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Unachievability of Network Coding Capacity
Randall Dougherty, Chris Freiling, and Kenneth Zeger, Fellow, IEEE

Abstract—The coding capacity of a network is the supremum of
ratios , for which there exists a fractional ( ) coding solu-
tion, where is the source message dimension and is the max-
imum edge dimension. The coding capacity is referred to as routing
capacity in the case when only routing is allowed. A network is said
to achieve its capacity if there is some fractional ( ) solution for
which equals the capacity. The routing capacity is known to
be achievable for arbitrary networks. We give an example of a net-
work whose coding capacity (which is 1) cannot be achieved by
a network code. We do this by constructing two networks, one of
which is solvable if and only if the alphabet size is odd, and the
other of which is solvable if and only if the alphabet size is a power
of 2. No linearity assumptions are made.

Index Terms—Capacity, flow, network coding, switching.

I. INTRODUCTION

I N this paper, unless stated otherwise, a network is a directed
acyclic multigraph, some of whose nodes are information

sources or receivers (e.g., see [11]). Associated with the sources
are messages, which are assumed to be vectors of arbitrary el-
ements of a fixed finite alphabet of size at least . At any node in
the network, each out-edge carries a vector of alphabet sym-
bols which is a function (called an edge function) of the vectors
of symbols carried on the in-edges to the node, and/or a function
of the node’s message vectors if it is a source. Associated with
each receiver are demands, which are a subset of all the mes-
sages of all the sources. Each receiver has decoding functions
which map the receiver’s inputs to vectors of symbols in an at-
tempt to produce the messages demanded at the receiver. The
goal is for each receiver to deduce its demanded messages from
its in-edges and sources by having information propagate from
the sources through the network. Each edge is allowed to be
used at most once (i.e., at most symbols can travel across each
edge). Special cases of interest include linear codes, where the
edge functions and decoding functions are linear, and routing
codes, where the edge functions and decoding functions simply
copy input components to output components.

A fractional code is a collection of edge functions, one
for each edge in the network, and decoding functions, one for
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each demand of each node in the network. For a fractional
code, the ratio is called a coding rate. A fractional so-
lution is a fractional code which results in every receiver
being able to compute its demands via its demand functions. If
a network has a fractional solution over some alphabet,
then we say the coding rate is achievable for the network.
A network is said to be solvable if it has a fractional so-
lution for the case .

The coding capacity of a network with respect to an alphabet
and a class of network codes (a related definition appears

in [11, p. 339]) is

fractional coding solution in over

If consists of all network codes, then we simply refer to the
above quantity as the coding capacity of the network with re-
spect to . If the class of network codes consists of all routing
codes or all linear codes, then the coding capacity is referred to
as the routing capacity or linear coding capacity, respectively.
The coding capacity of a given network is said to be achievable
if there is some fractional solution for the network for
which equals the capacity.

Ahlswede, Cai, Li, and Yeung [1] showed that for a general
network, the coding capacity can be larger than the routing ca-
pacity, and in fact, even the linear coding capacity can be larger
than the routing capacity. Li, Yeung, and Cai [9] showed in the
special case of a multicast network (i.e., a network with a single
source and each receiver demanding all messages), the coding
capacity and the linear coding capacity are equal. It was shown
in [3] that for all networks the coding capacity is independent of
the alphabet size. The basic idea is that for any network coding
rate that can be achieved by a fractional code over a particular
alphabet, an arbitrarily close coding rate can also be achieved
over any other alphabet using a different fractional code whose
message dimensions and edge dimensions are sufficiently large.
Clearly, the routing capacity is also independent of the alphabet
size. However, it was shown in [4] that the linear coding capacity
of a network can depend on the alphabet size and the largest
linear coding capacity of a network over any finite-field alphabet
can be smaller than the network’s coding capacity. It was also
shown in [3] that the routing capacity is always rational, achiev-
able, and computable by an algorithm. The algorithm given in
[3] is not particularly efficient, as its purpose was merely to es-
tablish computability (whereas computability remains open for
the general coding capacity and linear coding capacity of a net-
work).

For an undirected network (i.e., using undirected edges for
information flow), the coding capacity can be larger than the
routing capacity. However, for undirected networks where each
message is demanded by exactly one receiver (called “multiple
unicast”), it is presently unknown whether the coding capacity
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can be larger than the routing capacity. Li and Li [8] and Harvey,
Kleinberg, and Rasala Lehman [5] have conjectured that the two
capacities must always be equal for multiple unicast undirected
networks. This conjecture remains an open question, although
it was shown to be true for certain special undirected bipartite
networks by Rasala Lehman [7].

It has been an open question whether the coding capacity of
an arbitrary network must always be achievable by the network.
We answer this question in the negative.

Specifically, we give an example of a network whose coding
capacity equals and we demonstrate that this capacity cannot
be achieved by any network code (Corollary 12). As part of the
proof, we construct two subnetworks, one of which (i.e., )
is solvable if and only if the alphabet size is odd (Corollary 9),
and the other of which (i.e., ) is solvable if and only if the
alphabet size is a power of (Corollary 11). Both subnetworks

and have coding capacity equal to . To establish the
solvability of these networks in terms of their alphabet sizes,
we algebraically characterize all possible solutions to the sub-
networks in terms of six permutations and certain finite Abelian
group operations. We note that networks and (and a
closely related network ) were first introduced in [4].

No linearity assumptions are made in the present paper. We
note, however, that it can be shown that the subnetwork
has linear coding capacity equal to over even-character-
istic fields and over odd-characteristic fields, and it can be
shown from [3] to have routing capacity equal to . Also,
it was shown in [4] that the subnetwork has linear coding
capacity equal to over odd-characteristic finite fields and
over even-characteristic fields, and it was shown in [3] to have
routing capacity equal to .

II. MAIN RESULT

We say that two networks are disjoint if their node sets are dis-
joint. A network is said to be the union of two disjoint networks
if its underlying graph is the union of the underlying graphs of
the two disjoint networks (in particular, this means that there are
no edges from one of the two subnetworks to the other), and if
all the assignments of messages and demands to nodes remain
unchanged.

Lemma 1 below was proven in [3].

Lemma 1: The coding capacity of a network is independent
of the alphabet size.

Lemma 2: Every rational coding rate less than the coding
capacity is achievable.

Proof: Let be a rational number less than the coding
capacity. Then there exists a rational coding solu-
tion over some alphabet such that . Therefore,

. If we repeat the solution times, we get a
fractional coding solution to the same network. By

increasing the edge dimension from to , one obtains a
fractional coding solution. Thus, is an achiev-

able coding rate.

We note that it is easy to generalize Lemma 2 to show that
if a network has a fractional coding solution over some

alphabet and , then the network has a frac-
tional coding solution over some (possibly different) alphabet.

Proposition 3: If two disjoint solvable networks are never
solvable over the same alphabet, then their union has coding
capacity equal to , which cannot be achieved.

Proof: Suppose two disjoint networks and are
solvable on alphabets and , respectively, where ,
but are never solvable over the same alphabet. The solvability
of networks and implies that the coding capacities of the
networks are at least over alphabets and , respectively.
Thus, by Lemma 1, the coding capacity of is also at least

over alphabet . So, for any , there exists a
fractional coding solution over alphabet to the network
such that

If , then the solution of over induces a
solution of over , by leaving components

of ’s edges unused. This implies there is a
fractional coding solution of the network over alphabet .
Likewise, since is solvable over , it has a fractional
coding solution, which by repeating the solution times gives
a fractional coding solution to over . If ,
then this solution induces a solution of over .
So the union network has a fractional
coding solution over alphabet . Since ,
we obtain

so the coding capacity of is at least .
Now suppose there exists a fractional coding solution

for over some alphabet with . Then for each
network and , this solution induces a fractional
coding solution over , by leaving edge components un-
used. Such a fractional coding solution is actually a scalar solu-
tion (i.e., ) to both and over an alphabet of
size , violating the supposition of the proposition.

Thus, any fractional coding solution must have
which implies is not an achievable coding rate of .
By Lemma 2, the coding capacity of is therefore at
most (and hence equals ); i.e., the coding capacity cannot be
achieved.

A special case of the proof of Proposition 3 is the fact that if
a network has a fractional coding solution with ,
then the network is solvable. Thus, if the coding capacity of a
network is greater than , then the network is solvable.

In some of the arguments to follow (in the case where
), we will treat messages for networks as independent

random variables distributed uniformly over the code alphabet.
In calculating entropies for these variables and other variables
dependent on them, the bases of all logarithms will be the al-
phabet size. Hence, the entropy of each individual message will
be and (since we are assuming unit-capacity edges) the en-
tropy of each random variable specifying the contents of a given
edge will be at most .
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We say a set of edge values in a network is com-
putable from another set of edge values in the same
network, if there exist functions such that

for all .
For any set of discrete random variables

let denote the (joint) entropy of and
let denote the conditional entropy of

given . We will make use of the nonnega-
tivity of entropy and also the following entropy identity:

(1)

(The reader is referred to [11] for the fundamental definitions
and properties of entropy.) The following lemma is a basic infor-
mation-theoretic result (e.g., see [11, Proposition 2.36]) whose
proof we omit.

Lemma 4: Let , be discrete random
variables with only finitely many nonzero-probability out-
comes. Then if
and only if is computable from .

The following definition is tailored to specific networks used
in the results to follow.

Definition: For a network containing messages , , , and
labeled edges , , , , we say that a code over an alphabet
has Property if there exist permutations of and
a mapping such that is an Abelian
group and

Let be the network shown in Fig. 1. The following propo-
sition characterizes the most general form of a solution to the
network .

Proposition 5: A code over an alphabet is a solution for
network if and only if it satisfies Property .

We provide a specific example to help the reader follow
the proof of Proposition 5. The example is specified by a
network coding solution in Table I using the ternary alphabet

, and various quantities for this example that are
used in the proof of Proposition 5 are shown in Table II. We
refer back to this ternary example a number of times throughout
the proof of Proposition 5. One can verify that this is indeed a
solution to the network . For example, if ,
then the truth tables indicate that ,
from which one can decode the following:

• at node since ;
• at node since ;
• at node since .

Fig. 1. The network N has sources n , n , n emitting messages a, b, c,
respectively, and receivers n , n , n with demands c, b, a, respectively.

TABLE I
A TERNARY NETWORK CODING SOLUTION FOR N . EACH TRUTH

TABLE SPECIFIES A FUNCTION (ON THE RIGHT) IN TERMS OF ITS INPUTS

(ON THE LEFT). THE TOP FOUR TABLES ARE THE EDGE FUNCTIONS

FOR z, w, x, y. THE BOTTOM THREE TABLES ARE THE DECODING

FUNCTIONS AT NODES n , n , n FOR N

Proof: The “if” direction of the proof is easily verified by
specifying the required edge functions and decoding functions.
The demands are decoded as follows:
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TABLE II
SOME INTERMEDIATE FUNCTIONS IN THE PROOF OF PROPOSITION 5 FOR THE

GIVEN TERNARY EXAMPLE

Now to prove the “only if” direction, suppose that we have
a solution to the network. We will show that the solution has
Property . Fix an arbitrary element of the alphabet and call
it . (In our ternary example, this corresponds to the element
in .)

We have

(2)

for some function . On the other hand, since node has
inputs , and demands the message , one can compute from

, and hence from , , ; this means that, if and are held
fixed, then is a one-to-one function of . In particular,
we define

(3)

and note that is a one-to-one function from to , i.e., a
permutation. Similarly, can be computed from , , and
can be computed from , , , so, if any two arguments of are
held fixed, then is a one-to-one function of the other argument.
So the functions and defined by

(4)

(5)

are permutations of . Note that

from (3)-(5)

(In our ternary example, one can verify that ,
, and , where the permutations are written in cycle

decomposition form.)
For the rest of this proof we will use the notation

(6)

(7)

(8)

Define the function by

(9)

Then we have

from (2), (6)-(9) (10)

and

from (3)-(5), (9)
(11)

Since is computed from and , it can be computed from
and ; write

(12)

for some function . Similarly, write

(In our ternary example, one can verify that , , and
are given by the truth tables in Table II.)

We now start using entropy arguments. By examining Fig. 1,
it can be seen that if we know , , and , then we can compute
both and . Once and are known, this determines . Then,
since and are known, we can compute . So, viewing these
as random variables, we have

(13)

Since , , are independent and

we obtain

(14)

Each of , , is an edge variable and hence has entropy at
most . Now

from (13), (14)

so equality must hold throughout and we have

(15)

A similar argument starting with , , shows that

(16)

We will now begin an argument based on to define func-
tions , , and with certain properties. We will claim later
that this argument can be duplicated for and . Since is a
function of and , which are (jointly) independent of , we
have that is independent of . Therefore,

from (1)

(17)

But is computable from and , so we get

from Lemma 4

from (15)

from (17)
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This implies that is computable from and by Lemma 4.
Hence, is computable from and , so we can write

from (12) (18)

from (10) (19)

for some function .
We also have

from (9), (11) (20)

Now define

(21)

and note that is one-to-one by (20), so is a permutation
of and . (In our ternary example, one can
verify that .) Let

(22)

(23)

Then we have

from (19), (23), (22)

(24)

from (12), (22) (25)

from (21), (22) (26)

from (23), (21), (20) (27)

We also get

from (26), (24), (11)

from (27), (24), (11)

The same arguments can be applied to and (i.e., starting
after (16)), so we get functions , , , and permutations

, such that

(28)

(29)

(30)

(31)

(In our ternary example, one can verify that and
.)

Let us also define

(32)

for . Then we can say that, if
is any permutation of , then

(33)

(34)

(We are using the fact that, as , , vary, the triple
assumes all values .)

We now have

from (28), (31)

from (24), (34)

By applying to the other five orderings of , , as well, we
get

for all and . This then gives

from which we can get

from (32)
(35)

Putting these together, we get

and , so all nine of the functions and are the same.
Define by

so that in fact

(36)

for any and . (In our ternary example, is addition modulo .)
We now have

from (25), (36), (6), (7)

from (29), (36), (6), (8)

from (30), (36), (7), (8)

from (10), (28), (36), (6)-(8)

so in order to establish that the network solution has Property
, it remains to show that is an Abelian group.
We have

from (36), (32) (37)

so is commutative. Now we get

from (36), (33) (38)

from (37), (36), (33) (39)

so is associative. Since

from (37), (34), (36)

is an identity element for . Finally, since has the property
that it is one-to-one on its third argument when the other two
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Fig. 2. The network N has sources n , n , n emitting messages a, b,
c, respectively, and receivers n , n , n , n with demands c, b, a, c,
respectively.

are held fixed (as noted in the comment before (4)), also has
this property. So, for any fixed , the function

is one-to-one, so it must map onto ; hence, we can
find an such that . For this we have

from (36) (40)

from (34) (41)

from (28) (42)

Therefore, every element has an inverse, so we are done.

The following lemmas are due respectively to Cauchy and
Lagrange (e.g., [2]).

Lemma 6: Every prime divisor of a finite group’s order is the
order of some element of the group.

Lemma 7: A finite group’s order is divisible by the order of
every element of the group.

Let be the network shown in Fig. 2.

Proposition 8: A code over an alphabet is a solution for
network if and only if it satisfies Property and the group

has no elements of order .
Proof: Suppose has a solution over alphabet . The

network is just the network with the extra demand node
, so any solution to is a solution to , and hence must

satisfy Property . Suppose the group has a nonzero
element of order . Then the two different message triples

have different values for , but since Property implies

both of the message triples give

so the extra demand is not met (one cannot distinguish between
and , and thus cannot determine given

, , ). Therefore, for a solution to the present network,
cannot have an element or order .

Conversely, suppose a code for satisfies Property and
the group has no elements of order . Then, by Proposi-
tion 5, the demands at nodes , , are met, so it suffices
to show the demand at node is met.

We have that implies and
hence , so . Thus, is computable from
since the map is one-to-one. Given , , one can
get

so one can compute and , thus satisfying the demand at
node .

Corollary 9: The network is solvable if and only if the
alphabet size is odd.

Proof: First, suppose has a solution over the alphabet
. By Proposition 8, there is a binary operation on such

that is an Abelian group with no elements of order . It
now follows from Lemma 6 that the order of this group is not
divisible by ; in other words, is odd.

Conversely, suppose is odd. If we view as the set
and the binary operation as integer

addition modulo , then is an Abelian group. By
Lemma 7, the order of every element of must divide
and thus no element can have order . A network code which
assigns , , , and
satisfies Property (where is the identity permutation for

). Thus, by Proposition 8, the network is
solvable over .

Let be the network shown in Fig. 3.

Proposition 10: A code over an alphabet is a solution for
network if and only if it satisfies Property and all the
nonzero elements of the group are of order .

Proof: Suppose a code over alphabet satisfies Property
and all the nonzero elements of the group are of

order . The extra hypothesis on is used to verify that
can be computed from and :

because the two occurrences of cancel. A quick inspec-
tion shows that each output over every network node can be
computed from the inputs. Also, the demands of are met
as follows:

Thus, this code is a solution over .
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Fig. 3. The networkN has sources n , n , n emitting messages a, b, c,
respectively, and receivers n , n , n with demands c, b, a, respectively.

Conversely, suppose we have a solution to over alphabet
. We will first show that this solution (given by specifying
, , , as functions of , , ) also gives a solution of the

network in Proposition 5. This comes down to verifying the
following:

i) is computable from , , ,
ii) is computable from , ,
iii) is computable from , ,
iv) is computable from , ,
v) is computable from , ,
vi) is computable from , ,
vii) is computable from , .

Facts i), ii), iv), vi), and vii) follow from direct inspection of the
network . We have that is computable from , , so viewing

, , as independent random variables uniformly distributed
over gives

This gives iii) by Lemma 4. From , , one can compute
successively , , , and , so

and hence,

Now, since is computable from , we get

which gives v), by Lemma 4. So, our solution to is also a
solution to .

Therefore, Proposition 5 implies that our solution to network
satisfies Property .

Now, suppose the group has a nonzero element not
of order . That is, suppose there exists an such that

. Then the two difference message triples

would both give and , but one would give
and the other would give .

This is impossible because is computed from and here.
So all satisfy ; that is, all elements of have
order or .

Corollary 11: The network is solvable if and only if the
alphabet size is a power of .

Proof: First, suppose has a solution over the alphabet
. Thus, by Proposition 10, the solution satisfies Property and

every nonzero element of is of order . By Lemma 6, for
every prime divisor of , the group has an element
of order . Thus, the only prime divisor of is , so is a
power of .

Conversely, suppose for some . If we view
as the set and the binary operation as bit-wise
addition modulo , then is the Abelian group and all
the nonidentity elements have order . A network code which
assigns , , , and
satisfies Property (where is the identity permutation for

). Thus, by Proposition 10, the network is solvable
over .

Corollary 12: There exists a directed acyclic network whose
coding capacity is not achievable.

Proof: Follows immediately from Proposition 3 and
Corollaries 9 and 11.

We note that it is not pathological that a disjoint union of two
networks was used to construct a network that cannot achieve
its coding capacity. In fact, the two networks and can
easily be connected by adding three new source nodes, each
producing one of the messages , , or and then adding out-
edges from these new source nodes to the corresponding sources
of and . This will create a connected network having the
same property of not being able to achieve its coding capacity.

III. CONCLUSION AND OPEN QUESTIONS

The coding capacity of a network can, by definition, be ar-
bitrarily closely approximated by using sufficiently long mes-
sage dimensions and edge capacities. However, this paper has
demonstrated that the coding capacity of a network might not
be exactly achievable by any particular network code. This is in
contrast to what is known about routing capacity.

There are a number of interesting fundamental open questions
concerning the coding capacities of networks. We briefly men-
tion some of these here.

Does there exist an algorithm for computing the coding ca-
pacity of an arbitrary network? Can the coding capacity of a net-
work be irrational? If the coding capacity of a network is achiev-
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able, then clearly it is rational since it would equal the ratio of the
message dimension and edge dimension which achieve the ca-
pacity. However, as demonstrated in this paper, some networks
may not have an achievable coding capacity, so conceivably they
might have an irrational capacity. The particular network shown
in this paper not to have an achievable coding capacity, turned
out, in fact, to have a rational coding capacity (i.e., ).

Does there exist a multiple unicast undirected network for
which the coding capacity is larger than the routing capacity
[5], [8]? If not, then there would be no capacity-type advantage
to using network coding for such undirected networks, although
there could still possibly be a complexity improvement.

Each of the above questions remains open if the phrase
“coding capacity” is replaced by “linear coding capacity.”

The solutions to networks , , and were characterized
using Property . One might generalize the notion of Property

so that certain edge functions in a code can be computed in
terms of arbitrary permutations of sums of fixed permutations
of the inputs, where the “sum” is an Abelian group operation. It
would be interesting to discover if this idea has further utility.

The authors discovered after completion of the review process
that portions of the proofs of some of the results can be deduced
from results in [10, pp. 179,185], which were given in a context
that did not discuss network coding.
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