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Insufficiency of Linear Coding in Network
Information Flow
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Abstract—It is known that every solvable multicast network has
a scalar linear solution over a sufficiently large finite-field alphabet.
It is also known that this result does not generalize to arbitrary
networks. There are several examples in the literature of solvable
networks with no scalar linear solution over any finite field. How-
ever, each example has a linear solution for some vector dimension
greater than one. It has been conjectured that every solvable net-
work has a linear solution over some finite-field alphabet and some
vector dimension. We provide a counterexample to this conjecture.
We also show that if a network has no linear solution over any finite
field, then it has no linear solution over any finite commutative ring
with identity. Our counterexample network has no linear solution
even in the more general algebraic context of modules, which in-
cludes as special cases all finite rings and Abelian groups. Further-
more, we show that the network coding capacity of this network
is strictly greater than the maximum linear coding capacity over
any finite field (exactly 10% greater), so the network is not even
asymptotically linearly solvable. It follows that, even for more gen-
eral versions of linearity such as convolutional coding, filter-bank
coding, or linear time sharing, the network has no linear solution.

Index Terms—Asymptotics, flows, linear coding, network infor-
mation theory, routing.

I. INTRODUCTION

I N the context of network information theory [1], [18], a net-
work is a directed acyclic multigraph, some of whose nodes

are sources or sinks. Associated with the sources are messages
and associated with the sinks are demands.1 The demands at
each sink are a subset of all the messages of all the sources. Each
directed edge in a network carries information from node

to node . The goal is for each sink to deduce its demanded
messages from its in-edges by having information propagate
from the sources through the network. A multicast network is
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1Here we use the terms “source” and “sink” in the graph-theoretic sense,
namely, nodes with no in-edges and no out-edges, respectively. More gener-
ally, a network can have messages and demands associated with non-sources
and non-sinks, respectively, but such a network can always be converted into a
network satisfying our given definition, without altering the network solvability
properties. Also, some definitions of a network allow directed cycles.

a network with exactly one source and such that each sink de-
mands all of the source’s messages.

A network’s messages are assumed to be arbitrary elements
of a fixed finite alphabet. At any node in the network, each
out-edge carries an alphabet symbol which is a function (called
an edge function) of the symbols carried on the in-edges to the
node, or a function of the node’s messages if it is a source. Also,
each sink has demand functions for each of its demands, which
attempt to deduce the node’s demands from its inputs. A net-
work code is a collection of edge functions, one for each edge
in the network, and demand functions, one for each demand of
each node in the network. A solution is a code which results in
every sink being able to deduce its demands from its demand
functions, and a network that has a solution is called solvable.
It was noted by Ahlswede, Cai, Li, and Yeung [1] that for some
networks, coding can achieve solutions that are otherwise un-
achievable using only routing or switching.

One way of modeling multiple uses of a network is to view
each network edge as carrying a vector of alphabet symbols. For
a network code using vector transmission, the out-edge of each
node carries a vector of alphabet symbols which is a function
of the vectors carried on the in-edges to the node, or a func-
tion of the node’s message vectors if it is a source. Also, each
source has a vector of messages and each sink demands a subset
of all the source vector messages. All edge vectors are assumed
to have the same dimension and all message vectors are as-
sumed to have the same dimension . Note that the definition
of a solution is with respect to the case when . If there
is a solution with , the solution is said to be scalar.
For general and , a code that allows the sink nodes to deduce
their demands is called a fractional coding solution.

For a network alphabet with an algebraic structure (such as a
ring or field), a fractional coding solution is said to be linear if all
edge functions and all demand functions are linear combinations
of their vector inputs, where the coefficients are matrices over
the alphabet. That is, in a linear solution, if a node has in-edges
and/or source messages carrying vectors ,
then an out-edge of the node carries a vector

where each matrix has elements in the alphabet , and is
of dimension when is a source message and is of di-
mension when is an in-edge. A demand function is
linear if it has an identical form as the equation for , but with
the number of rows in each matrix equal to instead of .
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The coding capacity of a network with respect to an alphabet
and a class of network codes (e.g., see [2] and a related

definition in [18, p. 339]) is

fractional coding solution in over

If consists of all network codes, then we simply refer to the
above quantity as the coding capacity of the network with re-
spect to . The following result was recently shown in [2].

Lemma I.1: The coding capacity of a network is independent
of the alphabet size.

The linear coding capacity is the coding capacity when con-
sists of all fractional linear codes. Whereas the coding capacity
of a network is known to be independent of the alphabet size [2],
the linear coding capacity of a network does in general depend
on the alphabet size chosen (e.g., see Theorems IV.3 and IV.4).
We say that a class of network codes is sufficient over a class of
alphabets if every solvable network has a solution in the class
of codes over some member of the alphabet class. A network is
asymptotically solvable with respect to an alphabet and a class
of codes if its coding capacity is at least . We say that a class
of network codes is asymptotically sufficient over a class of al-
phabets if every solvable network is asymptotically solvable in
the class of codes over some member of the alphabet class.

In this paper, we first show that network linear codes are insuf-
ficient over finite field alphabets (Theorem II.4), and then over
commutative ring alphabets (Corollary III.2), and even over the
general class of alphabets consisting of -modules2 (Theorem
III.4). Finally, we show that network linear codes are asymptot-
ically insufficient over finite field alphabets (Corollary IV.6). In-
terestingly, a single network is used to establish all four of these
counterexamples. Also, we compute the exact network coding
capacity and the linear network coding capacity of this network
for any finite-field alphabet (Corollary IV.5). The method used
to obtain the network exploits techniques from the theory of ma-
troids, which we will discuss in a future publication.

Li, Yeung, and Cai [12] showed that any solvable multicast
network has a scalar linear solution over a sufficiently large fi-
nite-field alphabet. Riis [15] noted in particular that every solv-
able multicast network has a linear solution over GF in some
vector dimension. For multicast networks, there have been var-
ious studies of algorithms for constructing scalar linear codes
as well as the alphabet sizes needed for obtaining scalar linear
solutions [3]–[6], [9]–[12].

For nonmulticast networks, various results have been given.
Riis [15] constructed a network which is solvable over a binary
alphabet, but which has no scalar linear solution over the finite
field GF , and yet does have a linear solution over GF in
three dimensions. He also demonstrated in [15] solvable net-
works which can achieve linear solutions over GF only if
the vector dimension grows at least linearly with the number of
nodes in the network.

Rasala Lehman and Lehman [11] gave a collection of net-
works which are solvable, but which have no scalar linear so-
lution over any finite-field alphabet. Médard, Effros, Ho, and

2An R-module is like a vector space, but the coefficients of its vectors come
from a ringR rather than from a field.

Karger [13] pointed out that the networks in [11] have linear so-
lutions (based purely on routing) over every finite field in two
dimensions. Similarly, it was noted in [13] that a certain network
given by Koetter has no scalar linear solution but does have a
linear (routing) solution in two dimensions.

It is clear that linear codes in dimensions two and higher
are more powerful than scalar linear codes. Riis stated in
[14]: “Maybe the most important question is whether any flow
problem can be solved using linear coding.” In fact, Médard,
Effros, Ho, and Karger stated in [13]: “We conjecture that
linear coding under its most general definition is sufficient for
network coding in systems with arbitrary demands.” The “most
general definition” of linear coding is not specified in [13], but
some clarification is given by Jaggi, Effros, Ho, and Médard
[8] who state that the “most general possible linear codes” are
filter-bank network codes, a generalization of convolutional
codes. It is also stated in [8] that in [13] “it is conjectured that
(linear codes) are asymptotically optimal.”

We prove that vector linear coding is insufficient over the
general class of -modules, which includes as special cases fi-
nite fields, commutative rings with identity, and Abelian groups.
Thus, the result is not restricted to alphabet cardinalities which
are powers of primes, nor to linearity with respect to only a
finite field. In addition, we show that linear coding (over fi-
nite fields) is not sufficient even asymptotically using fractional
coding, as the ratio of message dimensions to edge dimensions
approaches one. (In fact, we show that, in our example network,
nonlinear network coding gives exactly 10% more capacity than
the maximum capacity achievable using linear coding over fi-
nite fields.) From this, we deduce that even convolutional or
filter-bank linear coding is not sufficient for network coding.3

Another form of “linearity” that one might consider (as sug-
gested by R. Yeung) consists of time sharing between linear
codes on different finite field alphabets. We note at the end of
Section IV that this form of linearity is not sufficient for our ex-
ample network either.

In what follows, the insufficiency of linear network codes is
shown for finite fields in Section II, for rings and modules in
Section III, and asymptotically for finite fields in Section IV.

We will often need to handle separately the cases of finite
fields with even cardinality (i.e., characteristic two) and odd car-
dinality (i.e., odd characteristic).

II. INSUFFICIENCY OF NETWORK LINEAR CODES OVER

FINITE FIELDS

In this section, we establish the existence of a solvable net-
work that has no linear solution over any finite field and any
vector dimension.

First we give a useful lemma (an alternative proof follows
from the max-flow bound, e.g., see [18, p. 328]).

Lemma II.1: Suppose a network has a message which is
demanded by a node and is produced by exactly one source
node . If there is a unique directed path from to , then the
coding capacity of the network is at most .

3Our proofs that linear codes are neither optimal for R-modules nor asymp-
totically optimal did not appear in the present paper until we submitted our revi-
sion in January 2005. (The quest for a proof based onR-modules was motivated
by a comment from one referee and for asymptotics by a question from another
referee.)
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Fig. 1. The network N has sources n , n , n emitting messages a, b, c,
respectively, and sinks n , n , n with demands c, b, a, respectively. Some
edges are labeled to their left to illustrate a scalar linear solution over any ring
alphabet with characteristic two (used in Lemma II.2), and edges are labeled
to their right with matrix coefficients M of an assumed solution used in Lem-
ma II.2.

Proof: Suppose there exists a fractional coding so-
lution over alphabet with . If all messages other than

are fixed, then each edge of the path from to can take
on at most different values. So can only decode at most

different values. But, so not every possible
message at can be decoded at , a contradiction.

Suppose we impose on a network code the constraint that
for every node with in-degree one, the out-edges must carry the
same symbol as the lone in-edge, and for every source with ex-
actly one message, the out-edges must carry the source’s lone
message. Then, it is easy to see that the network has a linear so-
lution under this constraint for a given vector dimension over a
given finite field if and only if the network has an unconstrained
linear solution for the same vector dimension and over the same
finite field. This fact is used implicitly in the proofs of Lemmas
II.2 and II.3 and Theorem II.4 by assuming the described code
constraint.

Denote by the network shown in Fig. 1.

Lemma II.2: The network has a scalar linear solution
over any ring with characteristic two, but has no linear solution
for any vector dimension over a finite field with odd character-
istic. Also, the coding capacity of is .

Proof: A scalar linear solution (as illustrated in Fig. 1) to
the network over any ring of characteristic two is given by
the following edge functions and sink decoding functions:

(any edge function not shown is assumed to be an identity map-
ping). Note that the fact that the alphabet is a ring with charac-
teristic two is used only in decoding the message at node
where .

Now, suppose the network has a linear solution over a finite
field with odd characteristic and some vector dimension .
Let be the identity matrix and for each and , let
be the vector carried on the edge from to . Then there exist

matrices with entries in (as illustrated in
Fig. 1), such that

(1)

(2)

(3)

(4)

(5)

(6)

Equating coefficients of , , in (5) and (6) gives

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

By (9) and (13), the matrices , , , , , are
invertible. Therefore, by (8), and hence,

(16)

by (11). This implies that the matrices and are in-
vertible. We have by (10), so matrices

and are invertible. Since
by (14), the matrices and are invertible. Since

by (7), the matrix is invertible. Thus, since
by (15), the matrix is invertible. So,

is invertible for all .
Now, we have

[from (10)]

[from (16)]

(17)
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Fig. 2. The networkN has sources n , n , n , n , n with messages a, b,
c, d, e, respectively. Sinks n through n each demand one of the messages,
as indicated. Some edges are labeled to illustrate a scalar linear solution over
any ring alphabet where 2 is invertible (used in Lemma II.3), and edges are
labeled to their right with matrix coefficients M of an assumed solution used
in Lemma II.3.

and

[from (12)]

[from (15)]

[from (8), (14)]

[from (16)]

(18)

But (17) and (18) imply that which is impossible in a
field with odd characteristic.

Finally, since has a scalar linear solution over GF , its
coding capacity (independent of alphabet size by Lemma I.1)
is at least . Since is the only node that produces message
and node demands message , and since there is a unique
directed path from to , the coding capacity of is at
most by Lemma II.1. Hence, the coding capacity of is
exactly .

Denote by the network shown in Fig. 2.

Lemma II.3: The network has a scalar linear solution
over any ring where is a unit, but has no linear solution for
any vector dimension over a finite field with characteristic two.
Also, the coding capacity of is .

Proof: A scalar linear solution (as illustrated in Fig. 2) to
the network over any ring where is invertible is given by
the following edge functions and sink decoding functions (any
edge function not shown is assumed to be an identity mapping):

Now, suppose the network has a linear solution over some
finite field of characteristic two and with some finite vector
dimension . Henceforth, let denote addition in . We can
write

(19)

(20)

(21)

(22)

(23)

where each is a matrix with elements in , and
the messages , , , , are -dimensional vectors. Equations
(21)–(23) come from the demands at sinks , , . Let
be the identity matrix over . Equating coefficients of ,
, in (21)–(23) gives

(24)

(25)

(26)

(27)

(28)

(29)

(30)

where minus signs have been omitted since the finite-field al-
phabet has characteristic two. Equation (24) implies that

are invertible. Since the right-hand sides of (25)–(30) are invert-
ible, the left-hand-side matrices

must also be invertible. So is invertible for all . Thus,

[from (25), (26)]
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Fig. 3. The networkN has sources n , n , n , n , n with messages a, b, c, d, e, respectively. Sinks n through n each demand one of the messages, as
indicated. Some edges are labeled to illustrate a nonlinear solution over an alphabet of size 4 (used in Theorem II.4).

[from (27), (28)]

[from (29),(30)]

and therefore,

Finally

so

(31)

Hence, for any message assigned to , if the messages
and are assigned to and , respectively,

then , by (19) and (20), and therefore,
by (31). A similar argument shows that, for any

message assigned to , there exist messages that can be assigned
to and that result in .

Thus, for every message vector assigned to , there exist as-
signments of messages to , , , such that all six inputs

to node are zero. This contradicts the assumption that the
demand at node can be recovered, since is not uniquely
determined by the node’s inputs.

Finally, since has a scalar linear solution over GF , its
coding capacity (independent of alphabet size by Lemma I.1)

is at least . Since is the only node that produces message
and node demands message , and since there is a unique
directed path from to , the coding capacity of is at
most by Lemma II.1. Hence, the coding capacity of is
exactly .

Denote by the network shown in Fig. 3, with nodes
. In the network, the left-most part is the

network (with sinks , , ) and the rest of is the
network.

Theorem II.4 shows that linear network codes are insufficient
over finite-field alphabets.

Theorem II.4: There exists a solvable network that has no
linear solution over any finite field and any vector dimension.

Proof: The proof is achieved with , which combines
networks and . Lemmas II.2 and II.3 show that network

does not have a vector linear solution over any finite-field
alphabet.

We now demonstrate a solution to the network over an al-
phabet of cardinality , as indicated in Fig. 3. The symbols
and indicate addition and subtraction in the ring of in-
tegers modulo , the symbol indicates addition in the ring

(i.e., bitwise XOR), and indicates the result of
exchanging the order of the bits in a 2-bit binary word . We
represent the elements of the alphabet either as members of
when using or , or as elements of (i.e., 2-bit binary
words) when using or . Note that the functions and
are linear over but not over GF or , the function

is linear over and GF but not over , and the
function is not linear over any of these. The demands are
met as follows:
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In decoding at node , we used the fact that if the 2-bit
binary representation of is , then the following binary
representations also hold:

Corollary II.5: The coding capacity of the network is .
Proof: By Theorem II.4, the network is solvable and

therefore the coding capacity is at least (independent of the
alphabet size by Lemma I.1). Since is the only node that pro-
duces message and node demands message , and since
there is a unique directed path from to , the coding ca-
pacity of is at most by Lemma II.1. Hence, the coding
capacity of is exactly .

III. INSUFFICIENCY OF NETWORK LINEAR CODES OVER

RINGS AND MODULES

In this section, we start by showing how to extend nonsolv-
ability over finite fields to nonsolvability over finite commuta-
tive rings with identity. Whereas finite fields are uniquely char-
acterized up to isomorphism by their cardinality, the same is not
true of rings. Such rings exist for every cardinality and often in
many different forms. For a given finite alphabet, the linearity of
a network code can be considered with respect to any commuta-
tive ring with identity whose cardinality is the same as that of the
alphabet. The lack of inverses in a ring does not prevent the use
of linear network codes. In fact, consideration of rings increases
the variety of codes to choose from and also allows linear codes
over arbitrary alphabet sizes, instead of only powers of primes.

Theorem III.1: If a network does not have a linear solution
over any finite field in dimensions, then it does not have a
linear solution over any finite commutative ring with identity in

dimensions.
Proof: Let be a finite commutative ring with identity

and a maximal ideal in . Consider an arbitrary network with
a linear solution over the ring in dimension . We will show
that the linear ring solution induces a linear solution over the
quotient field in dimension .

To do this, we need to redefine the edge functions and demand
functions for the new alphabet . Let

be the ring homomorphism defined by

Since the solution is presumed to be linear, all edge functions
and demand functions are linear combinations of their input vec-
tors, where the linear combinations’ constant coefficients are
matrices over . We replace each entry of each such matrix
and of each node’s input vectors by its image under . This
clearly gives us linear edge functions and linear demand func-
tions under the new alphabet . We need only show that the
demands are met.

Since the map is surjective, each message vector in the
new alphabet has a corresponding message vector in
the original alphabet , satisfying . It follows by in-
duction that along every edge, if is the vector carried by the
new coding and is the vector carried by the old coding, then

(component-wise). This is because addition and mul-
tiplication are preserved by ring homomorphisms.

In particular, each sink will recover its demands in , and
the new code is linear over the field . Thus, the new network
has a linear solution.

Thus, since a linear solution over any finite commutative ring
with identity induces a linear solution over some finite field, if
no linear solution exists over any finite field, then there cannot
possibly be any linear solution over any commutative ring with
identity.

The next corollary follows immediately from Theorem II.4
and Theorem III.1. The corollary establishes that linear network
codes are insufficient over a class of rings that includes finite
fields.

Corollary III.2: There exists a solvable network such that for
every vector dimension there is no linear solution over any finite
commutative ring with identity.

In [11], solvable networks were given, whose minimum al-
phabet size required for a solution could be made arbitrarily
large. By combining such a network with the network used
in the proof of Theorem II.4 (i.e., taking the disjoint union of
them) one obtains a solvable network with no linear solution
for any vector dimension and an arbitrarily large minimum al-
phabet size for a solution. From this fact and Corollary III.2, we
immediately obtain the following corollary.

Corollary III.3: For each , there exists a solvable net-
work which has no scalar solution for any alphabet of cardinality
smaller than , and such that for every vector dimension there is
no linear solution over any finite commutative ring with identity.

We can talk about linearity in even more generality than the
above, if we are willing to separate the set of coefficients al-
lowed in linear functions from the set of inputs to the linear
functions (the set of messages). For example, it makes sense to
talk about linear functions over any Abelian group if we re-
strict the coefficients of those functions to be integers, because

makes sense for any integer and any element of . Or we
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can let the set of coefficients be any field and let the message
set be any vector space over .

If we generalize the definition of vector space to use a ring
instead of a field , we get what are called -modules. For any
ring , an -module (or, more specifically, a left -module) is
an Abelian group together with an action of on (i.e., a
mapping from to ), denoted here by concatenation:
is the result of ring element acting on group element . This
action must satisfy the analogues of the usual vector space laws:
for any and , we have

(the first here is the ring zero and the second is the group
zero). If is a ring with identity , then we also require that

for all .
This generalizes the two previous examples; any Abelian

group is a -module under the obvious action of the integers
on the group by repeated addition, and any vector space over a
field is an -module.

The notions of scalar linear solution and (vector) linear so-
lution for a network now easily generalize to the context of an

-module . For a scalar -linear solution over , the set of
messages to select from is , and each edge function or de-
coding function must be an -linear function (i.e., one of the
form

where are fixed elements of ). For an -linear so-
lution of vector dimension , the set of messages is and the
edge and decoding functions are such that each component of
the output vector is a fixed -linear combination of the compo-
nents of the input vectors.

Any ring is itself an -module acting on itself by left multi-
plication, so module linearity includes ring linearity as a special
case.

Note that if is a ring and is an -module, then ,
the set of matrices over with matrix addition and mul-
tiplication defined in the usual way, is a ring (with identity if
has an identity) and is an -module, and any -dimen-
sional -linear solution over becomes a scalar -linear
solution over . So, in this very general context, (vector) linear
solvability gives no more generality than scalar linear solvability
(on a larger module).

Theorem III.4: There exists a solvable network that does not
have an -linear solution over for any ring , any finite

-module with more than one element, and any vector di-
mension.

Proof: The network will again prove the assertion.
First, by the remark preceding the theorem, it will be enough to
show that, for any ring and any finite -module with more
than one element, there is no scalar -linear solution over .

Next, we may restrict ourselves to the case where acts faith-
fully on ; that is, if are such that for all

, then . For suppose we have and as in the
hypotheses of the theorem so that there is a scalar -linear so-
lution over for the network . Let be the set of all
such that for all . It is easy to see that contains

and is closed under addition; it is also true that, if and
, then and are in , because

and for all . So is a two-sided
ideal in , and we can form the quotient ring . We
define an action on by the formula

for all and ; this is well defined, since by the
definition of , it does not matter which member of the coset

is chosen. It is easy to see that acts faithfully on . And,
just as in the proof of Theorem III.1, a scalar -linear solution
to the network yields a scalar -linear solution to the network;
we simply have to replace each coefficient in the edge and
decoding functions with . (The message group does not
change.) Hence, if there is a scalar linear solution, then there is
a scalar linear solution in a module where the action is faithful.
So assume faithfulness from now on.

If we have a scalar -linear solution over , then for each
demand at a sink node we get an equation of the form

where are the source messages and is the
composition of decoding and edge functions given by the
specified solution; this equation must hold for all choices of

from . Now will be -linear, so we can
write

with coefficients from . Since the decoding
must in particular be correct when all messages other than

are zero, we have for all . So has
an element such that for all ; because of
faithfulness, this element is unique. For any and ,
we have and ; hence,

by faithfulness. Also, if is a nonzero element of
, then , so . Therefore, is in fact

a ring with identity.
Faithfulness states that different elements of yield dif-

ferent functions from to . Since is finite, the
number of such functions is finite, so must be finite.

We now make use of the following fact: in a finite ring
with identity , if , then . This result and much
more general versions can be found in the literature (see, e.g.,
Jacobson [7]), but the simple version here can be proved quickly
as follows. If , then the map from to defined
by is one-to-one, because means

, which implies and hence . Hence,
since is finite, must be onto, so there exists in such
that , or . Now we have ,
so . (The authors thank Daniel Goldstein for this clean
proof of the result and Lance Small for the reference.)

So, in , any left inverse is a two-sided inverse and so is any
right inverse. If it exists, the two-sided inverse of is unique
(because and imply )—call it ,
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and say that is invertible. If , then and exist by
the above, but also exists, because we have .

We can now follow the proofs in the preceding section almost
verbatim, changing “matrix” to “member of ” and so on. (The
faithfulness of the -action allows us to conclude from “
for all ” that , or from “ for all ” that

.) The division into cases will be on whether in
the final ring (or, equivalently, whether for all in

). If , then the proof of Lemma II.2 shows that
does not have a scalar -linear solution over . If ,
then the proof of Lemma II.3 shows that does not have a
scalar -linear solution over . Therefore, in all cases, does
not have a scalar -linear solution over , so we are done.

Since any ring is itself an -module, we get the following.

Corollary III.5: Corollaries III.2 and III.3 remain true if “fi-
nite commutative ring with identity” is replaced with “finite ring
with more than one element.”

IV. ASYMPTOTIC INSUFFICIENCY OF NETWORK LINEAR CODES

OVER FINITE FIELDS

Throughout this section, is a finite field, all matrices have
entries in , denotes the identity matrix for each ,
and denotes the vector carried on the edge from a node
to a node , where and are two adjacent nodes in some
given network. Without loss of generality, we will assume that
the first components of each out-edge of a source consist of
the components of the corresponding source message. Also,
we can assume that the out-edges of any node with in-degree
are copies of the in-edge to the node (see the discussion before
Lemma II.2). The following notation will be used in proofs in
this section.

Notation: Let the network messages be denoted by
. For and , let

and be linear functions where
. We use the notation

to indicate that there exist matrices such that for all

Intuitively, the definition says that if a network node can lin-
early compute then it is also able to linearly compute

. (We will often arrange the terms on the left of
vertically for ease of readability.) Note that is transitive.

Lemma IV.1 (e.g., see [16, p. 124]): If and
are linear maps, then

The next lemma follows immediately from Gaussian
elimination.

Lemma IV.2: If is an matrix of rank , then there
exists an invertible matrix such that

Theorem IV.3: The linear coding capacity of network is
over any odd-characteristic finite field and is over any

even-characteristic finite field.
Proof: If the alphabet is a finite field of characteristic

two, then a scalar linear solution (i.e., with ) is
guaranteed by Lemma II.2. Thus, the linear coding capacity of

is at least for even . Also, the linear coding capacity
is upper-bounded by the coding capacity, which equals by
Lemma II.2. Thus, the linear coding capacity of is if
is even.

Henceforth in the proof, assume the alphabet is a finite field
with odd characteristic. Suppose there exists a fractional
linear solution for over . First we show in general that
cannot exceed and then we demonstrate a specific linear
code which achieves .

Since the coding capacity of is by Lemma II.2, we may
assume , for otherwise the linear coding capacity would
exceed the coding capacity.

Let

By supposition, there exist matrices , , , ,
; matrices , , ; matrices , ,
, , ; and a matrix with entries in , such

that (1)–(15) are satisfied. Henceforth, the only properties we
will use will be (1)–(15).

We will write each matrix in terms of a matrix ,
a matrix , a matrix , and a matrix , as

If is , then and are omitted; if is , then
and are omitted.

Claim: We may assume without loss of generality that

Proof of Claim: Since we have and
from (13) and (9), Lemma IV.1 gives

and . Hence, by Lemma IV.2 we
can find invertible matrices and such that

Define the following matrices:

and suppose a new fractional linear code is formed by
replacing each matrix , , , , , , , and
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in the assumed fractional linear solution by the corresponding
matrix with a prime notation. It is easy to see from (1)–(6) that
the new code is also a solution, and the new and satisfy

(which we will henceforth assume).
Now we can apply Lemma IV.1 to (13) and (9) again to get

Hence, we can find invertible matrices and such
that

Define the following matrices

and replace , , , , , , , and by
the corresponding matrices with prime notation. Again, the new
code is also a solution, and we now have

But since and , we have

so

Thus, in general, if there is a fractional linear solution to
, then there is also a fractional linear solution with the

claimed constraints on , , , and .

We have

[from (1)] (32)

[from (2)] (33)

[from (5)]

[from (3), (32), (33)]

(34)

where

Claim: We may assume without loss of generality that
and .

Proof of Claim: Define the following matrices:

(35)

and note that

(36)

Since appears only once on the right-hand side of (34), it must
be the case that . So from (35) we have and

.
Now suppose we replace , , , by , ,

, , respectively, and for each and let be the re-
sulting vector carried on edge . Then we have

(37)

and thus,

[from (3)]

[from (36)–(37)]

[from (3)]

A similar argument shows

These facts imply that we still have a linear solution to the net-
work. Also note that the assumptions from the first claim remain
true. So, if there exists a fractional linear solution to the
network, then there exists a fractional linear solution sat-
isfying and .

From (34) we obtain

which upon equating the terms containing yields

(38)

We have

[from (32)]

[from (2), (4)]

[from demand] (39)
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which implies is a linear combination of the terms on the
left-hand side of (39). The only such term containing an is

, so it must be the case that the linear
combination’s coefficient multiplying
is the identity matrix, and thus, we can conclude

(40)

Therefore, using (40) and the identity

gives

which, in turn, implies

(41)

Since the right-hand side of (41) has no terms and must be
written as a linear combination of the terms on the left-hand
side of (41), the term on the left-hand side of (41) must
have a zero matrix coefficient in the linear combination.
This implies

(42)

Now, we have

[from (38)] (43)

So

[from (43)]

[from (42)]

[from (38)]

which implies

(44)

In what follows, we use the fact that is invertible in an odd-
characteristic finite field (the inverse in GF is ).
The following relations hold:

[from (44)]

(45)

We have

[from (38)]

[from (32), (33)]

[from demand] (46)
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Since there are no terms in and must be written as a linear
combination of the terms on the left-hand side of (46), the term

on the left-hand side of (46) must have a zero
matrix coefficient in the linear combination, since is
the only term on the left-hand side of (46) containing a . This
implies

(47)

Thus, (45) and (47) together imply

which when combined with the fact that

gives

(48)

Thus, the two (independent) -dimensional vectors and are a
linear combination of the five terms on the left-hand side of (48).
Since the dimension of is and the dimension of
each of the four vectors

is , we must have

The notion of “dimension” here is in terms of the space of
values that can be taken on as the messages vary independently
over . Another way of phrasing this step is as follows. From
the left-hand side of (48), one can compute the right-hand side.
Therefore, the number of possible values for the right-hand side
is no larger than the number of possible values for the left-hand
side. There are possible values for the right-hand side and
at most values for the left-hand side, so

.
Finally, we show that (again with odd) there exists a

linear solution to which achieves . Specifically,
a fractional linear coding solution (see Fig. 4) for any al-
phabet which is a finite commutative ring with identity is given

Fig. 4. Some edges are labeled to illustrate a (4; 5) fractional linear solution
over any ring alphabet (used in Theorem IV.3).

by (where hyphenated subscripts indicate ranges of component
indices)

-

-

-

- -

- -

-

-

- -

-

- - -

- - -

- - -
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- - -

Theorem IV.4: The linear coding capacity of the network
is over any even-characteristic finite field and is over
any odd-characteristic finite field.

Proof: If the alphabet is an odd-characteristic finite field
, then a scalar linear solution (i.e., with ) is guaran-

teed by Lemma II.3. Thus, the linear coding capacity of is at
least for odd . Also, the linear coding capacity is bounded
above by the coding capacity, which equals by Lemma II.3.
Thus, the linear coding capacity of is if is odd.

Henceforth in the proof, assume the alphabet is a finite field
with characteristic two. Suppose there exists a fractional
linear solution for over . First we show in general that
cannot exceed and then we demonstrate a specific linear
code which achieves .

Since the coding capacity of is by Lemma II.3, we may
assume , for otherwise the linear coding capacity would
exceed the coding capacity. Let

and assume a fractional linear solution for with the
same labeling of ’s assumed in Lemma II.3.

Given any matrix over of rank , we can find an
matrix over such that

(Choose independent rows of , find more members
of which together with the rows form a basis of , and
let the rows of be these members of .) So we have

and

(49)

(since by Lemma IV.2, there exists an matrix

such that ). There is some flexibility in the

choice of that we will use later.
We have

[from (21)] (50)

[from (22)] (51)

[from (23)] (52)

and so

[from (50)] (53)

[from (51)] (54)

[from (52)] (55)

Also, since (24) gives , we have

(56)

(57)

Now, let , , correspond to , , as above.
Let be the list consisting of

and the corresponding five objects from the , , side of .

Claim: .
Proof of Claim:

[from (54)] (58)

[from (49), (58)] (59)

[from (55)] (60)

[from (49), (60)] (61)

Note that since has characteristic two

(62)

We get

[from (59), (61), (62)] (63)

[from (53), (63)]

[from (49), (64)] (64)

and so

(65)

The same reasoning on the other side of the network gives

(66)

Now, the decoding function at node gives

[from (65), (66)] (67)

[from (59), (67)] (68)

[from (56), (68)]

[from (61), (67)] (69)

[from (57), (69)]

[from same reasoning on other side of ]

(70)

As in the argument for , we can think of each -length edge
vector as one part of length followed by one part of length

, and break up the matrices accordingly, so

for

for
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Claim: We may assume without loss of generality that
and .

Proof of Claim: Since by (24), using
Lemma IV.1 we have

so . By Lemma IV.2, there exists an invert-
ible matrix such that

Replace

with

respectively; this will yield a new fractional linear solu-
tion, because the ’s will cancel the ’s, and the new

will be .

Now (from (24)) gives .

Claim: We may assume without loss of generality that
.

Proof of Claim: Let be the matrix

and replace

with

respectively. This is still a fractional linear solution,

is still , and is now .

Now let

(71)

From (50) and the fact that has characteristic two, we have

and thus

which implies . Therefore,

(72)

By (71), there exists a permutation matrix such that
the top rows of are independent. Therefore, each
of the bottom rows of can be written as a
linear combination of the first rows of the same matrix. Thus,
there exists a matrix whose right-most

columns form the matrix (and, therefore,
) such that

Let

and note that since

[from Lemma IV.1]

Define a matrix

and note that

Since , the rows of and the rows of are
jointly linearly independent. (If is a nontrivial linear combi-
nation of rows of , then ; if is a linear combi-
nation of rows of , then , so .) Therefore, we
may choose so that its first rows are . Similarly,
since and , we may choose so that
its first rows are . Now, in the left half of the list ,
the and the give entries each. The

and each give
entries, but the first entries from each of them are

and

which are the same; hence, these two together give only
new entries. Finally, by (72), the gives

only independent entries. Therefore, the left half of has
only

independent entries. The same applies to the right half, so has
at most independent entries. Therefore,

Finally, we show that (over any ring) there exists a frac-
tional linear solution to which achieves .
Specifically, a fractional linear coding solution is given
by (where hyphenated subscripts indicate ranges of component
indices)

-

-

-



2758 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 8, AUGUST 2005

-

-

-

-

- - -

- - -

Already known - - -

-

- - -

- -

The next corollary follows immediately from Theorems IV.3
and IV.4, and together with Corollary II.5 shows that the coding
capacity of (i.e., ) is exactly 10% greater than the maximum
linear coding capacity (i.e., ) over any finite field.

Corollary IV.5: The linear coding capacity of the network
is over any even-characteristic finite field and is

over any odd-characteristic finite field.

From this and Corollary II.5, we get the following.

Corollary IV.6: There exists a solvable network which is not
asymptotically linearly solvable. In other words, linear network
codes are asymptotically insufficient over finite fields.

Asymptotic insufficiency allows us to deduce results about
the extended linear coding methods known as convolutional
coding and filter-bank network coding (see [8] for the defini-
tions). This is because of the following simple result which
appears to be well known (it is just a variant of Lemma 8
from [8]):

Proposition IV.7: If a network is solvable by means of con-
volutional coding or filter-bank coding, then it is asymptotically
linearly solvable.

Proof: Both convolutional coding and filter-bank coding
use inputs and outputs that are (potentially) infinite sequences

of members of a finite field . They both have the feature that
there is a fixed nonnegative integer (the delay) such that, for
any , the coding will produce (in a linear way) the first
components of each output given only the first components
of each source message. Hence, for any , we can obtain a linear

fractional coding solution for the network as follows.
Each interior node will take inputs and produce
outputs on each output edge by the same procedure as would
have been applied in the first steps of the convolutional or
filter-bank code. A source node will be supplied with inputs
for each source message; it will append ’s and then simulate
what the convolutional or filter-bank code would do in the first

steps. Finally, the decoding operations will simulate the
first steps of the convolutional or filter-bank decoding
operations and then output only the relevant entries. Each of
these node operations is linear by the definition of convolutional
or filter-bank coding, and they form a solution because the given
coding scheme was a solution.

Since becomes arbitrarily close to as increases,
the network is asymptotically linearly solvable.

Therefore we get the following.

Corollary IV.8: There exists a solvable network which is not
solvable by means of convolutional coding or filter-bank coding.

A more general network coding model allows different rates
for different source messages. This corresponds to a collection
of source dimensions , where is the number
of messages. The linear rate region consists of the set of all
points in of the form

for which there exists a fractional linear
coding solution. See [18] for an alternate definition of such a
region. One might consider a form of “linear coding” where
linear codes on different finite-field alphabets are time shared.
This corresponds to taking the convex hull of the linear rate
region of a network.

It turns out that even this form of linearity is not sufficient for
our example network. To see this, note that for the network in
Fig. 3, each of the source messages , , , , is demanded by
at least one network node which can be reached by exactly one
directed path from the corresponding message. It follows easily
that any point in the linear rate region must
satisfy for all . But we must also have for at
least one , by Corollary IV.5. Hence, the sum must
be at most . This is true for any point in the linear
rate region, and hence for any point in the convex hull of the
region. Therefore, the point is not in this convex
hull or even in its closure. So time sharing different linear codes
will not allow us to achieve or even approach capacity for this
network.
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