network con-
structed so far is matroidal with respect to .

It is clear that after Step 2, the function has been completely
determined. This is because for each , one can always
create a circuit containing and some subset of the starting
base .

It is possible that some circuits cannot be used in Step 3 since
they have no element which is mapped by to a source mes-
sage. Hence, after this stage of the construction there may be
dependencies in which are not reflected in the properties of
the network . The final stage (Step 4), however, can at least

Fig. 5. Geometric depiction of the rank-2 uniform matroid U , which can be
used to construct the Butterfly network. The matroid has ground set fx̂; ŷ; ẑg
and a set is independent if and only if it does not have three collinear points in
the figure (i.e., iff it has size at most 2).

assure us that all of the independencies in are reflected in the
properties of .

C. The Butterfly Network

The Butterfly network in Fig. 1 is matroidal associated
with the rank- uniform matroid geometrically depicted
in Fig. 5. The network-matroid mapping (from the network
sources and edges to the matroid) constructed along with the
network has been partially given8 in Fig. 1. This network is
known to have a linear solution over any ring alphabet (by
taking ). One can easily check that the conditions
(M1)–(M3) hold.

To illustrate the construction of a network from a matroid, we
next show the steps from Section V-B involved in the construc-
tion of the Butterfly network.

Step 1: We choose a matroid base and network
messages and , and we assign and ,
and and .

Step 2: The only circuit in the matroid is , and
and have already been defined, but has not yet been
defined. We add a new node and edges and , and
we define and . We add another new
node with a single in-edge and we let and

.

Step 3: The only circuit in the matroid is and
is a source node with message . We add a new

receiver node which demands the message and has
in-edges and . We repeat this step once more with the
same circuit , but this time using the source node

with message . We add a new receiver node

8Any edge coming from a node with only one input will not be labeled in
diagrams, and it can be assumed that any such label equals the label of the unique
input to the node.
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TABLE I
DEPENDENCIES IN THE UNIFORM MATROID U THAT ARE REFLECTED IN THE

BUTTERFLY NETWORK. THE SECOND COLUMN INDICATES SETS OF VARIABLES

IN THE BUTTERFLY NETWORK CORRESPONDING TO DEPENDENT SETS IN THE

U MATROID. THE THIRD COLUMN INDICATES AT WHICH NODES IN THE

BUTTERFLY NETWORK THE CORRESPONDING DEPENDENCY IS ENFORCED

which demands the message and has in-edges and
. The result is the Butterfly network.

Table I lists the dependencies in the uniform matroid
which are directly reflected in the Butterfly network.

D. The Fano Network

Fig. 6 is a geometric depiction of the well-known Fano ma-
troid [26]. The network shown in Fig. 7, which we call the Fano
network, is a matroidal network associated with the Fano ma-
troid and is constructed using the technique described in Section
V-B. The network-matroid mapping is partially shown in Fig. 7,
where the mapping on the unlabeled edges is given by the usual
convention. The network-matroid mapping is the identity func-
tion on the network source messages , , and . It is easy to see
that there exists a dependency between any three network vari-
ables if and only if the corresponding three matroid elements are
dependent. Table II lists the dependencies in the Fano matroid
which are directly reflected in the Fano network.

The Fano matroid is known to be -representable over a finite
field if and only if has characteristic two [26]. Correspond-
ingly, the Fano network was shown in [6], to be solvable if and
only if the alphabet size is an integer power of two. It, in fact,
has a linear solution over any finite field of characteristic two
(by taking , , , and ).
The Fano network was used as a building block to construct a
network whose coding capacity cannot be achieved by the net-
work. The Fano network was also used as a building block in
[5] to construct a solvable network that is not linearly solvable
(in a very general sense).

E. The Non-Fano Network

Fig. 8 is a geometric depiction of the well-known non-Fano
matroid [26]. The network shown in Fig. 9, which we call the
non-Fano network, is a matroidal network associated with the

Fig. 6. Geometric depiction of the Fano matroid. The matroid has ground set
fâ; b̂; ĉ; ŵ; x̂; ŷ; ẑg and has rank 3. Any three elements of the ground set are
dependent if and only if they are collinear in the diagram (where we pretend
that points on the drawn circle are also “collinear”).

Fig. 7. The Fano network. Messages a, b, and c are emitted by sources n ,
n , and n , respectively, and are demanded by receivers n , n , and n ,
respectively. The edges e , e , e , and e are labeled according to the
network-matroid mapping by their corresponding ground set elements in the
Fano matroid shown in Fig. 6.

TABLE II
DEPENDENCIES IN THE FANO MATROID THAT ARE REFLECTED IN THE FANO

NETWORK. THE SECOND COLUMN INDICATES SETS OF VARIABLES IN THE

FANO NETWORK CORRESPONDING TO DEPENDENT SETS IN THE FANO

MATROID. THE THIRD COLUMN INDICATES AT WHICH NODES IN THE FANO

NETWORK THE CORRESPONDING DEPENDENCY IS ENFORCED

non-Fano matroid and is constructed using the technique de-
scribed in Section V-B. The network-matroid mapping is par-
tially shown in Fig. 9 where the mapping on the unlabeled edges
is given by the usual convention.

Table III lists the dependencies in the non-Fano matroid
which are directly reflected in the non-Fano network. The
non-Fano matroid is known [26] to be -representable over
a finite field if and only if has odd characteristic. Cor-
respondingly, the non-Fano network was shown in [6], to be
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Fig. 8. Geometric depiction of the non-Fano matroid. The matroid has ground
set fâ; b̂; ĉ; ŵ; x̂; ŷ; ẑg and has rank 3. Any three elements of the ground set are
dependent if and only if they are collinear in the diagram.

Fig. 9. The non-Fano network. Messages a, b, and c are emitted by sources
n , n , and n , respectively, and are demanded by receivers n , n , and
fn ; n g, respectively. The edges e , e , e , and e are labeled
according to the network-matroid mapping by their corresponding ground set
elements in the non-Fano matroid shown in Fig. 8.

TABLE III
DEPENDENCIES IN THE NON-FANO MATROID THAT ARE REFLECTED IN THE

NON-FANO NETWORK. THE SECOND COLUMN INDICATES SETS OF VARIABLES

IN THE NON-FANO NETWORK CORRESPONDING TO DEPENDENT SETS IN THE

NON-FANO MATROID. THE THIRD COLUMN INDICATES AT WHICH NODES IN

THE NON-FANO NETWORK THE CORRESPONDING DEPENDENCY IS ENFORCED

solvable if and only if the alphabet size is odd.9 It, in fact, has a
linear solution over any alphabet of odd cardinality (by taking

, , , and ). The
non-Fano network was used as a building block to construct
a network whose coding capacity cannot be achieved by the
network. The non-Fano network was also used as a building

9Actually, a slight variation of the non-Fano network was used in [6]; the
variation consisted of removing the demands a and b from node n . However,
the statements here about the solvability of the non-Fano network are true, since
it can be shown that the non-Fano network is CSLS-equivalent (see Definition
VII.6) to the variant network.

Fig. 10. A three-dimensional geometric depiction of the Vámos matroid.

block in [5] to construct a solvable network that is not linearly
solvable (in a very general sense).

F. The Vámos Network

The Vámos matroid is an eight-element rank- matroid
with

and whose dependent sets are the four-element sets which
are coplanar in the three-dimensional drawing in Fig. 10 (i.e.,
precisely , , , , and

) and all subsets of of cardinality at least . Note
that is not considered a coplanar set in Fig. 10.

One of the interesting properties of the Vámos matroid is the
following.

Theorem V.11: [26, p. 170] The Vámos matroid is not repre-
sentable.

We call the network shown in Fig. 11 the Vámos network; it
is a matroidal network associated with the Vámos matroid10 and
constructed using the technique described in Section B. The net-
work has 17 nodes and 4 message variables. Nodes
are receiver nodes, each demanding one source message, except
for , which demands two source messages. The network has
4 hidden source nodes, each generating exactly one of the mes-
sages , , , . As depicted in Fig. 11, source messages are car-
ried on hidden edges from their hidden source to various other
network nodes (e.g., message is carried by hidden edges from
its hidden source to nodes , , , , and ).

The network-matroid mapping defined along
with the network from the matroid in Fig. 11 is determined by:

for all . Table IV lists the
dependencies in the Vámos matroid which are directly reflected
in the Vámos network.

Note 1: As depicted in Fig. 11, several of the message vari-
ables , , , appear above some of the nodes. This is
simply a convenience that makes the depiction easier to
draw. When this happens, it is understood that there is an
unshown edge from the appropriate source node to the node
in question. So, for example, node actually has four
in-edges (not shown), one from each source node (also not
shown).

10It should be emphasized that there are many other networks that are asso-
ciated with the Vámos matroid.
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Fig. 11. The Vámos network. A message variable a, b, c, or d labeled above a
node indicates an in-edge (not shown) from the source node (not shown) gen-
erating the message. Demand variables are labeled below the receivers n –n
demanding them. The edges e , e , e , and e are denoted by w, x, y,
and z, respectively.

TABLE IV
DEPENDENCIES IN THE VÁMOS MATROID THAT ARE REFLECTED IN THE

VÁMOS NETWORK. THE SECOND COLUMN INDICATES SETS OF VARIABLES IN

THE VÁMOS NETWORK CORRESPONDING TO DEPENDENT SETS IN THE VÁMOS

MATROID. THE THIRD COLUMN INDICATES AT WHICH NODES IN THE VÁMOS

NETWORK THE CORRESPONDING DEPENDENCIES ARE ENFORCED

Note 2: To obtain the Vámos network, Step 1 was used on
the base , then Step 2 was used on the circuits

, , , and ,
creating nodes . Step 3 was then used on
the circuits , , , and

, creating nodes , , , . Finally. Step
4 was used to create node using the base .
Note that Step 4 says that node should demand all 4
messages , , , but since and are inputs to ,
we did not bother demanding them there. This does not
affect the matroidality of the network. Notice that Steps 3
and 4 are not used as much as they could have been. For
example, is a circuit in the Vámos matroid
that is never used. Therefore, the Vámos network might

not reflect all the properties of the Vámos matroid that it
could have. The reason these stages were not completed
was to make the network simpler, while still reflecting
enough of the Vámos matroid to suit our purposes.

VI. BOUNDS ON CAPACITIES OF THE VÁMOS NETWORK

In general, the routing capacity of an arbitrary network can in
principle be determined using a linear programming approach
[3],11 although the computational complexity can be prohibitive
for even relatively small networks. It thus appears to be gen-
erally nontrivial to efficiently determine the routing capacity.
In addition, there are presently no known techniques for com-
puting the coding capacity or the linear coding capacity of an
arbitrary network.12 In fact, the linear coding capacity of a net-
work depends, in general, on the finite-field alphabet used [5],
whereas the routing capacity and coding capacity do not depend
on the alphabet size [3]. However, somewhat surprisingly, the
exact routing capacity and linear coding capacity of the Vámos
network can be computed, and the linear coding capacity of the
Vámos network turns out to be independent of the finite field
alphabet.

In what follows, we first determine the polymatroid upper
bound on the coding capacity of the Vámos network. Then
we show that the upper bound on the coding capacity of
the Vámos network can be improved if we allow the use
of non-Shannon-type information inequalities. Specifically,
we exploit the Zhang–Yeung non-Shannon-type information
inequality given in Theorem II.2 and obtain a smaller upper
bound on the coding capacity of the Vámos network than is
obtainable using Shannon-type information inequalities. To the
best of our knowledge, this is the first published application of
a non-Shannon-type information inequality to network coding.
Finally, we compute the exact routing capacity and the exact
linear coding capacity of the Vámos network.

A. Bounds on Coding Capacity of the Vámos Network

Theorem VI.1: The polymatroid upper bound on the coding
capacity of the Vámos network is .

Proof: By Lemma V.3, the polymatroid upper bound is
greater than or equal to . Since there is a unique path in the
Vámos network from the source node to the node which
demands message , the bound cannot be greater than (by
Lemma V.6).

The following theorem demonstrates that non-Shannon-type
information inequalities can give tighter upper bounds on a net-
work’s capacity than can only Shannon-type information in-
equalities. In particular, Shannon-type information inequalities
do not by themselves guarantee that the Vámos network is un-
solvable, whereas adding one non-Shannon inequality indeed
confirms the unsolvability of the network (since the coding ca-
pacity is strictly smaller than ).

Theorem VI.2: The coding capacity of the Vámos network is
at most .

11This is analogous to the algorithm for achieving multicommodity flow ca-
pacity given in [9].

12An exception is for multicast networks, where it is known that the coding
capacity equals the linear coding capacity and is computable [18].
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Proof: Consider a solution to the network. Assume
that the network messages , , , are independent, -dimen-
sional, random vectors with uniformly distributed components
and assume each edge in the network has capacity . Let , , ,

denote the random variables carried by edges , , ,
, respectively. We have

[from (N3) at ] (38)

[from (N3) at ] (39)

[from (N3) at ] (40)

[from (N3) at ] (41)

[from (N3) at ] (42)

[from (N3) at ] (43)

[from (N3) at ] (44)

[from (N3) at ] (45)

[from (1), Lemma III.6]. (46)

Note that (46) can alternatively be obtained by seeing that , ,
, are deterministic functions of the network messages , , ,
. Then we obtain

[from (10)]

[from (1), (38)]

[from(8)]

[from (N1)]. (47)

[from (10)]

[from (1), (39)]

[from(46)]

[from (N1)] (48)

[from[(10)]

[from (1), (40), Lemma IV.5]

[from Lemma III.6]

[from (1), (38)]

[from (N1)]

[from (8)]

[from (N1), (N2)]

(49)

[from (11)]

from (1), (40), Lemma IV.5]

[from Lemma III.6]

[from (1), (41)]

[from (1), (42)]

[from (8)]

[from (N1), (N2)]

(50)

[from (11)]

[from (1), (43), Lemma IV.5]

[from Lemma III.6]

[from (1), (44)]

[from (1), (45)]

[from (8)]

[from (N1), (N2)]

(51)

Letting , , , and in
Theorem II.2 gives

(52)

and then substituting (47)–(51) into (52) yields

(53)
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or equivalently,

Therefore, the coding capacity of the Vámos network can be at
most .

Corollary VI.3: Shannon-type information inequalities and
the network entropy conditions (i.e., the polymatroid upper
bound on the capacity of a network) are in general insufficient
for determining the coding capacity of a network.

In the terminology used in [32] (see also [29]), Theorem VI.1
says that the LP bound gives an upper limit of on the capacity
of the Vámos network, while Theorem VI.2 says that the entropy
bound gives a strictly better upper limit on this capacity.

B. Routing Capacity of the Vámos Network

Theorem VI.4: The routing capacity of the Vámos network
is .

Proof: Consider any routing solution to the Vámos
network. The demands at nodes and require edges
and to each carry all components of messages and .
The demand at node requires that each of the components
of message be carried on at least one of the edges or .
Thus, at least one of the edges or must carry at least

components of message . Such an edge has capacity and
must carry a total of at least message components,
implying that , or equivalently

Thus, the routing capacity is at most .
We next give a routing code that achieves a rate of . The

code has message dimensions equal to and edge capaci-
ties equal to . Let each of the messages’ two components
be denoted using subscripts and . To describe the code, we list
below the scalar components carried by decision-critical edges
in the networkas follows:

It is straightforward to verify that the routing code implied by
these conditions meets the networks’ demands.

C. Linear Coding Capacity of the Vámos Network

In this subsection, we will use a version of the Ingleton in-
equality for ranks of vector spaces to compute an upper bound
for the linear capacity of the Vámos network. Then we will show
that the upper bound can be acheived. For the reader’s conve-
nience, we will provide a proof of the Ingleton inequality (54)
here. This proof is due to Hammer, Romashchenko, Shen, and
Vereshchagin [12].

Definition VI.5: A random variable is said to be a common
information for random variables and if the following three
conditions hold:

The above definition can be found, for example, in [12,
p. 461] (see also [11] and [33, p. 51]).

Lemma VI.6: Let , , , be random variables with a
common information. If and have a common information,
then

(54)

Proof: Let be a common information for and ; then

[from ]

[from ]

[from Lemma V.7, replacing

by ]

Lemma VI.7: Let be a finite field, let and be -valued
matrices with columns, and let be a random variable uni-
formly distributed over . If and , then

and have a common information.
Proof: Let be a matrix whose row space is the intersec-

tion of the row spaces of and , and let . Since the
row space of is a subspace of the row space of , the matrix

has rank equal to the rank of , and therefore by Lemma V.9

and so

Similarly, . Now, let , , and denote the row
spaces of , , and , respectively. Note that the pointwise sum

is the span of . We have

[from Lemma V.9]
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[from Lemma V.9]

Thus, is a common information for and .

Theorem VI.8: The linear coding capacity of the Vámos net-
work over every finite field is .

Proof: First, we demonstrate that is an upper bound
on the linear coding capacity of the Vámos network. Consider
an arbitrary linear solution over a finite field for the
Vámos network.

Since we are assuming a linear solution to the network, the
symbol vector carried on any edge in the network is a linear
combination of the network source messages. Since and are
linear functions of the four network messages, each of which is
uniformly distributed over , we may apply Lemmas VI.7 and
VI.6, by taking , , , ,
and to give

(55)

But we have:

[from (47)]

[from (50)]

[from (8)]

[from (N1), (N2)]

[from (51)]

[from (48)].

Plugging these into (55)) gives , so

Thus, the linear coding capacity of the Vámos network is at most
over any finite field .

Next, we demonstrate a linear network solution for the
Vámos network, which thus establishes as a lower bound
for the linear coding capacity. The solution is valid over any
alphabet which is an Abelian group with operation (i.e., in
particular, over any finite field alphabet). To describe the code,
we list below the six scalar components carried by various edges
in the network.

It is straightforward to verify that the network demands can be
(linearly) met using this code. Thus, the linear coding capacity
of the Vámos network is at least for any finite field alphabet.

We note that an alternative method to obtain the upper bound
of on the linear coding capacity of the Vámos network is
to write each edge function and each decoding function as arbi-
trary linear combinations (with matrix coefficients) of their in-
puts, and then to use linear algebra to obtain an inequality that
bounds the ratio . This approach, however, appears to re-
quire substantially more calculations that the proof given above.

VII. CREATING MULTIPLE-UNICAST MATROIDAL NETWORKS

In [7], a technique was given for converting arbitrary net-
works into multiple-unicast networks. The conversion proce-
dure preserves the solvability and linear solvability properties
of the original network. In this section, we show that the con-
version process also preserves the property of a network being
matroidal. Then, in Section VIII, we use this conversion tech-
nique to create a multiple-unicast variation of the Vámos net-
work which witnesses the insufficiency of using Shannon-type
information inequalities for computing the coding capacity of a
multiple-unicast network.

We want to convert a given network into an equivalent net-
work in which each message has only one source and one re-
ceiver. Eliminating multiple sources for a given message is easy.
Simply add a new node to be the sole source for this message,
together with an edge from this node to each of the old sources
of the message.
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Fig. 12. The (n ; n ; z)-gadgetized version of N is the network N , built
from network N by adding a gadget consisting of five new nodes with some
incident edges, a new message w, and the message z being demanded at node
n instead of at nodes n and n .

Remark VII.1: When this elimination process is carried out
on a matroidal network , the resulting network is still ma-
troidal. Indeed, if is a map witnessing that is matroidal,
and is the message for which multiple sources are being elim-
inated, we may simply extend so that for each new edge ,

.

We eliminate multiple receivers by the following construc-
tion.

Definition VII.2: Let be an arbitrary network with edges
, nodes , and messages , such that nodes and each

demand message . Without loss of generality, let be a new
message not already in , and let be new nodes not
already in . The -gadgetized version of is the
network with nodes

edges

messages

and with message being demanded at instead of at and
(as shown in Fig. 12).

The proof of the following lemma relies in large part on the
material from Section VI-A.

Lemma VII.3: If a matroidal network has nodes and
that each demand the same message , then the -gad-
getized version of the network is also matroidal.

Proof: Suppose network has edge set , node set ,
message set , with nodes each demanding mes-
sage , and suppose is associated with the matroid

with the network-matroid mapping

. Let be the -gadgetized version of net-
work . The network has node set

edge set

and message set

where and . Let be the matroid
with ground set , where , and where
the independent sets of are the proper subsets of . Then,

is isomorphic to the uniform matroid .
Let

Then the restriction matroids and are identical
and are both isomorphic to the free matroid , which is triv-
ially modular. Thus, Lemma IV.7 implies that there exists a
proper amalgam of and . The matroid

has a ground set . (It can be shown that a
set is independent in the proper amalgam if and only
if is independent in , is independent in

, and either is independent in or
is independent in .)

Define a mapping by

if
if
if
if .

We know that conditions (M1)–(M3) are satisfied by for ;
we will now show that these conditions are also satisfied by
for (thus implying is matroidal).

• Since and is one-to-one on , the
mapping must be one-to-one on , and therefore condi-
tion (M1) is satisfied by .

• Let , , and be the rank functions of , , and ,
respectively. For any , if , then

[from (21)]

[from and (R2)]

[from (23)]

[from (M1)]

(56)

Thus

[from (M1)]

[from (22), (56)]

[from (R1)]

so, by Lemma IV.3(a), . This shows that satis-
fies condition (M2).
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• Note that at node , we have

[from (M3)]

(using that fact that message was demanded at in )
and the same reasoning holds at node . Likewise, at node

, we have

and the same reasoning holds at nodes and . Thus,
condition (M3) holds for , and so is a network-matroid
mapping for and .

Definition VII.4: A multiple-unicast version of a network
is a network constructed from by eliminating multiple

sources as described earlier and then repeatedly applying the
construction in Lemma VII.3 until every message is demanded
by exactly one node.

The following theorem follows immediately, by induction,
from Remark VII.1 and Lemma VII.3.

Theorem VII.5: Every multiple-unicast version of a matroidal
network is matroidal.

The following definition was given in [7]. (“CSLS” stands for
“coding solvability and linear solvability.”)

Definition VII.6: Two networks and are CSLS-equiv-
alent if the following two conditions hold.

1) For any alphabet , is solvable over if and only if
is solvable over .

2) For any finite field and any positive integer , is vector
solvable over in dimension if and only if is vector
solvable over in dimension .

Lemma VII.7: [7] Every multiple-unicast version of a net-
work is CSLS-equivalent to that network.

The following corollary follows immediately from Theorem
VII.5 and Lemma VII.7.

Corollary VII.8: Every matroidal network is CSLS-equiva-
lent to a multiple-unicast matroidal network.

VIII. A MULTIPLE-UNICAST VERSION OF THE

VÁMOS NETWORK

The algorithm given by Adler, Harvey, Kleinberg, Jain, and
Rasala Lehman [1], [14] for computing coding capacity bounds
of networks applies as stated only to multiple-unicast networks.

Fig. 13. The Multiple-Unicast Vámos network. This network was constructed
by adding to the bottom of the Vámos network, two gadgets consisting of the
10 nodes n ; . . . ; n and their adjacent edges. Two new source messages, r
and s, have been added, the demand b at node n has been deleted, the demand
c at node n has been deleted, the demands b and c at node n have been
deleted, and new demands at nodes n ; . . . ; n have been added. The edges
e and e are denoted by u and v, respectively.

Since the Vámos network is not multiple-unicast, one might
wonder whether Shannon-type information inequalities suffice
for computing the best possible coding capacity bounds for such
networks.

We give (via Theorem VII.5) a multiple-unicast version of the
Vámos network and show that the best possible upper bound on
its coding capacity produced by Shannon-type information in-
equalities is strictly larger than the coding capacity. A conse-
quence of this result is the fact that the algorithm given in [1],
[14] is not optimal, in the sense that it cannot always yield the
best possible coding capacity bound. The construction of a mul-
tiple-unicast network from the Vámos network is based upon a
method described in [7].

We refer to the network in Fig. 13 as the Multiple-Unicast
Vámos network. Clearly, using Lemma V.6 one can see that the
coding capacity of the Multiple-Unicast Vámos network is at
most since, for example, there is a unique path from node
(generating message ) to node (demanding message ).
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Theorem VI.2 showed that the coding capacity of the Vámos
network is at most . Theorem VIII.2 gives an analogous
upper bound (slightly larger than but still less than ) for
the Multiple-Unicast Vámos network.

Lemma VIII.1: The Multiple-Unicast Vámos network is ma-
troidal.

Proof: It follows immediately from Lemma VII.3 and the
fact that the Vámos network is matroidal (see Section V-F).

Theorem VIII.2: The coding capacity of the Multiple-Unicast
Vámos network is at most .

Proof: The proof is the same as that of Theorem VI.2, ex-
cept for a few changes which we will describe. To obtain (50),
we used the fact that (at node ). To see that

still holds in the Multiple-Unicast Vámos net-
work, note that

[from Lemma III.6] (57)

and hence

[from (6)]

[from (3)]

[from Lemma III.6]

[from (7)]

[from (12)]

[from Lemma V.9]

[from def. of and (57)]

[from indep. of ] (58)

To obtain (51) in the proof of Theorem VI.2, we used the
fact that (at node ). A similar argument as
above shows that still holds in the Multiple-
Unicast Vámos network.

To obtain (48) in the proof of Theorem VI.2, we used the fact
that (at node ). However, this condi-
tion no longer holds in the Multiple-Unicast Vámos network.
Instead, we can obtain the following:

[from (6)]

[from (8), (9)]

[from Lemma III.6 at ] (59)

[from (6)]

[from (8), (9)]

[from Lemma III.6 at ] (60)

Then we have

[from (6)]

[from (1)]

[from (9)]

[from (59) and (60)]

which implies

(61)

In the proof of Theorem VI.2, we used the fact that

to obtain (48). Alternatively, however, in the Multiple-Unicast
Vámos network, we can use the inequality

[from (8)]

[from (1)]

[from (61)]

[from (9)]

[from (N2)]

[from (N1)] (62)

to obtain

[from (10)]

[from (62)]

as a replacement for (48). This then results in an extra
on the right-hand side of (53), which in turn implies

Thus, the coding capacity of the Multiple-Unicast Vámos net-
work can be at most .

IX. OPEN QUESTIONS

The exact coding capacity of the Vámos network remains an
open question. In particular, is the coding capacity of the Vámos
network strictly greater than its linear coding capacity?

Can the network-matroid construction be modified so that all
matroid dependencies are reflected in the network?
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[19] R. Lněnička, “On the tightness of the Zhang-Yeung inequality for
Gaussian vectors,” Commun. Inf. Syst., vol. 3, no. 1, pp. 41–46, Jun.
2003.

[20] K. Makarychev, Y. Makarychev, A. Romashchenko, and N.
Vereshchagin, “A new class of non-Shannon-type inequalities for
entropies,” Commun. Inf. Syst., vol. 2, no. 2, pp. 147–166, Dec. 2002.
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[23] F. Matúš, “Inequalities for Shannon entropies and adhesivity of poly-
matroids,” in Proc. Canadian Workshop on Information Theory, Mon-
treal, QC, Canada, 2005, pp. 28–31.
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