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The 3/4 Conjecture for Fix-Free Codes With at
Most Three Distinct Codeword Lengths

Spencer Congero , Student Member, IEEE, and Kenneth Zeger

Abstract— The 3/4 conjecture was posed 25 years ago by
Ahlswede, Balkenhol, and Khachatrian, and states that if a
multiset of positive integers has Kraft sum at most 3/4, then
there exists a code that is both a prefix code and a suffix code
with these integers as codeword lengths. We prove that the
3/4 conjecture is true whenever the given multiset of positive
integers contains at most three distinct values.

Index Terms— Prefix codes, Kraft inequality, Huffman codes,
unique decodability.

I. BACKGROUND ON FIX-FREE CODES

ONE of the most intriguing unsolved questions in informa-
tion theory is the so-called “3/4 conjecture” for fix-free

codes. The conjecture was posed 25 years ago by Ahlswede,
Balkenhol, and Khachatrian, and states that if a multiset of
positive integers has Kraft sum at most 3/4, then there exists
a code that is both a prefix code and a suffix code with these
integers as codeword lengths. This conjecture is analogous to
the well-known fact that if a multiset of positive integers has
Kraft sum at most 1, then there exists a prefix code with these
integers as codeword lengths.

In this paper, we prove that the 3/4 conjecture is true
whenever the given multiset of positive integers contains at
most three distinct values.

Our proof technique is partially constructive and partially
existential, the latter approach relying on a random coding
argument, similar in spirit to that used in the classical channel
coding theorem of Shannon [60].

For any two binary words u and v, let uv denote their
concatenation. Let � denote the empty word, such that �u =
u� = u for any binary word u. Denote the binary alphabet by
A = {0, 1}. Let A0 = {�}, and for each n ≥ 1 let An denote
the set of all n-bit binary words. Also, let A∗ = ∪∞

n=0A
n be

the set of all finite-length binary words. For any sets S, T ⊆
A∗, denote their direct product by ST = {uv : u ∈ S, v ∈ T }.
Note that ∅T = T∅ = ∅ vacuously. For any binary word
u ∈ A∗, let |u| denote its length.

Manuscript received 7 December 2021; revised 7 August 2022;
accepted 14 October 2022. Date of publication 31 October 2022; date of
current version 16 February 2023.

The authors are with the Department of Electrical and Computer Engineer-
ing, University of California at San Diego, La Jolla, CA 92093 USA (e-mail:
scongero@ucsd.edu; ken@zeger.us).

Communicated by O. Ordentlich, Associate Editor for Signal Processing
and Source Coding.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TIT.2022.3218212.

Digital Object Identifier 10.1109/TIT.2022.3218212

A code is a finite subset of A∗, and a code’s elements are
called codewords. A word u ∈ A∗ is a prefix (respectively,
suffix) of a word v ∈ A∗ if there exists x ∈ A∗ such that
v = ux (respectively, v = xu).

A prefix code (respectively, suffix code) is a code for which
no codeword is a prefix (respectively, suffix) of any other
codeword. A fix-free code1 is a code that is both a prefix code
and a suffix code.

If C is a code, then CA∗ (respectively, A∗C) is the set of
all words having a prefix (respectively, suffix) in C.

A pattern is a code described by a string in {0, 1, A}∗.
The code consists of all possible words obtained by assigning
either 0 or 1 to each occurrence of A in the pattern’s string.
For example, 11A0A20 is a pattern that contains |11A0A20| =
23 = 8 strings, each of length 7, namely

{1100000, 1100010, 1100100, 1100110,

1110000, 1110010, 1110100, 1110110}.
Also note that the length-one patterns 0 and 1 are the sets {0}
and {1}, respectively.

The multiplicity of an integer in a multiset is the number
of occurrences of that integer in the multiset. If a multiset
of positive integers has distinct integers λ1, λ2, . . . with
corresponding multiplicities μ1, μ2, . . . , then the Kraft sum
of the multiset is the quantity�

n≥1

μn2−λn

and the Kraft sum of a code C is the quantity

K (C) =
�
u∈C

2−|u|.

Note that the Kraft sum of any pattern U ∈ {0, 1, A}p is
K (U) = |U |/2p, where |U | equals 2 raised to the number of
As in U .

As an example, the multiset {2, 3, 3, 4, 4, 4, 4} has distinct
lengths 2, 3, and 4, with corresponding multiplicities μ1 = 1,
μ2 = 2, μ3 = 4, and its Kraft sum is 1 · 2−2 + 2 · 2−3 +
4 · 2−4 = 1.

Variable length codes have been successfully used for
transmission and storage of information for at least 75 years.

1Fix-free codes have also been called “biprefix codes” (e.g., [7], [49], [50],
[51], [52], and [54]), “bifix codes” (e.g., [6], [8], [9], [10], [11], and [12]),
“affix codes” (e.g., [21] and [53]), “reversible variable length codes” (e.g.,
[5], [27], [30], [34], [45], [61], [63], [64], [65], [66], [67], [68], [69], [70],
[71], [72], [73], and [82]), and “never-self-synchronizing codes” (e.g., [23]).
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In particular, binary prefix codes have been the most com-
monly used variable length codes, and are widely embedded
in many practical communication systems, such as speech,
image, and video coding standards.

Prefix codes have been extensively studied and are well
understood both in theory and practice. The existence of prefix
codes with a given set of codeword lengths was characterized
by Kraft [43] in 1949, and an optimal construction algorithm
was given by Huffman [29] in 1952 that finds prefix codes with
minimum average length with respect to a source distribution.

A fix-free code is a special type of prefix code, namely one
that is also a suffix code. Fix-free codes have been studied for
primarily four reasons: (1) theoretical and algebraic proper-
ties; (2) data compression; (3) error correction; (4) sufficient
conditions for existence using Kraft-type inequalities.

Theoretical analyses of fix-free codes were originated in
1956 by Schützenberger [57] and in 1959 by Gilbert and
Moore [23]. Various other algebraic properties were given
from the 1960s to 1980s by Berstel and Perrin [7], Césari [16]
and [17], Leonard [47], Perrin [49], [50], [51], and [52],
Reutenauer [54], and Schützenberger [58] and [59], and more
recently by Berstel, Berthe, DeFelice, Dolce, Leroy, Perrin,
Reutenauer, and Rindone [8], [9], [10], [11], and [12], and
Gillman and Rivest [24].

A special case of a fix-free code is a palindromic (or
“symmetric”) code which is defined as a prefix code, all
of whose codewords are palindromes. Constructions of such
codes were considered in [1], [3], [26], [55], [61], [63], [64],
and [74].

In 1995, Takishima, Wada, and Murakami [61] studied
fix-free codes for providing error correction capability by
decoding both in the forward and reverse directions. Numerous
other studies applying such codes to error correction appeared
later (e.g., [5], [15], [22], [25], [27], [30], [34], [35], [45],
[46], [48], [62], [63], [64], [65], [66], [67], [68], [69], [70],
[71], [72], [73], and [82]). In fact, the practical application
of fix-free codes was adopted into international standards for
video compression, including ISO MPEG-4 [31] in 1998 and
ITU-T H.263+ [32] in 2000.

In terms of data compression, prefix codes achieving a min-
imum possible average length with respect to a given source
distribution are well known from Huffman’s algorithm [29].
For fix-free codes, the situation is a bit more complicated.
Some studies of this include [1], [33], [36], [37], [39], [41],
[42], [55], [74], [77], [80], and [81].

In addition to the practical use of fix-free codes for error
correction of variable length lossless codes, the foundational
theory of fix-free codes has been a topic of great interest.

In order for any variable length code to be useful, it
is generally required that it be uniquely decodable (UD),
which means that there is only one way to correctly parse a
concatenation of variable length codewords. Prefix codes are
always UD, and it is known that for every UD code, there
exists a prefix code with the same codeword lengths [18].
So there is no loss of generality in restricting one’s attention
from general UD variable length codes to prefix codes.

On the other hand, for the purpose of lossless data com-
pression, one would like the average codeword length to be as

short as possible, in order to reduce transmission and storage
costs. This assumes each codeword is assigned to represent a
particular outcome of a discrete source random variable. The
desire to have codes be UD and short on average are opposing
needs. That is, if a code is too short, it cannot also be UD.

The Kraft inequality makes this idea quantitatively precise.
Specifically, the Kraft inequality gives an upper bound of 1 on
the Kraft sum of a multiset of positive integers corresponding
to the codeword lengths of a prefix code. In other words, as
long as this upper bound is not violated, a prefix code exists
having those positive integers as its codeword lengths. In fact,
the converse to the Kraft theorem is also true, namely that the
Kraft sum of the codeword lengths of any prefix code can be
at most 1.

For fix-free codes, a similar trade-off exists between having
short codeword lengths and being both a prefix and a suffix
code. An analogous question to the prefix code case asks for
the lowest possible upper bound on the Kraft sum of a multiset
of positive integers that would ensure the existence of a fix-free
code having those positive integers as its codeword lengths.
No improved converse can exist however, since fix-free codes
can indeed have Kraft sum equal to 1, such as a code consisting
of all codewords of a given length.

In 1996, Ahlswede, Balkenhol, and Khachatrian [4] showed
the weaker result that if the Kraft sum is at most 1/2, then
a fix-free code is guaranteed to exist with the corresponding
codeword lengths. They also showed the existence of a fix-
free code if the Kraft sum of the multiset of codeword lengths
is at most 3/4 and each integer in the multiset is at least
twice any smaller integer in the multiset. More generally, they
showed that any upper bound on the Kraft sum that ensures
the existence of a fix-free code cannot be larger than 3/4.
Perhaps most interestingly, the authors of [4] conjectured that
3/4 itself is in fact such an upper bound on the Kraft sum.
This is now commonly referred to as the “3/4 conjecture”,
and is stated next.

Conjecture I.1 (Ahlswede, Balkenhol and Khachatrian [4]):
If a multiset of positive integers has Kraft sum at most 3/4,
then there exists a fix-free code whose codeword lengths are
the elements of the multiset.

Since the 3/4 conjecture was made, numerous attempts to
prove it have failed. However, many interesting special cases
of the conjecture have been proven, which we review next.

In 1999, Harada and Kobayashi [28] proved that Conjec-
ture I.1 holds if the multiset contains at most two distinct
positive integers. Initially, they attempted to use a randomized
algorithm in their proof, but demonstrated that it is not
guaranteed to find the desired fix-free code. To achieve their
result, they used a deterministic algorithm. They were unable
to extend their methods beyond multisets containing at most
two distinct positive integers and, in fact, stated the following:

“However, finding a fix-free code for l1, . . . , ln
which consists of three or more different lengths
seems not to be always easy.”

In 2012, Savari, Yazdi, Abedini, and Khatri [55, p. 5121]
proved, among other things, one special case of Conjecture I.1
where the given multiset has three distinct values. In particular,
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their result is limited to the case where the smallest such value
is 2 and appears exactly once, and the remaining two values
have further specific restrictions. The authors also stated the
following that acknowledges the Harada-Kobayashi result for
multisets with two distinct values and confirms the difficulty of
proving Conjecture I.1 for multisets containing three distinct
values:

“The progress on the 3/4 conjecture has been slow
even over binary code alphabets. One of the early
results [by Harada-Kobayashi] is that the 3/4 con-
jecture holds for length sequences (l1, . . . , ln) for
which li ∈ {λ1, λ2} for all i. The case where
li ∈ {λ1, λ2, λ3} is only partly understood.”

It is precisely the proof of Conjecture I.1 for at most three
distinct integers that we achieve in the present paper (in our
Theorem II.1).

In 2001, Ye and Yeung [75] proved that Conjecture I.1 holds
when the multiset values do not exceed 7. They also proved
the weaker result that a fix-free code exists when the multiset
contains the integer 1 and the Kraft sum is at most 5/8.

In 2001, also Yekhanin [76] gave a proof sketch that
Conjecture I.1 holds in two different cases: (1) when the
multiset values do not exceed 8; or (2) when the Kraft sum of
the submultiset of is and (i+1)s is at least 1/2, where i is the
smallest integer in the multiset. A special case of this second
result is stated as the following theorem, which we use as one
component of our main result, Theorem II.1. Theorem I.2 is
proved in more detail in Yekhanin’s unpublished notes in [78].

Theorem I.2: Conjecture I.1 holds when the Kraft sum of
the multiset of smallest length words is at least 1/2.

In 2004, Yekhanin [77] also proved Conjecture I.1 holds
when the Kraft sum is at most 5/8.

In 2005, Kukorelly and Zeger [44] proved that Conjec-
ture I.1 holds in two different cases: (1) when the minimum
integer i in the multiset is at least 2, and no integer in the
multiset, except possibly the largest one, occurs more than
2i−2 times; or (2) when every integer in the multiset, except
possibly the largest one, occurs at most twice.

In 2007, Schnettler [56] (see also [19], [20], and [40])
gave a survey of sufficient conditions for the existence of fix-
free codes and generalized to nonbinary alphabets the result
described above in [44]. He also expanded the proof sketch
given in [76] to a more general version of Theorem I.2, and
proved several specialized cases of Conjecture I.1.

In 2008, Khosravifard and Gulliver [38] further studied and
improved the algorithm used by Harada and Kobayashi [28] to
establish Conjecture I.1 for two-level integer multisets. They
experimentally showed that their algorithm tends to almost
always find fix-free codes, when they exist, for multisets
containing at most 30 integers, with two or more distinct
values.

In 2013, Aghajan and Khosravifard [2] calculated the
fraction of cases covered by Yekhanin’s result (2) in [76].

In 2015, Bodewig [13], [14] proved several special cases of
Conjecture I.1 for infinite multisets.

Today, there still remains an infinite number of unsolved
cases of Conjecture I.1.

II. SUMMARY OF THE MAIN RESULT

Our main result covers an infinite number of new cases
not previously known in the literature, and is summarized in
Theorem II.1.

Theorem II.1: Conjecture I.1 is true whenever the multiset
contains at most three distinct integers.

Proof: By Lemma V.1, it suffices to prove the result
when the Kraft sum is exactly 3/4. If the multiset contains
only one distinct integer λ1, then any subset of Aλ1 of size
μ1 = 3 · 2λ1−2 will give the desired fix-free code. If the
multiset contains exactly two distinct integers, then the result
is known by [28] (see also our Theorem III.1).

Suppose the multiset contains exactly three distinct integers,
which, in increasing order, are λ1, λ2, λ3, with nonzero
multiplicities μ1, μ2, μ3, respectively, and such that

μ12−λ1 + μ22−λ2 + μ32−λ3 = 3/4.

Theorem I.2 implies that Conjecture I.1 holds when
μ12−λ1 ≥ 1/2, so it suffices to assume μ12−λ1 ≤ 1/2, in
which case the proof follows from our following three results:

• Theorem VI.2, i.e., when μ12−λ1 ≤ 1
2 and

μ22−λ2 ≤ 1
4

• Theorem VII.2, i.e., when μ12−λ1 ≤ 1
2 and

1
4 ≤ μ22−λ2 ≤ 1

2

�
1 − μ12−λ1

�
• Theorem VIII.1, i.e., when μ12−λ1 ≤ 1

2 and
1
2

�
1 − μ12−λ1

� ≤ μ22−λ2

These theorems are stated and proven in Sections VI, VII, VIII,
respectively. If λ1 = 1, then μ1 = 1, so Theorem I.2 applies.
Thus, for each of Theorems VI.2, VII.2, and VIII.1, it suffices
to assume λ1 ≥ 2. Throughout the proofs of these three
theorems, we will use the following transformed quantities:

n = λ1 − 1
l = λ2 − λ1 + 1
k = λ3 − λ1 + 1. (1)

The main idea used in proving Theorems VI.2, VII.2,
and VIII.1 is to build sets of codewords of the three desired
lengths so that none of the shorter words is a prefix or suffix
of any longer word.

The codewords of the shortest length λ1 will be elements
of the set U1A

n, where U1 = 0. The set of codewords of the
middle length λ2 will be a union of at most three sets of the
form U2A

l−2U3A
n, where U2 and U3 are two fixed bits. Since

λ1 = n + 1, the conditions U1 �= U2 and U2 = U3 ensure any
word from U2A

l−2U3A
n will not have a length-λ1 prefix or

suffix from U1A
n. Additionally, even if U1 = U2 or U1 = U3,

we will still be able to choose codewords of length λ2 as long
as these words avoid having prefixes or suffixes among the
codewords from U1A

n.
Once the codewords of lengths λ1 and λ2 are constructed

with the correct multiplicities μ1 and μ2, and with no offend-
ing prefixes or suffixes, we then carefully construct enough
codewords of length λ3 to make the total Kraft sum equal
3/4, while avoiding prefixes and suffixes from codewords of
lengths λ1 and λ2.
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During this construction, the locations in words of length
λ3 of the fixed bits U1, U2, and U3 (which are fixed in words
of lengths λ1 and λ2) play an important role in our ability
to avoid prefixes and suffixes of words of lengths λ1 and λ2.
There are three possible “overlap cases” that are separately
considered, depending on how much overlap there is between
the prefix and suffix of length λ2 in a codeword of length λ3.
The three cases are illustrated in Figure 1, and correspond to
whether the value λ2 − λ1 is less than, equal to, or greater
than, λ3 −λ2, An equivalent condition, using the terminology
from (1), is whether the value 2l − k is less than, equal to,
or greater than 1.

In Overlap Case 1, the fixed bits U2 and U3 of the
length-λ2 prefixes and suffixes do not coincide, and also the
length-λ2 prefixes do not overlap the length-λ2 suffixes in their
first l positions. In this case, length-λ3 codewords are drawn
from sets of the form

Z1A
l−2Z2A

k−2lZ3A
l−2Z4A

n

for some subset of the 16 possible assignments of
(Z1, Z2, Z3, Z4). In Overlap Case 2, the fixed bit U3 in length-
λ2 prefixes of length-λ3 codewords coincides with the fixed
bit U2 in length-λ2 suffixes of such length-λ3 codewords.

In this case, length-λ3 codewords are drawn from sets of
the form

Z1A
l−2Z2A

l−2Z3A
n,

for some subset of the 8 possible assignments of (Z1, Z2, Z3).
In Overlap Case 3, the fixed bits U2 and U3 of the
length-λ2 prefixes and suffixes do not coincide, but the
length-λ2 prefixes do overlap the length-λ2 suffixes in their
first l positions. It turns out that this latter property is a
source of complication throughout the construction. In this
case, length-λ3 codewords are drawn from sets of the form
Z1A

k−l−1Z3A
2l−k−2Z2A

k−l−1Z4A
n, for some subset of the

16 possible assignments of (Z1, Z2, Z3, Z4).
In all three cases, the codewords of length λ3 are randomly

selected from carefully designed patterns to avoid words of
lengths λ1 and λ2 as prefixes and suffixes. The proof of our
main result demonstrates that, on average, the random choices
of codewords of lengths λ1 and λ2 leave enough remaining
potential codewords of length λ3 to satisfy the Kraft sum
being 3/4 without violating the prefix or suffix conditions.
This bound on the average Kraft sum implies that there exists
at least one particular choice of words of the desired lengths
that forms a fix-free code and satisfies the requirements.

III. THE 3/4 CONJECTURE WITH

TWO DISTINCT LENGTHS

In order to illustrate aspects of our random coding technique
in a relatively simple example, we next prove Conjecture I.1
when the multiset of positive integers is restricted to having
only two distinct values. This result was originally given by
Harada and Kobayashi [28] using a different, and considerably
longer, proof.

Theorem III.1: Suppose a multiset of positive integers
consists of μ1 copies of λ1 and μ2 copies of λ2, such that
λ1 < λ2 and μ12−λ1 + μ22−λ2 ≤ 3/4. Then there exists a

fix-free code with μ1 codewords of length λ1 and μ2 code-
words of length λ2.

Proof: Let F be a randomly chosen set of μ1 distinct
words of length λ1. Each word of length λ2 − λ1 is the
prefix of a unique word of length λ2 whose length-λ1 prefix
equals its length-λ1 suffix. So the number of such words is
2λ2−λ1 , and their Kraft sum is 2λ2−λ1 · 2−λ2 = 2−λ1 . The
probability that any such word does not have its common
length-λ1 prefix/suffix in F is 2λ1−μ1

2λ1 . On the other hand,
any word of length λ2 whose length-λ1 prefix and suffix differ
does not have a prefix or suffix in F with probability

2λ1 − μ1

2λ1
· 2λ1 − μ1 − 1

2λ1 − 1

(using Lemma V.6), and the Kraft sum of the set of such words
is (2λ2 − 2λ2−λ1) · 2−λ2 = 1− 2−λ1 . Therefore, the expected
Kraft sum of the set of length-λ2 words that have neither a
prefix nor suffix in F is

2−λ1 · 2λ1 − μ1

2λ1

+ (1 − 2−λ1) · (2λ1 − μ1)(2λ1 − μ1 − 1)
2λ1(2λ1 − 1)

=
3
4
− μ12−λ1 +

�
1
2
− μ12−λ1

�2

≥ 3
4
− μ12−λ1

≥ μ22−λ2 .

Thus, there exists at least one particular choice of F such that
there are at least μ2 words of length λ2 that have neither a
prefix nor suffix in F , i.e., there are then enough available
words of length λ2 to create the claimed fix-free code.

IV. OVERVIEW OF THE PROOF OF THE 3/4 CONJECTURE

WITH THREE DISTINCT LENGTHS

We give here a preview and high-level description of the
proof of the 3/4 conjecture with three distinct lengths (i.e., the
proof of Theorem II.1). In Sections VI–VIII, detailed proofs
are given, and some useful lemmas are given in Section V and
proven in the appendix.

The random coding method illustrated in the proof of
Theorem III.1 for two distinct lengths plays an important
role in the case of three distinct lengths, but significant
complications arise when trying to avoid prefixes and suffixes
in the words of longest length. To avoid such prefixes and
suffixes in our constructions, we assign fixed values to certain
bit locations in the chosen words of all three lengths, which
in turn does make the analysis based on random coding more
difficult. Also, the method in the proof of Theorem III.1 of
counting each length-λ2 word whose length-λ1 prefix is also
a suffix does not work when there are bits with fixed values,
as in the proofs with three distinct lengths, so we instead
develop a more widely applicable result that is proven in our
Lemma V.3. As a result, the proofs provided in subsequent
sections are substantially longer and more complex than that
of Theorem III.1.
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Fig. 1. Three cases of code word overlap. The three word lengths illustrated are λ1, λ2, and λ3. The bit positions U1, U2, U3 correspond to certain fixed
bits in patterns of length λ1 and λ2, and the bit positions Z1, Z2, Z3, Z4 represent fixed bits in patterns of length λ3. These fixed bit positions are used to
avoid prefixes and suffixes in order to create a fix-free code.

Explicitly constructing the needed numbers of strings of
lengths λ1, λ2, and λ3 appears to be a difficult task, so we
chose an alternative approach that randomly chooses such
strings according to certain rules that maintain the prefix/suffix
conditions. The construction process chooses the correct num-
ber of strings of lengths λ1 and λ2 and then we show that on
average there remains enough strings of length λ3 to complete
the process.

The proof of Theorem II.1 is broken into three main cases,
depending on the values of the Kraft sum components μ12−λ1

and μ22−λ2 . The three cases are:

(1) μ12−λ1 ≤ 1
2 and μ22−λ2 ≤ 1

4

(2) μ12−λ1 ≤ 1
2 and 1

4 ≤ μ22−λ2 ≤ 1
2

�
1 − μ12−λ1

�
(3) μ12−λ1 ≤ 1

2 and 1
2

�
1 − μ12−λ1

� ≤ μ22−λ2 .

The third main case is broken into the following four subcases:

(a) λ2 ≥ 2λ1 (i.e., n ≤ l − 2)

(b) λ2 < 2λ1 (i.e., n > l − 2) and 1
4 ≤ μ12−λ1 ≤ 1

2

(c) λ2 < 2λ1 (i.e., n > l − 2) and μ12−λ1 < 1
4 and

1
4 ≤ μ22−λ2 ≤ 1

2

(d) λ2 < 2λ1 ( i.e., n > l − 2 ) and μ12−λ1 < 1
4 and

1
2 < μ22−λ2 .

Each of the main cases (1) and (2) and the subcases (3a)–(3d)
are further divided into the three overlap cases illustrated in
Figure 1, namely:

• λ2 − λ1 < λ3 − λ2 (i.e., 2l − k < 1)
• λ2 − λ1 = λ3 − λ2 (i.e., 2l − k = 1)
• λ2 − λ1 > λ3 − λ2 (i.e., 2l − k > 1).
Within each overlap case of each main case or subcase,

specific definitions are given of the three sets F1, F2, and F3.
These are the sets containing codewords of lengths λ1, λ2,
and λ3, respectively. Our construction chooses these three sets
using various randomizations, and we show that in each case,
on average, there are enough codewords to correctly populate
the sets without violating the prefix or suffix conditions. Once
this step is accomplished, we then conclude that there must
be at least one (non-random) code with the correct sizes of
F1, F2, and F3, and without violating the prefix or suffix
conditions.

• Constructing F1:
In all cases and subcases we define F1 = 0An − C,

where C is a set of size 2n − μ1 chosen randomly from
certain subsets of 0An. In other words, we construct
F1 by starting with all binary strings of length n + 1
that start with 0, and then we delete in a random way
enough of those strings to leave exactly μ1 remaining.
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The motivation behind this definition of F1 is that when
we construct larger codewords of lengths λ2 and λ3, they
can avoid having length-λ1 codewords as prefixes by
having a 1 in their leftmost position or having a word
in C as a prefix, and they can avoid having length-
λ1 codewords as suffixes by having a 1 in position
n + 1 from the right or having a word in C as a suffix.

In the main cases (1) and (2) and the subcase (3a),
we choose C uniformly at random from among the
2n−1 length-λ1 strings of 0An. For these cases, the
construction of F1 is equivalent to simply choosing μ1

elements at random without replacement from 0An.
In subcase (3b), we choose C uniformly at ran-

dom from among the 2n−1 length-λ1 strings of
0Al−21 An−l+1. In other words, in this case F1 is
constructed by randomly deleting enough strings from
0An containing a 1 in the lth position to leave exactly
μ1 strings remaining.

In subcases (3c) and (3d), since μ12−λ1 < 1
4 the

value of μ1 is smaller than in case (3b), so the random
set C must be made larger than in (3b). So we choose
C to have all 2n−1 strings in 0Al−21 An−l+1 together
with 2n−1−μ1 strings chosen uniformly at random from
0Al−20 An−l+1. In other words, in these cases F1 is
constructed by deleting all strings from 0An that contain
a 1 in the lth position and also randomly deleting enough
strings from 0An that contain a 0 in the lth position to
leave exactly μ1 strings remaining.

• Constructing F2:
The construction of F2 requires that F2 has μ2 strings,

each of length λ2, and that none of these strings contains
a prefix or suffix in F1.

Notice that each word in 1Al−21 An avoids both
prefixes and suffixes from F1. There are 2n+l−2 = 1

42λ2

such words available for F2, and each is of length
n+l = λ2. For main case (1), this number of codewords is
sufficient since μ2 ≤ 1

42λ2 , but for main cases (2) and (3)
more codewords are needed of length λ2 since μ2 > 1

42λ2

in those cases. In these two cases, one way to increase
the number of codewords of length λ2 is to include in F2

some words from 0Al−21 An or 1Al−20 An, and then
require such words to have a prefix or suffix, respectively,
from C, in order to avoid prefixes or suffixes from F1.

When constructing F2, we make use of a new set D
which is chosen uniformly at random from one of the
four sets:

1Al−21An

0Al−21An

1Al−2C

CAl−1.

In all cases except (3d), the words in set D are avoided
when constructing F2, which allows words of length λ3 to
have prefixes or suffixes from D in the construction of
F3. In contrast, in case (3d) we add words from D
when constructing F2, and then avoid such words in
constructing F3.

Table I shows for each main case, subcase, and overlap
case which of the four sets D is chosen from, how many
words D contains, and the exact definition of F2. The
precise usage of these quantities will become apparent
in the detailed proofs given in Sections VI–VIII. The
involvement of D for constructing F2 in each case allows
sufficient codewords of length λ2 while avoiding prefixes
and suffixes from F1.

• Constructing F3:
Our general strategy for constructing the set F3 is to

form a union of subsets of Ak+n, where each subset
obeys certain constraints (according to which overlap case
is being considered) that prevent prefixes or suffixes from
F1 or F2. Each subset in such a union is an intersection of
two specially constructed sets Yp,q and Wr,s over various
binary values of p, q, r, s, specified by an index set I.
The intersection of Yp,q and Wr,s produces a pattern that
falls into one of three specific forms, as seen in the third
column of the Table II. The patterns are designed based
on the locations of the bits Z1, Z2, Z3, Z4 in Figure 1.
By controlling the values of these four bits we prevent
the strings in F3 from having prefixes and suffixes in
F1 and F2. The sets Yp,q regulate prefixes and the sets
Wr,s regulate suffixes.

Table II summarizes the construction of F3 and the
pattern used for each overlap case.

These constructions of the random set F3 are used for
all cases, except for main case (3d), where a slightly
different construction is used.

The proofs in Sections VI–VIII calculate the average size
of F3 and show that it is at least μ3. This ensures that there is
at least one (deterministic) instance of the random sets C and
D that guarantees a (deterministic) instance of the set F3 with
at least μ3 elements, and this instance of F3 can be pruned
back to have exactly μ3 elements.

V. LEMMAS ABOUT KRAFT SUMS

This section gives many technical lemmas used to prove the
main theorems in the sections to follow. Most of the proofs
of the lemmas in this section can be found in the appendix.

For any set S ⊆ A∗, the indicator function 1S : A∗ →
{0, 1} is defined by

1S (x) =

�
1 if x ∈ S

0 else.

Lemma V.1: If a multiset of positive integers has Kraft sum
less than 3/4, then the multiplicity of its largest value can be
increased to make the Kraft sum equal to 3/4.

Some basic facts about Kraft sums will be
used throughout this paper. As some examples:
(i) if S and T are disjoint codes, then
K (S ∪ T ) = K (S) +K (T ); (ii) if S and T are codes and at
least one of them is fixed length, then K (ST ) = K (S)K (T );
(iii) K (An) = 1 for all n ≥ 1; and (iv) K (0) = K (1) = 1/2.
Two consequences of these facts are given in the following
lemma.
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TABLE I

SETS F2 AND D FOR ALL OVERLAP CASES AND SUBCASES USED IN THE PROOF OF THEOREM III.1

TABLE II

SET F3 AND CORRESPONDING PATTERN FOR ALL OVERLAP CASES USED IN THE PROOF OF THEOREM III.1

Lemma V.2:

(i) If p1, . . . , pn are nonnegative integers and u1, . . . , un ∈
A∗, then

K (u1A
p1u2A

p2 . . . unApn) = 2−(|u1|+···+|un|).

(ii) If S is a code and T is a fixed-length random code, then
E[K (ST )] = K (S)E[K (T )].

Let m ≥ l ≥ 1 be integers, and let U ∈ {0, 1, A}m. Define
Rl(U) ⊆ Am to be the set of words w ∈ U such that the l-bit
prefix of w equals the l-bit suffix of w.

The following lemma is used in many of the proofs of our
other lemmas.

Lemma V.3: Let U = U1U2 · · ·Um ∈ {0, 1, A}m and let
l ≤ m be a positive integer. Then the number of words in U
whose length-l prefix and suffix are the same is

|Rl(U)| =
m−l�
p=1

								



1≤i≤m
i≡p mod (m−l)

Ui

								 .
Three examples illustrating the usage of Lemma V.3 are

given next.

• Let U = 0A20A31 and l = 5. So m − l = 3. Then

U1 ∩ U4 ∩ U7 = 0 ∩ 0 ∩ A = 0
U2 ∩ U5 ∩ U8 = A ∩ A ∩ 1 = 1
U3 ∩ U6 = A ∩ A = A.

So |Rl(U)| = |0| · |1| · |A| = 1 · 1 · 2 = 2. The two words
in Rl(U) are 01001001 and 01101101.

• Let U = 0A20A21 A and l = 5. So m − l = 3. Then

U1 ∩ U4 ∩ U7 = 0 ∩ 0 ∩ 1 = ∅

U2 ∩ U5 ∩ U8 = A ∩ A ∩ A = A

U3 ∩ U6 = A ∩ A = A.

So |Rl(U)| = |∅| · |A| · |A| = 0 · 2 · 2 = 0.
• Let U = 1A21 A 1 A21 and l = 6. So m − l = 3. Then

U1 ∩ U4 ∩ U7 = 1 ∩ 1 ∩ A = 1
U2 ∩ U5 ∩ U8 = A ∩ A ∩ A = A

U3 ∩ U6 ∩ U9 = A ∩ 1 ∩ 1 = 1.

So |Rl(U)| = |1| · |A| · |1| = 1 · 2 · 1 = 2. The two words
in Rl(U) are 101101101 and 111111111.

A fixed point in a pattern X ∈ {0, 1, A}∗ is a position in
the pattern’s string whose value is not equal to A.
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We will say that a randomly generated set of words of a
given length is of a fixed size if the set is chosen according to
some probability distribution on all sets of the same cardinality
that contain words of the given length.

Lemma V.4: Let m be a positive integer. For each i = 1, 2
let Xi ∈ {0, 1, A}mi, with mi ≤ m, and let Yi be a
set of a fixed size drawn uniformly at random and without
replacement from Xi, where the words of Y1 and Y2 are drawn
independently of each other. Let W1 = AaY1A

b ∩ U1 and
W2 = AcY2A

d ∩ U2 for some patterns U1 ⊆ AaX1A
b and

U2 ⊆ AcX2A
d, where a+b = m−m1 and c+d = m−m2. Let

p denote the number of positions where U1 and U2 both have
a fixed point, and assume that the values of U1 and U2 agree
at each such position. Then

E[K (W1 ∩ W2)] = 2p ·
2�

i=1

K (Ui)
K (Yi)
K (Xi)

.

Note that in the above lemma, the cardinality of each
random set Yi is fixed and its elements are all of length mi,
so the Kraft sum of Yi is deterministic.

Corollary V.5: Let Y be a set of a fixed size chosen
uniformly at random and without replacement from a pattern
X ∈ {0, 1, A}n+1. Let U ∈ {0, 1, A}n+k. If U ⊆ AaXAb,
then

K �AaY Ab ∩ U
�

= K (U) · K (Y )
K (X)

.

Lemma V.6: Let X be a set of size at least 2 and let C be
a set of a fixed size chosen uniformly at random from X . For
any particular element of X , the probability that the element
lies in C is |C|/|X |. For any two particular distinct elements
of X , the probability that both lie in C is |C|(|C|−1)

|X|(|X|−1) .
Lemma V.7: Let n ≥ 1 and p ≥ 0 be integers, let b ∈ A,

and let C be a set of a fixed size chosen uniformly at random
from bAn. Then for any U ∈ {0, 1, A}p,

E[K �CAp+1 ∩ bUbAn ∩ Ap+1C
�
] = K (U)K (C)2 .

The next lemma calculates the expected Kraft sum of the
set all (k+n)-bit words that have both a prefix and suffix in a
randomly chosen set of words of the form 1Al−21An, where
2 ≤ l < k.

Lemma V.8: Let n, l, k ≥ 0 be integers, with 2 ≤ l < k, and
let D be a subset of a fixed size chosen uniformly at random
from 1Al−21 An. Then

E[K �DAk−l ∩ Ak−lD
�
]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K (D)2

if 2l − k < 1
2K (D)2

if 2l − k = 1
K (D)2

if 2l − k > 1 and (k − l) � (2l − k − 1)

K (D)2 + K(D)( 1
4−K(D))

2n+l−2−1

if 2l − k > 1 and (k − l) | (2l − k − 1).

Corollary V.9: Let n, l, k ≥ 1 be integers, with 2 ≤ l < k
and n > l − 2. Let C0 be a subset of a fixed size chosen
uniformly at random from 0Al−20 An−(l−1). Then

E[K �C0A
k−l ∩ Ak−lC0

�
]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K (C0)
2

if 2l − k < 1
2K (C0)

2

if 2l − k = 1
K (C0)

2

if 2l − k > 1 and (k − l) � (2l − k − 1)

K (C0)
2 + K(C0)(

1
4−K(C0))

2n−1−1

if 2l − k > 1 and (k − l) | (2l − k − 1).

Proof: This corollary follows from Lemma V.8 by chang-
ing 1s to 0s.

Lemma V.10: Let C ⊆ An+1 be a random set of a fixed
size. Let g(C) ⊆ An+k be a set that is some function of C.
If D is a set of a fixed size chosen uniformly at random from
1Al−2C, then

E[K �DAk−l ∩ g(C)
�
]

=
K (D)

K (C) /2
· E[K �1Al−2CAk−l ∩ g(C)

�
]

E[K �g(C) ∩ Ak−lD
�
]

=
K (D)

K (C) /2
· E[K �g(C) ∩ Ak−l1Al−2C

�
],

and if D is a set of a fixed size chosen uniformly at random
from CAl−1, then

E[K �DAk−l ∩ g(C)
�
]

=
K (D)
K (C)

· E[K �CAk−1 ∩ g(C)
�
],

where K(D)/K(C) = 0 whenever K(C) = K(D) = 0.
In Theorem VIII.1(c) and Theorem VIII.1(d) in

Section VIII, the set C is not chosen uniformly at random
from a fixed pattern, but instead C = C1 ∪ C0, where
C1 = 0 Al−21An−(l−1) and C0 is chosen uniformly
at random from 0Al−20An−(l−1). The following lemma
calculates E[K �DAk−l ∩ Ak−1C

�
] in this situation.

Lemma V.11: Let n, l, k ≥ 1 be integers, with 2 ≤ l < k
and n > l−2. Let C = C1∪C0 be a set of a fixed size where
C1 = 0Al−21An−(l−1) and C0 is chosen uniformly at random
from 0Al−20 An−(l−1). Let D be a set of a fixed size chosen
uniformly at random from 1Al−2C. Then

E[K �DAk−l ∩ Ak−1C
�
]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K (C)K (D)
if 2l − k < 1

2(K (C) − 1
4 )K (D)

if 2l − k = 1
K (C)K (D)

if 2l − k > 1 and (k − l) � (2l − k − 1)

K (C)K (D) + K(D)(K(C)− 1
4 )( 1

2−K(C))

K(C)(2n−1−1)

if 2l − k > 1 and (k − l) | (2l − k − 1).
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Lemma V.12: Let n ≥ 1 and a, b ≥ 0 be integers and let C
be a subset of a fixed size chosen uniformly at random from
0An. Then

E[K �1 AaCAa+b+2∩1 Aa0 Ab0 Aa1 An∩Aa+b+2CAa+1
�
]

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
K(C)2

4 − K(C)( 1
2−K(C))

4(2n−1)

if n > a and (b + 1) | (a + 1)
K(C)2

4

else.

Lemma V.13: Let n ≥ 1 and a, b ≥ 0 be integers and let C
be a subset of a fixed size chosen uniformly at random from
0An. Then

E[K �CA2a+b+3 ∩ 0 Aa0 Ab0 Aa1 An ∩ 0AaCAa+b+2
�
]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K(C)2

4 if n ≤ b
K(C)2

4 if b < n ≤ a + b + 1
and (a + 1) � (b + 1)

K(C)2

4 + K(C)( 1
2−K(C))

4(2n−1) if b < n ≤ a + b + 1

and (a + 1) | (b + 1)
K(C)2

4 − K(C)( 1
2−K(C))

4(2n−1) if n > a + b + 1.

Lemma V.14: Let n ≥ 1 and a, b ≥ 0 be integers and let
l = a + b + 3. Let C be a subset of a fixed size of at least 1
chosen uniformly at random from 0An, and let D be a set of
a fixed size chosen uniformly at random from 1Al−2C. Then

E[K �DAa+1 ∩ 1 Aa1 Ab0 Aa0 An ∩ Aa+1D
�
]

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K (D)2

if (a + 1) � (b + 1)
K (D)2 − K(D)

|C|2l−2−1
· (K(C)

2 −K (D))

if (a + 1) | (b + 1).

Lemma V.15: Let n ≥ 1 and l ≥ 3 and

f(x, y) =
�

1
4
− y

�2

−
1
2 − x

2(2n − 1)

�x

2
− y

�
− y

x2n+l−1 − 1

�x

2
− y

�
− 1

4(2n − 1)
x

�
1
2
− x

�
.

Then f(x, y) ≥ 0 for all x ∈ [ 1
2n+1 , 1

2 − 1
2n+1 ] ∪ { 1

2} and
y ∈ [0, x

2 − 1
2n+l ] ∪ {x

2}.

VI. MAIN RESULT, PART 1: μ12−λ1 ≤ 1
2 AND μ22−λ2 ≤ 1

4

We are given three positive integers in increasing order, λ1,
λ2, λ3, and corresponding nonzero multiplicities μ1, μ2, μ3,
such that the Kraft sum μ12−λ1+μ22−λ2+μ32−λ3 equals 3/4.
We are also given that the Kraft sums of the words of lengths
λ1 and λ2 are upper bounded by 1/2 and 1/4, respectively.
Our objective is to demonstrate that a fix-free code exists with
the corresponding multiset of integers as codeword lengths.

We first construct length-λ1 codewords by randomly remov-
ing a subset C of 0An, whose size is chosen to leave
exactly μ1 codewords remaining. Then, length-λ2 codewords
are chosen from the words in 1Al−21An, since none of them
can have a prefix or suffix from the length-λ1 words already
chosen. Specifically, these words are chosen by randomly

removing a subset D of 1Al−21An, whose size is picked to
leave exactly μ2 words remaining after removal. The largest
possible Kraft sum of the length-λ2 words that can be achieved
in this manner occurs when no words are removed, i.e., when
|D| = 0. In this case, the expected Kraft sum of the length-
λ2 words is K �1Al−21An

�
= 1/4, by Lemma V.2, which

explains the upper bound on μ22−λ2 used in Theorem VI.2.
Finally, length-λ3 words are constructed to avoid prefixes

and suffixes in the randomly constructed sets of words of
lengths λ1 and λ2.

It appears to be a somewhat difficult task to describe which
codewords of lengths λ1 and λ2 to use in order to ensure
the availability of the needed length-λ3 codewords, while
preserving the fix-free condition and the 3/4 Kraft sum upper
bound.

We use a probabilistic approach and remove the correct
number of codewords of lengths λ1 and λ2 by random
selection. In other words, we remove 2λ1−1−μ1 of the original
length-λ1 codewords, uniformly at random from among the
2λ1−1 original length-λ1 codewords, and then we remove
2λ2−2 − μ2 of the original length-λ2 codewords uniformly at
random from among the 2λ2−2 original length-λ2 codewords.
We prove that, on average, there are at least μ3 codewords
of length λ3 that do not have any prefix or suffix from the
resulting μ1 codewords of length λ1 and μ2 codewords of
length λ2. So, there must exist at least one actual collection of
μ1 codewords of length λ1 and μ2 codewords of length λ2 that
result in at least μ3 codewords of length λ3 that have neither
prefix nor suffix in the collection. This existential technique
is somewhat analogous to that used in Shannon’s proof of the
channel coding theorem [60].

Throughout the proof of the main results, we shall use cer-
tain repeated terminology. The quantities λ1, λ2, and λ3 will
represent, in increasing order, the three distinct codeword
lengths for the desired fix-free code. Throughout, we will use
the quantities n, l, and k as defined in (1).

The proof of Theorem VI.2 is broken into three “overlap
cases”, namely when: (1) 2l − k < 1; (2) 2l − k = 1; and (3)
2l − k > 1. These cases correspond, respectively, to when a
length-λ2 prefix and a length-λ2 suffix of a length-λ3 word:
(1) overlap in at most n positions; (2) overlap in exactly
n + 1 positions; and (3) overlap in at least n + 2 positions.
The same three cases are also used to prove Theorems VII.2
and VIII.1. These three cases are illustrated in Figure 1.

The proof of Theorem VI.2 uses the following lemma,
whose proof can be found in the appendix.

Lemma VI.1: Let n, l, k ≥ 1 be integers such that 2 ≤ l <
k. Let C be a set of a fixed size chosen uniformly at random
from 0An. Let D be a set of a fixed size chosen uniformly at
random from 1Al−21 An. For any b1, b2 ∈ A, if 2l − k �= 1,
then

(i) K �1Al−20An+k−l ∩ Ak−l0Al−21An
�

= 1/16
(ii) E[K �CAk−1 ∩ 0Al−2b1A

n+k−l ∩ Ak−l0 Al−21An
�
]

= K (C) /8
(iii) E[K �1Al−20 An+k−l ∩ Ak−lb1A

l−2C
�
]

= K (C) /8
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(iv) E[K �CAk−1 ∩ 0Al−2b1A
n+k−l ∩ Ak−lb2A

l−2C
�
]

= K (C)2 /4
(v) E[K �DAk−l ∩ Ak−l0Al−21An

�
] = K (D) /4

(vi) E[K �1Al−20An+k−l ∩ Ak−lD
�
] = K (D) /4

(vii) E[K �CAk−1 ∩ 0Al−2b1A
n+k−l ∩ Ak−lD

�
]

= K (C)K (D) /2
(viii) E[K �DAk−l ∩ Ak−lb1A

l−2C
�
]

= K (C)K (D) /2
(ix) E[K �DAk−l ∩ Ak−lD

�
]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K (D)2 if 2l−k < 1

K (D)2 if 2l−k > 1

and

(k−l) � (2l−k−1)

K (D)2 +K(D)( 1
4−K(D))

2n+l−2−1 if 2l−k > 1

and

(k−l) | (2l−k−1)
and if 2l − k = 1, then

(x) K �1Al−20An+k−l ∩ Ak−l0Al−21An
�

= 1/8
(xi) E[K �CAk−1 ∩ 0Al−20An+k−l ∩ Ak−l0Al−21An

�
]

= K (C) /4
(xii) E[K �1Al−20An+k−l ∩ Ak−l0Al−2C

�
]

= K (C) /4
(xiii) E[K �CAk−1 ∩ 0Al−2b1A

n+k−l ∩ Ak−lb1A
l−2C

�
]

= K (C)2 /2
(xiv) E[K �CAk−1 ∩ 0Al−21An+k−l ∩ Ak−lD

�
]

= K (C)K (D)
(xv) E[K �DAk−l ∩ Ak−l1Al−2C

�
] = K (C)K (D)

(xvi) E[K �DAk−l ∩ Ak−lD
�
] = 2K (D)2.

Theorem VI.2: Suppose a multiset of positive integers
consists of μ1 copies of λ1, μ2 copies of λ2, and μ3 copies of
λ3, such that 2 ≤ λ1 < λ2 < λ3. Then there exists a fix-free
code with μ1 codewords of length λ1, μ2 codewords of length
λ2, and μ3 codewords of length λ3, whenever the following
conditions hold:

μ12−λ1 ≤ 1
2

μ22−λ2 ≤ 1
4

μ12−λ1 + μ22−λ2 + μ32−λ3 =
3
4
.

Proof: Let C be a set of size 2n − μ1 chosen uniformly
at random from the 2n length-λ1 elements of 0An, and let
D be a set of size 2n+l−2 − μ2 chosen uniformly at random
from the 2n+l−2 length-λ2 elements of 1Al−21 An. Define
the following (random) sets:

F1 = 0 An − C

F2 = 1 Al−21 An − D.

Then F1 contains μ1 words, each of length λ1, and F2 contains
μ2 words, each of length λ2. By Lemma V.2, we have
K (F1) = K (0An) −K (C) = 1

2 − K (C) ≤ 1
2 and K (F2) =

K �1Al−21An
�−K (D) = 1

4 −K (D) ≤ 1
4 .

In each of three cases, we will construct a third random set
of words, F3. The random set

F = F1 ∪ F2 ∪ F3

on average forms the desired fix-free code. The union of
non-random instances of F1, F2, and F3 will then yield the
asserted fix-free code. Let

Yi,j =

⎧⎪⎨⎪⎩
CAk−1 ∩ 0Al−2jAn+k−l if i=0
1Al−20An+k−l if i=1, j=0
DAk−l if i=j=1

Wi,j =

⎧⎪⎨⎪⎩
Ak−liAl−2C if j=0
Ak−l0Al−21An if i=0, j=1
Ak−lD if i=j=1.

• Overlap Case 1: 2l−k < 1.
In this case, the set F3 is built as a union of
16 disjoint subsets of Ak+n. The basic building
block of each such subset is a pattern of the form
Z1A

l−2Z2A
k−2lZ3A

l−2Z4A
n, where Z1, Z2, Z3, Z4 are

fixed bits that ensure the 16 subsets are disjoint and
are chosen to avoid prefixes or suffixes from F1 or F2.
When these four bits do not prevent such prefixes or
suffixes, the sets Yi,j and Wi,j are constructed to remove
offending prefixes or suffixes. These constructions can
require certain subsets to have prefixes or suffixes in
C and/or D. The terms in each intersection below
satisfy

YZ1,Z2 ∩ WZ3,Z4 ⊆ Z1A
l−2Z2A

k−2lZ3A
l−2Z4A

n.

Let I = A4 and define the set F3, containing words
of length λ3, by:

F3 =
�

(Z1,Z2,Z3,Z4)∈I
(YZ1,Z2 ∩ WZ3,Z4)

Each of the 16 sets in the union comprising F3 consists
of words of length λ3, and these sets, except when
(Z1, Z2, Z3, Z4) = (1, 0, 0, 1), are random, since they
involve the random sets C or D. Thus, the Kraft
sums of all but one term in the union are random
variables.

When Z1 = 0 (respectively, Z4 = 0), the words in
the sets of the union are designed to contain prefixes
(respectively, suffixes) in C in order to avoid prefixes
(respectively, suffixes) in F1, and when Z1 = Z2 = 1
(respectively, Z3 = Z4 = 1), the words in the sets of
the union are designed to contain prefixes (respectively,
suffixes) in D in order to avoid prefixes (respectively,
suffixes) in F2.

It is easy to verify that none of the words of F2 have
prefixes or suffixes in F1, none of the words of F3 have
prefixes or suffixes in F1 or F2, and that every two of
the sets in the union forming F3 are disjoint.
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Next, we lower bound the expected Kraft sum of F3:

E[K (F3)]

=
�

(Z1,Z2,Z3,Z4)∈A4

E[K (YZ1,Z2 ∩ WZ3,Z4)]

=
K (C)2

4
+

K (C)
8

+
K (C)2

4

+
K (C)K (D)

2
+

K (C)2

4
+

K (C)
8

+
K (C)2

4
+

K (C)K (D)
2

+
K (C)

8

+
1
16

+
K (C)

8
+

K (D)
4

+
K (C)K (D)

2

+
K (D)

4
+

K (C)K (D)
2

+ K (D)2 (2)

=
�
K (C) + K (D) − 1

4

�2

+ K (C) + K (D)

≥ K (C) + K (D)

=
1
2
− μ12−λ1 +

1
4
− μ22−λ2 (3)

=
3
4
− μ12−λ1 − μ22−λ2 (4)

where (2) follows from Lemma VI.1.
From (4), we can lower bound the expected size of the

random set F3 by

E[|F3|] ≥ 2λ3

�
3
4
− μ12−λ1 − μ22−λ2

�
= μ3.

There must exist at least one instance of the randomly
constructed set F3 that satisfies the same lower bound
satisfied by the average size of F3. Such an instance of
the random set F3 corresponds to some particular choices
of the random sets C and D. Let �F1 and �F2 denote
the resulting (non-random) instances of the random sets
F1 and F2, respectively. Let �F3 denote the resulting (non-
random) instance of F3, but only after throwing away
enough codewords to make the size of �F3 exactly equal
to the lower bound on E[|F3|]. That is,

| �F3| = μ3.

The code �F1∪ �F2∪ �F3 is fix-free, has Kraft sum equal
to 3/4, and has μ1, μ2, μ3 codewords of sizes λ1, λ2,
λ3, respectively.

• Overlap Case 2: 2l−k = 1.
In this case, the set F3 is built in a similar manner as in
Overlap Case 1, although here it will be a union of only
8 disjoint subsets of Ak+n, using patterns of the form
Z1A

l−2Z2A
l−2Z3A

n. The terms in each intersection
below satisfy

YZ1,Z2 ∩ WZ2,Z3 ⊆ Z1A
l−2Z2A

l−2Z3A
n.

Let I = A3 and define the set F3 containing words
of length λ3, and lower bound its expected Kraft sum as

follows:

F3 =
�

(Z1,Z2,Z3)∈I
(YZ1,Z2 ∩ WZ2,Z3)

E[K (F3)]

=
�

(Z1,Z2,Z3)∈I
E[K (YZ1,Z2 ∩ WZ2,Z3)]

=
K (C)2

2
+

K (C)
4

+
K (C)2

2
+ K (C)K (D)

+
K (C)

4
+

1
8

+ K (C)K (D) + 2K (D)2 (5)

=
�
K (C) + K (D) − 1

4

�2

+
�
K (D) − 1

4

�2

+ K (C) + K (D)
≥ K (C) + K (D)

where (5) follows from Lemma VI.1. Overlap Case 2 is
then finished by applying the same reasoning as used
from (3) to the end of Overlap Case 1.

• Overlap Case 3: 2l−k > 1.
This case is nearly identical to Overlap Case 1, but uses
the following definition of F3:

F3 =
�

(Z1,Z2,Z3,Z4)∈I
(YZ1,Z3 ∩ WZ2,Z4)

where

YZ1,Z3 ∩ WZ2,Z4

⊆ Z1A
k−l−1Z2A

2l−k−2Z3A
k−l−1Z4A

n.

The only other difference is that the equal sign in (2)
changes to ≥, since in Lemma VI.1(ix) when 2l−k > 1
we have

E[K �DAk−l ∩ Ak−lD
�
] ≥ K (D)2 .

VII. MAIN RESULT, PART 2: μ12−λ1 ≤ 1
2 AND

1
4 ≤μ22−λ2 ≤ 1

2

�
1−μ12−λ1

�
In Theorem VI.2, sets of words of lengths λ1 and λ2 were

initially constructed, and then some words were independently
and uniformly removed from each set in order to bring their
sizes down to μ1 and μ2, respectively. Then a set of length-
λ3 words was constructed that avoided prefixes and suffixes
from the random sets of lengths λ1 and λ2. The constraint
in Theorem VI.2 that μ22−λ2 ≤ 1

4 allowed us to construct
the set F2 of length-λ2 words entirely based on words from
1Al−21An (whose Kraft sum is 1/4).

The construction for Theorem VII.2 is slightly different
however, since this theorem requires μ22−λ2 ≥ 1

4 , but there
are not enough words in 1Al−21An to get a Kraft sum larger
than 1/4 for the length-λ2 words.

To solve this issue, in Theorem VII.2 we start with a larger
set of length-λ2 words, namely 1Al−21An ∪ 1Al−2C, where
C is a random set of words removed from 0An to leave
exactly μ1 of such words of length n+1 = λ1 remaining (just
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like in Theorem VI.2). Then, to construct a set of μ2 length-
λ2 codewords, we remove a randomly selected subset D from
1Al−21An in Overlap Cases 1 and 3, and from 1Al−2C in
Overlap Case 2, where the cardinality of D ensures that there
will be a total of μ2 codewords of length λ2 left after removal.
In this manner, no length-λ1 codewords can be prefixes or
suffixes of any length-λ2 codewords, since any word in the
set 1Al−21An has a fixed bit of 1 where a length-λ1 prefix
or suffix from 0An would have a 0, and any word in the
set 1Al−2C has a fixed bit of 1 where a length-λ1 prefix
would have a 0, and has a length-λ1 suffix from C, which,
by construction, cannot be one of the μ1 words of length λ1

chosen for the fix-free code.
The largest Kraft sum of the length-λ2 words that we can get

with this technique is when we do not remove any codewords
of length λ2, i.e., when |D| = 0, in which case the expected
Kraft sum of the length-λ2 words, in all three overlap cases,
is

K �1Al−21An ∪ 1Al−2C
�

= K �1Al−21An
�

+ K �1Al−2C
�

= K �1Al−21An
�

+ K �1Al−2
�K (C) (6)

=
1
4

+
1
2
(2n − μ1)2−(n+1) (7)

=
1
2
�
1 − μ12−λ1

�
(8)

where (6) follows from Lemma V.2 and Corollary V.5; (7)
follows from Lemma V.2 and the fact that K (C) equals the
constant (2n − μ1)2−(n+1); and (8) explains the upper bound
on μ22−λ2 imposed in Theorem VII.2.

The proof of Theorem VII.2 uses the following lemma,
whose proof can be found in the appendix.

Lemma VII.1: Let n, l, k ≥ 1 be integers such that
2 ≤ l < k. Let C be a set of a fixed size chosen uniformly
at random from 0An. Let D1 be a set of a fixed size chosen
uniformly at random from 1Al−21 An, and let D2 be a set of
a fixed size chosen uniformly at random from 1Al−2C. For
any b1, b2 ∈ A, if 2l − k �= 1, then

(i) E[K �1Al−2(0An−C)Ak−l ∩ Ak−l0Al−21An
�
]

=
�

1
2 −K (C)

�
/8

(ii) E[K �1Al−2(0An−C)Ak−l ∩ Ak−l0Al−2C
�
]

= K (C)
�

1
2 −K (C)

�
/4

(iii) E[K �1Al−2(0An−C)Ak−l ∩ Ak−lD1

�
]

= K (D1)
�

1
2 −K (C)

�
/2

and if 2l−k = 1, then
(iv) E[K �1Al−2(0An−C)Ak−l ∩ Ak−l0Al−21An

�
]

=
�

1
2 −K (C)

�
/4

(v) E[K �CAk−1 ∩ 0Al−21An+k−l ∩ Ak−lD2

�
]

= K (C)K (D2)
(vi) E[K �1Al−2(0An−C)Ak−l ∩ Ak−l0Al−2C

�
]

= K (C)
�

1
2 −K (C)

�
/2

(vii) E[K �D2A
k−l ∩ Ak−l0Al−21An

�
]

= K (D2) /2
(viii) E[K �D2A

k−l ∩ Ak−l0Al−2C
�
]

= K (C)K (D2)
Theorem VII.2: Suppose a multiset of positive integers

consists of μ1 copies of λ1, μ2 copies of λ2, and μ3 copies of

λ3, such that 2 ≤ λ1 < λ2 < λ3, Then there exists a fix-free
code with μ1 codewords of length λ1, μ2 codewords of length
λ2, and μ3 codewords of length λ3, whenever the following
conditions hold:

μ12−λ1 ≤ 1
2

1
4
≤ μ22−λ2 ≤ 1

2
�
1 − μ12−λ1

�
μ12−λ1 + μ22−λ2 + μ32−λ3 =

3
4
.

Proof: As in Part 1, let C be a set of size 2n−μ1 chosen
uniformly at random from among the 2n length-λ1 elements
of 0An and define the following (random) set:

F1 = 0 An−C.

• For Overlap Cases 1 and 3 below:
Let D be a set of size 1

2

�
1 − μ12−λ1

�
2λ2 −μ2 chosen

uniformly at random from among the 2n+l−2 length-
λ2 elements of 1Al−21An, and let

F2 = (1Al−21An − D) ∪ (1Al−2C).

• For Overlap Case 2 below:
Let D be a set of size 1

2

�
1 − μ12−λ1

�
2λ2 −μ2 chosen

uniformly at random from among the 2l−2 · |C| length-
λ2 elements of 1Al−2C, and let

F2 = 1Al−21An ∪ (1Al−2C − D).

Then K (D) = 1
2

�
1 − μ12−λ1

�− μ22−λ2 , so

0 ≤ K (D) ≤ 1
2
�
1 − μ12−λ1

�− 1
4

=
1
4
− μ12−λ1−1 ≤ 1

4
.

This means there are enough words from which to choose D,
since K �1Al−21An

�
= 1

4 , and

K �1Al−2C
�

=
1
2
K (C) =

1
2
(
1
2
− μ12−λ1)

=
1
4
− μ12−λ1−1,

by Lemma V.2.
Note that the words in F2 all start with 1, and have a 0 in

position l only if they have a suffix in C. These conditions
guarantee that no word in F1 is a prefix or suffix of a word
in F2. In all 3 cases,

|F1| = |0An| − |C| = 2n − (2n − μ1) = μ1

|F2| = |1 Al−21 An| + |1 Al−2C| − |D|
= 2n+l−2 + 2l−2(2n − μ1)

− 1
2
�
1 − μ12−λ1

�
2λ2 + μ2

= μ2

so the set F1 contains μ1 words, each of length λ1, and
F2 contains μ2 words, each of length λ2. The set F1 can
be viewed as being chosen uniformly at random among all
subsets of 0An of size μ1.

In each case, we will also construct a third random set F3,
consisting of μ3 words of length λ3. The random set

F = F1 ∪ F2 ∪ F3
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on average forms the desired fix-free code. The union of
non-random instances of F1, F2, and F3 will then yield the
asserted fix-free code.

• Overlap Case 1: 2l−k < 1.
Let

Yi,j =

⎧⎪⎨⎪⎩
CAk−1 ∩ 0Al−2jAn+k−l if i=0
1Al−2(0An−C)Ak−l if i=1, j=0
DAk−l if i=j=1

Wi,j =

⎧⎪⎨⎪⎩
Ak−l0Al−2C if i=j=0
Ak−l0Al−21An if i=0, j=1
Ak−lD if i=j=1.

(9)

Let I = A4 − A210 and define the set F3 by:

F3 =
�

(Z1,Z2,Z3,Z4)∈I
(YZ1,Z2 ∩ WZ3,Z4)

where

YZ1,Z2 ∩ WZ3,Z4 ⊆ Z1A
l−2Z2A

k−2lZ3A
l−2Z4A

n.

In contrast to Overlap Cases 1 and 3 of Part 1, here
F3 is comprised of only 12 of the 16 possible sets
obtained from the pattern

Z1A
l−2Z2A

k−2lZ3A
l−2Z4A

n,

namely by excluding (Z3, Z4) = (1, 0) from the union.
One can verify that no words in F1 or F2 can be either
prefixes or suffixes of any words in F3.

The expected Kraft sum of F3 is then lower bounded
as follows:

E[K (F3)]

=
�

(Z1,Z2,Z3,Z4)∈I
E[K (YZ1,Z2 ∩ WZ3,Z4)]

=
K (C)2

4
+

K (C)
8

+
K (C)K (D)

2
+

K (C)2

4

+
K (C)

8
+

K (C)K (D)
2

+
K (C) (1

2 −K (C))
4

+
1
2 −K (C)

8
+

K (D) (1
2 −K (C))
2

+
K (C)K (D)

2
+

K (D)
4

+ K (D)2 (10)

=
�K (C)

2
+ K (D) − 1

4

�2

+
K (C)

2
+ K (D)

≥ K (C)
2

+ K (D) (11)

=
1
4
− 1

2
μ12−λ1 +

1
2
− 1

2
μ12−λ1 − μ22−λ2 (12)

=
3
4
− μ12−λ1 − μ22−λ2

where (10) follows from Lemma VII.1 when (Z1, Z2) =
(1, 0) and otherwise follows from Lemma VI.1; and (12)
follows from the quantities |C| and |D| defined at the
beginning of the proof of this theorem.

The current case is then finished by applying the same
reasoning used following (4) to the end of Part 1, Overlap
Case 1.

• Overlap Case 2: 2l−k = 1.
Let

Yi,j =

�
CAk−1 ∩ 0Al−2jAn+k−l if i=0
(D ∪ 1Al−2(0An−C))Ak−l if i=1, j=0

Wi,j =

⎧⎪⎨⎪⎩
Ak−l0Al−2C if i=j=0
Ak−l0Al−21An if i=0, j=1
Ak−lD if i=1, j=0.

Let I = A3 − (11A ∪ A11) and define the set F3 by:

F3 =
�

(Z1,Z2,Z3)∈I
(YZ1,Z2 ∩ WZ2,Z3)

where

YZ1,Z2 ∩ WZ2,Z3 ⊆ Z1A
l−2Z2A

l−2Z3A
n.

In this case, F3 is comprised of only 5 of the 8 possible
sets obtained from the pattern

Z1A
l−2Z2A

l−2Z3A
n,

namely by excluding (Z1, Z2, Z3) from being (1, 1, 0),
(0, 1, 1), or (1, 1, 1) in the union.

The expected Kraft sum of F3 can be lower bounded
as follows:

E[K (F3)]

=
�

(Z1,Z2,Z3)∈I
E[K (YZ1,Z2 ∩ WZ2,Z3)]

=
K (C)2

2
+

K (C)
4

+ K (C)K (D)

+
�K (C) (1

2 −K (C))
2

+ K (C)K (D)
�

+
� 1

2 −K (C)
4

+
K (D)

2

�
(13)

=
(1 − 2K (C))(1 − 4K (D))

8

+ K (C)K (D) +
K (C)

2
+ K (D)

≥ K (C)
2

+ K (D) (14)

where (13) follows from Lemma VI.1 when Z1 =
Z2 = 0 and otherwise follows from Lemma VII.1; and
(14) follows since K (D) ≤ 1/4 and K (C) ≤ 1/2.

Overlap Case 2 is then finished by applying the same
reasoning as used from (11) to the end of Overlap
Case 1.

• Overlap Case 3: 2l−k > 1.
We use the same sets Yi,j and Wi,j as defined in (9) for
Overlap Case 1. Let I = A4 − A1A0 and define the set
F3 by:

F3 =
�

(Z1,Z2,Z3,Z4)∈I
(YZ1,Z3 ∩ WZ2,Z4)

where

YZ1,Z3 ∩ WZ2,Z4

⊆ Z1A
k−l−1Z2A

2l−k−2Z3A
k−l−1Z4A

n.
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Here F3 is comprised of 12 of the 16 possible sets
obtained by excluding (Z2, Z4) = (1, 0).

The expected Kraft sum of F3 is then lower bounded
as follows:

E[K (F3)]

=
�

(Z1,Z2,Z3,Z4)∈I
E[K (YZ1,Z3 ∩ WZ2,Z4)]

≥
�K (C)

2
+ K (D) − 1

4

�2

+
K (C)

2
+ K (D) (15)

where the ≥ in (15) follows from Lemma VI.1(ix), and
the remainder of the proof is the same as for Overlap
Case 1 starting at (11).

VIII. MAIN RESULT, PART 3: μ12−λ1 ≤ 1
2 AND

1
2

�
1 − μ12−λ1

� ≤ μ22−λ2

The methods for constructing codes in this section are
similar in spirit to the methods from the past two sections,
but contain some significant changes as well. As before, sets
of words of lengths λ1 and λ2 are initially constructed, but in
this section sometimes we will then remove words at random
from these sets, and sometimes we will add words at random
to these sets. Specifically, in the proofs of Theorem VIII.1,
parts (a), (b), and (c), some words are removed, and in part
(d) some words are added, but in all cases the resulting words
of lengths λ1 and λ2 have cardinalities μ1 and μ2, respectively.
Then, just as in previous sections, we will show that there are
enough words of length λ3 available to produce the desired
fix-free code.

There are additional complications in this section that result
in more cases to consider than in the previous sections. Before,
we removed words of length λ2 from 1Al−21An or 1Al−2C
only, but in this section we will need to remove words of
length λ2 from CAl−1 ∩ 0Al−21An as well. However, if
n > l − 2 and C happens to be a subset of 0Al−20An−l+1,
then CAl−1 ∩0Al−21An = ∅, leaving us no length-λ2 words
to remove from this set. To remedy this, we split the proof
into separate lemmas, where we first consider the case when
n ≤ l − 2 (in which we proceed in a similar fashion as the
previous sections), and then consider when n > l − 2. This
latter case requires us to take more care in choosing C, and
so we break this case into three separate lemmas.

Additionally, it turns out that as n grows, other compli-
cations can arise depending on the values of the lengths
λ2 and λ3. As can be seen in Lemma VIII.2, particularly in
cases (ix)–(xii), the expected Kraft sums of certain sets
may depend on specific divisibility conditions involving the
codeword lengths. These conditions are a result of the ways in
which randomly chosen codewords may overlap each other as
factors in codewords of a larger length. Fortunately, these com-
plications are present in Overlap Case 3 of Theorem VIII.1(a)
only, and we use Lemma V.15 to prove our desired result even
in this case.

Theorem VIII.1: Suppose a multiset of positive integers
consists of μ1 copies of λ1, μ2 copies of λ2, and μ3 copies of

λ3, such that 2 ≤ λ1 < λ2 < λ3. Then there exists a fix-free
code with μ1 codewords of length λ1, μ2 codewords of length
λ2, and μ3 codewords of length λ3, whenever the following
conditions hold:

μ12−λ1 ≤ 1
2

1
2
�
1 − μ12−λ1

� ≤ μ22−λ2

μ12−λ1 + μ22−λ2 + μ32−λ3 =
3
4
.

Theorem VIII.1 follows immediately from the following
four cases, which depend on the values of λ1, λ2, μ1, and
μ2:
(a) λ2 ≥ 2λ1

(b) λ2 < 2λ1 and 1
4 ≤ μ12−λ1 ≤ 1

2

(c) λ2 < 2λ1 and μ12−λ1 < 1
4 and 1

4 ≤ μ22−λ2 ≤ 1
2

(d) λ2 < 2λ1 and μ12−λ1 < 1
4 and 1

2 < μ22−λ2 .

A. Proof of Theorem VIII.1(a)

The proof of Theorem VIII.1(a) uses the following lemma,
whose proof can be found in the appendix.

Lemma VIII.2: Let n, l, k ≥ 1 be integers such that
2 ≤ l < k and n ≤ l − 2. Let C be a set of a fixed size
chosen uniformly at random from 0An. Let D1 be a set of a
fixed size chosen uniformly at random from 1Al−21 An, and
let D2 be a set of a fixed size chosen uniformly at random
from 1Al−2C. For any b ∈ A, if 2l − k < 1, then

• (i)

E[K �CAl−2−n0An+k−l

∩Ak−l(0An−C)Al−2−n1 An
�
]

= K (C)
�

1
2
−K (C)

�
/4

• (ii)

E[K �1Al−2(0An−C)Ak−l

∩Ak−l(0An−C)Al−2−n1 An
�
]

=
�

1
2
−K (C)

�2

/4

• (iii) E[K �D1A
k−l ∩ Ak−l(0An−C)Al−2−n1 An

�
]

= K (D1) (1
2 −K (C))/2.

If 2l−k = 1, then
• (iv)

E[K �CAl−2−n0An+k−l

∩Ak−l(0An−C)Al−2−n1 An
�
]

= K (C)
�

1
2
−K (C)

�
/2

• (v)

E[K �1Al−2(0An−C)Ak−l

∩Ak−l(0An−C)Al−2−n1 An
�
]

=
�

1
2
−K (C)

�
/4.
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If 2l−k > 1, then

• (vi) E[K �CAl−2−n0 An+k−l ∩ Ak−lD2

�
]

= K (C)K (D2) /2
• (vii) E[K �1Al−2(0An−C)Ak−l ∩ Ak−lD2

�
]

= (1
2 −K (C))K (D2) /2

• (viii) E[K �D2A
k−l ∩ Ak−l0Al−2C

�
]

= K (C)K (D2) /2
• (ix)

E[K �CAl−2−n0 An+k−l

∩Ak−l(0An−C)Al−2−n1An
�
]

=
K (C) (1

2 −K (C))
4

−

⎧⎪⎨⎪⎩
K(C)( 1

2−K(C))

4(2n−1) if n > 2l − k − 2

and (k − l) | (2l − k − 1)
0 otherwise

• (x)

E[K �1Al−2(0An−C)Ak−l

∩Ak−l(0An−C)Al−2−n1An
�
]

=
(1
2 −K (C))2

4

−

⎧⎪⎨⎪⎩
K(C)( 1

2−K(C))

4(2n−1) if n > k − l − 1
and (2l − k − 1) | (k − l)

0 otherwise

• (xi)

E[K �D2A
k−l ∩ Ak−l(0An−C)Al−2−n1An

�
]

=
(1
2 −K (C))K (D2)

2

+

⎧⎪⎨⎪⎩
K(D2)(

1
2−K(C))

2(2n−1) if n > k − l − 1

and (2l − k − 1) | (k − l)
0 otherwise

• (xii)

E[K �D2A
k−l ∩ Ak−lD2

�
]

= K (D2)
2

−

⎧⎪⎪⎨⎪⎪⎩
K(D2)

|C|·2l−2−1

�
K(C)

2 −K (D2)
�

if (k − l) | (2l − k − 1)
0 otherwise.

Proof of Theorem VIII.1(a): Here we assume λ2 ≥ 2λ1

(or equivalently n ≤ l − 2 by (1)).
Let C be a set of size 2n −μ1 chosen uniformly at random

from among the 2n length-λ1 elements of 0An. Note that
0 ≤ μ1 ≤ 2n since 0 ≤ μ12−λ1 ≤ 1

2 . Also,

K (C) = (2n − μ1) 2−λ1 =
1
2
− μ12−λ1 .

Define the following (random) set:

F1 = 0An − C.

• For Overlap Case 1 below:
Let D be a set of size (3

4 − μ12−λ1)2λ2 − μ2 chosen
uniformly at random from among the 2n+l−2 length-
λ2 elements of 1Al−21An, and let

F2 = (1Al−21An − D) ∪ 1Al−2C ∪ CAl−2−n1An.

• For Overlap Cases 2 and 3 below:
Let D be a set of size (3

4 − μ12−λ1)2λ2 − μ2 chosen
uniformly at random from among the 2l−2 · |C| length-
λ2 elements of 1Al−2C, and let

F2 = 1Al−21An ∪ (1Al−2C − D) ∪ CAl−2−n1An.

Then

K (D) = |D| · 2−λ2

=
3
4
− μ12−λ1 − μ22−λ2 (16)

≤ 3
4
− μ12−λ1 − 1

2
+

μ12−λ1

2

=
1
4
− μ12−λ1

2
.

This means there are enough words from which to choose D,
since

1
4
− μ12−λ1

2
≤ 1

4
= K �1Al−21An

�
and

1
4
− μ12−λ1

2
=

K (C)
2

= K �1Al−2C
�
.

Note that the (n + 1)-bit prefixes and suffixes of words in
F2 either start with 1 or else lie in C, whereas all words in
F1 start with 0 and cannot lie in C. So no word in F1 can be
a prefix or a suffix of a word in F2.

Also in all three cases,

|F1| = |0An| − |C| = 2n − (2n − μ1) = μ1

|F2| = |1Al−21An| + |1Al−2C| + |CAl−2−n1An| − |D|
= 2n+l−2 + 2l−2(2n − μ1) + 2l−2(2n − μ1)

−
�

3
4
− μ12−λ1

�
2λ2 + μ2

= μ2

so the set F1 contains μ1 words, each of length λ1, and
F2 contains μ2 words, each of length λ2.

In each case, we construct a third random set F3 consisting
of μ3 words, each of length λ3. The random set

F = F1 ∪ F2 ∪ F3

on average forms the desired fix-free code. The union of
non-random instances of F1, F2, and F3 will then yield the
asserted fix-free code.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on February 17,2023 at 18:41:05 UTC from IEEE Xplore.  Restrictions apply. 



CONGERO AND ZEGER: 3/4 CONJECTURE FOR FIX-FREE CODES WITH AT MOST THREE DISTINCT CODEWORD LENGTHS 1467

• Overlap Case 1: 2l−k < 1. Let

Yi,j=

⎧⎪⎨⎪⎩
CAl−2−n0An+k−l if i=j=0
1Al−2(0An−C)Ak−l if i=1, j=0
DAk−l if i=j=1

Wi,j=

⎧⎪⎨⎪⎩
Ak−l0 Al−2C if i=j=0
Ak−l(0An−C)Al−2−n1An if i=0, j=1
Ak−lD if i=j=1.

Let I = A4 − (01A2 ∪ A210) and define the set F3 by:

F3 =
�

(Z1,Z2,Z3,Z4)∈I
(YZ1,Z2 ∩ WZ3,Z4)

where

YZ1,Z2 ∩ WZ3,Z4 ⊆ Z1A
l−2Z2A

k−2lZ3A
l−2Z4A

n.

Here F3 is comprised of only 9 of the 16 possible sets
obtained from the pattern Z1A

l−2Z2A
k−2lZ3A

l−2Z4A
n,

namely by excluding patterns with (Z1, Z2) = (0, 1) or
(Z3, Z4) = (1, 0). One can verify that no words in F1 or
F2 are either prefixes or suffixes of any words in F3.

The expected Kraft sum of F3 is then lower bounded
as follows:

E[K (F3)]

=
�

(Z1,Z2,Z3,Z4)∈I
E[K (YZ1,Z2 ∩ WZ3,Z4)]

=
K (C)2

4
+

K (C) (1
2 −K (C))
4

+
K (C)K (D)

2

+
K (C) (1

2 − K (C))
4

+
(1
2 −K (C))2

4

+
K (D) (1

2 −K (C))
2

+
K (C)K (D)

2

+
K (D) (1

2 −K (C))
2

+ K (D)2 (17)

=
�
K (D) − 1

4

�2

+ K (D)

≥ K (D)

=
3
4
− μ12−λ1 − μ22−λ2 (18)

where (17) follows from Lemma VI.1 when both
Z1 = Z2 and Z3 = Z4, from Lemma VII.1 when both
(Z1, Z2) = (1, 0) and Z3 = Z4, from Lemma VIII.2
when (Z3, Z4) = (0, 1); and (18) follows from (16).

The current case is then finished by applying the same
reasoning used following (4) to the end of Part 1, Overlap
Case 1.

• Overlap Case 2: 2l−k = 1.
Let

Yi,j=

�
CAl−2−n0An+k−l if i=j=0
(D ∪ 1Al−2(0An−C))Ak−l if i=1, j=0

Wi,j=

�
Ak−l0Al−2C if i=j=0
Ak−l(0An−C)Al−2−n1An if i=0, j=1.

Let I = A3 − A1A and define the set F3 by:

F3 =
�

(Z1,Z2,Z3)∈I
(YZ1,Z2 ∩ WZ2,Z3)

where the terms in the union satisfy

YZ1,0 ∩ W0,Z3 ⊆ Z1A
l−20 Al−2Z3A

n.

In this case, F3 is comprised of 4 of the 8 possible sets
obtained from the pattern Z1A

l−2Z2A
l−2Z3A

n, namely
excluding (Z1, Z2, Z3) being (0, 1, 0), (1, 1, 0), (0, 1, 1),
or (1, 1, 1). Therefore, these conditions are equivalent to
Z2 �= 1.

The expected Kraft sum of F3 can be lower bounded
as follows:

E[K (F3)]

=
�

(Z1,Z2,Z3)∈I
E[K (YZ1,Z2 ∩ WZ2,Z3)]

=
K (C)2

2
+

K (C) (1
2 −K (C))
2

+
�
K (C)K (D) +

K (C) (1
2 −K (C))
2

�
+
�

0 +
1
2 −K (C)

4

�
(19)

=
K (C)

2

�
1
2
−K (C)

�
+ K (C)K (D) +

1
8

≥
�K (C)

2
−K (D)

��
1
2
−K (C)

�
+ K (D) (20)

≥ K (D) (21)

=
3
4
− μ12−λ1 − μ22−λ2 (22)

where (19) follows from Lemma VI.1 when Z1 =
Z2 = Z3 = 0, from Lemma VII.1 when (Z1, Z2, Z3) =
(1, 0, 0), and otherwise from Lemma VIII.2 and the fact
that D ∩ Ak−l(0An−C) = ∅; (20) follows since 1

8 ≥
K(D)

2 ; (21) follows since K (C) ≤ 1
2 and K (D) ≤ K(C)

2 ;
and (22) follows from (16).

The current case is then finished by applying the same
reasoning used following (4) to the end of Part 1, Overlap
Case 1.

• Overlap Case 3: 2l−k > 1.
Let

Yi,j=

�
CAl−2−n0An+k−l if i=j=0
(D∪1Al−2(0An−C))Ak−l if i=1, j=0

Wi,j=

⎧⎪⎨⎪⎩
Ak−l0 Al−2C if i=j=0
Ak−l(0An−C)Al−2−n1An if i=0, j=1
Ak−lD if i=1, j=0.

Let I = A4 − (A21A∪A1A1) and define the set F3 by:

F3 =
�

(Z1,Z2,Z3,Z4)∈I
(YZ1,Z3 ∩ WZ2,Z4).
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where

YZ1,Z3 ∩ WZ2,Z4

⊆ Z1A
k−l−1Z2A

2l−k−2Z3A
k−l−1Z4A

n.

Here F3 is comprised of only 6 of the 16 possible
sets, namely by excluding patterns with (Z1, Z3) ∈
{(0, 1), (1, 1)} or (Z2, Z4) = (1, 1) from the union.

Let 1a be the indicator function for the condition (k−
l) | (2l − k − 1), let 1b be the indicator function for the
condition (2l − k − 1) | (k − l), let 1c be the indicator
function for the condition n > k − l − 1, and let 1d be
the indicator function for the condition n > 2l − k − 2.

Regarding 1a and 1b, note that k − l is the length of
any word in Z1A

k−l−1, and 2l−k−1 is the length of any
word in Z2A

2l−k−2. If 1c = 1, then any word from 0An

that is a prefix of a term in the union above must extend
at least to the bit Z2, which would cause, for example,
overlap in prefixes of Y0,0 that lie in C and subwords of
W0,1 that lie in 0An−C. Also, if 1d = 1, then any word
from 0An that is a subword in a term in the union above
that starts at the Z2 position must extend at least to the bit
Z3, which would cause overlap in subwords of Y1,0 that
lie in 0An−C and subwords of W0,1 that lie in 0An−C.
It turns out that there are four such complications that
arise in this overlap case, which are considered in cases
(ix)–(xii) of Lemma VIII.2.

If 1a = 1b = 1c = 1d = 0, then the expected Kraft
sum of F3 is

E[K (F3)]

=
�

(Z1,Z2,Z3,Z4)∈I
E[K (YZ1,Z3 ∩ WZ2,Z4)] (23)

=
K (C)2

4
+

K (C) (1
2 −K (C))
4

+
K (C)K (D)

2

+
K (C)K (D)

2
+

K (C) (1
2 −K (C))
4

+
K (D) (1

2 −K (C))
2

+
(1
2 −K (C))2

4

+ K (D)2 +
K (D) (1

2 −K (C))
2

(24)

=
�

1
4

+ K (D)
�2

where (24) follows from Lemma VI.1 when Z1 = Z2 =
Z3 = Z4 = 0, from Lemma VII.1 for part of the case
when (Z1, Z2, Z3, Z4) = (1, 0, 0, 0), and otherwise from
Lemma VIII.2 using the fact that 1a = 1b = 1c = 1d = 0.

Of the 6 terms in the summation of (23), the 3 terms
corresponding to (Z1, Z2, Z3, Z4) equaling (0, 0, 0, 0),
(0, 1, 0, 0), and (1, 0, 0, 0), remain the same even when
it’s not the case that 1a = 1b = 1c = 1d = 0. The values
of the remaining 3 terms of the summation, i.e., when
(Z1, Z2, Z3, Z4) is (0, 0, 0, 1), (1, 0, 0, 1), or (1, 1, 0, 1),
are obtained from Lemma VIII.2 using

E[K �CAl−2−n0An+k−l

∩Ak−l(0An−C)Al−2−n1An
�
]

=
K (C)K (0An−C)

4

− 1a1d · K (C) (1
2 −K (C))

4(2n − 1)
(25)

E[K �1Al−2(0An−C)Ak−l

∩Ak−l(0An−C)Al−2−n1An
�
]

=
K (0An−C)2

4
− 1b1c ·

1
2 −K (C)
4(2n − 1)

K (C) (26)

E[K �DAk−l ∩ Ak−l(0An−C)Al−2−n1An
�
]

=
K (D)K (0An−C)

2

+ 1b1c ·
1
2 −K (C)
2(2n − 1)

· K (D) (27)

E[K �DAk−l ∩ Ak−lD
�
]

= K (D)2

− 1a · K (D)
|C| · 2l−2 − 1

�K (C)
2

−K (D)
�

. (28)

The first expressions on the right hand sides
of (25)–(28) correspond to those in the calculations used
to obtain (24), i.e., when 1a = 1b = 1c = 1d = 0.
Therefore, in general, the expected Kraft sum of F3 is
given by

E[K (F3)]

=
�

1
4

+ K (D)
�2

− 1b1c ·
(1
2 −K (C))(K(C)

2 −K (D))
2(2n − 1)

− 1a1d ·
K (C)

�
1
2 −K (C)

�
4(2n − 1)

− 1a ·
K (D)

�
K(C)

2 −K (D)
�

|C| · 2l−2 − 1
. (29)

We will show that for any binary values of 1a, 1b, 1c,
and 1d, we have E[K (F3)] ≥ K (D). Since K (C) ≤
1/2 and K (D) ≤ K (C) /2, the quantities multiplying
1b1c, 1a1d, and 1a are all non-positive. Thus, it suffices
to show that with 1a = 1b = 1c = 1d = 1, the quantity
in (29) minus K (D) is non-negative for any

K (C) ∈ {0} ∪
�

1
2n+1

,
1
2
− 1

2n+1

�
∪
�

1
2

�
and

K (D) ∈
�
0,

K (C)
2

− 1
2n+l

�
∪
�K (C)

2

�
.

These ranges for K (C) and K (D) are sufficient to finish
the proof, since |C| and |D| are integers, and so it is not
possible that

K (C) ∈
�

0,
1

2n+1

�
∪
�

1
2
− 1

2n+1
,
1
2

�
or

K (D) ∈
�K (C)

2
− 1

2n+l
,
K (C)

2

�
.
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Since 2l−k > 1 and k ≥ 3, we have l ≥ 3. If K (C) =
0, then the original multiset of lengths contains only two
distinct values, and this case is covered by Theorem III.1.
So suppose K (C) ≥ 1/2n+1. Then

E[K (F3)] − K (D)

=
�

1
4
−K (D)

�2

− 1b1c ·
(1
2 −K (C))

�
K(C)

2 −K (D)
�

2(2n − 1)

− 1a ·
K (D)

�
K(C)

2 −K (D)
�

|C| · 2l−2 − 1

− 1a1d ·
K (C)

�
1
2 −K (C)

�
4(2n − 1)

(30)

≥ 0 (31)

where (31) follows by first setting 1a = 1b = 1c =
1d = 1 to minimize (30), and then applying Lemma V.15
by setting x = K (C) and y = K (D). The current case
is then finished by applying the same reasoning used
following (4) to the end of Part 1, Overlap Case 1.

B. Proof of Theorem VIII.1(b)

The proof of Theorem VIII.1(b) uses the following lemma,
whose proof can be found in the appendix.

Lemma VIII.3: Let n, l, k ≥ 1 be integers such that
2 ≤ l < k and n ≥ l − 1. Let C be a set of a fixed
size chosen uniformly at random from 0Al−21An−(l−1). Let
G = 0Al−21An−(l−1) − C. Let D1 be a set of a fixed size
chosen uniformly at random from 1Al−21 An, and let D2 be
a set of a fixed size chosen uniformly at random from CAl−1.
For any b ∈ A, if 2l − k �= 1, then

• (i) E[K �1Al−20An+k−l ∩ Ak−lbAl−2C
�
]

= K (C) /8
• (ii) E[K �1Al−20An+k−l ∩ Ak−lGAl−1

�
]

= (1
4 −K (C))/4

• (iii) E[K �D1A
k−l ∩ Ak−lbAl−2C

�
]

= K (C)K (D1) /2
• (iv) E[K �D1A

k−l ∩ Ak−lGAl−1
�
]

= K (D1) (1
4 −K (C)).

If 2l − k = 1, then

• (v) E[K �1Al−20An+k−l ∩ Ak−l0 Al−2C
�
]

= K (C) /4
• (vi) E[K �1Al−20An+k−l ∩ Ak−lGAl−1

�
]

= (1
4 −K (C))/2

• (vii) E[K �1Al−20An+k−l ∩ Ak−lD2

�
]

= K (D2) /2
• (viii) E[K �D2A

k−l ∩ Ak−l1Al−2C
�
]

= K (C)K (D2).
Proof of Theorem VIII.1(b): Here we assume λ2 < 2λ1

(or equivalently n > l − 2 by (1)) and 1
4 ≤ μ12−λ1 ≤ 1

2 .
Let C be a set of size 2n −μ1 chosen uniformly at random

from among the 2n−1 length-λ1 elements of 0Al−21 An−l+1.

Since 1
4 ≤ μ12−λ1 ≤ 1

2 , we have 2n−1 ≤ μ1 ≤ 2n, which
implies 0 ≤ |C| ≤ 2n−1, so there are enough words from
which to choose C.

Define the following (random) set:

F1 = 0An−C.

• For Overlap Cases 1 and 3 below:
Let D be a set of size (3

4 − μ12−λ1)2λ2 − μ2 chosen
uniformly at random from among the 2n+l−2 length-
λ2 elements of 1Al−21An, and let

F2 = (1Al−21An − D) ∪ CAl−1.

• For Overlap Case 2 below:
Let D be a set of size (3

4 − μ12−λ1)2λ2 − μ2 chosen
uniformly at random from among the 2l−1 · |C| length-
λ2 elements of CAl−1, and let

F2 = 1Al−21An ∪ (CAl−1 − D).

Then

K (D) =
�

3
4
− μ12−λ1

�
− μ22−λ2 , (32)

so

0 ≤ K (D) ≤ 3
4
− μ12−λ1 − 1

2
+

μ12−λ1

2
=

1
4
− μ12−λ1

2
.

This means there are enough words from which to choose D,
since

1
4
− μ12−λ1

2
≤ 1

4
− 1

8
=

1
8

<
1
4

= K �1Al−21An
�

and

1
4
− μ12−λ1

2
=

1
2

�
1
2
− μ12−λ1

�
≤ 1

2
− μ12−λ1

= K (C) = K �CAl−1
�
.

Note that the words in F2 all have first bit equal to 1 or
prefix in C, and a 1 in the (n + 1)th position from the right.
These conditions guarantee that no word in F1 is a prefix or
suffix of a word in F2.

Also, in all 3 cases,

|F1| = |0An| − |C| = 2n − (2n − μ1) = μ1

|F2| = |1Al−21 An| + |CAl−1| − |D|
= 2n+l−2 + 2l−1(2n − μ1)

−
�

3
4
− μ12−λ1

�
2λ2 + μ2

= μ2

so the set F1 contains μ1 words, each of length λ1, and
F2 contains μ2 words, each of length λ2.

In each case, we will also construct a third random set F3,
consisting of μ3 words, each of length λ3. The random set

F = F1 ∪ F2 ∪ F3
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on average meets the requirements of the desired fix-free code.
The union of at least one non-random instance for each of F1,
F2, and F3 will then yield the asserted fix-free code.

• Overlap Case 1: 2l−k < 1.

Let G = 0Al−21An−l+1 − C, so that E[K (G)] = 1
4 −

K (C). Let

Yi,j =

�
1Al−20An+k−l if i=1, j=0
DAk−l if i=j=1

Wi,j =

⎧⎪⎨⎪⎩
Ak−liAl−2C if j=0
Ak−lGAl−1 if i=0, j=1
Ak−lD if i=j=1.

Let I = A4 − 0A3 and define the set F3 by:

F3 =
�

(Z1,Z2,Z3,Z4)∈I
(Y1,Z2 ∩ WZ3,Z4)

where

Y1,Z2 ∩ WZ3,Z4 ⊆ 1 Al−2Z2A
k−2lZ3A

l−2Z4A
n.

Here F3 is comprised of only 8 of the 16 possible sets
obtained from the pattern

Z1A
l−2Z2A

k−2lZ3A
l−2Z4A

n,

namely by excluding patterns with Z1 = 0 from the
union. One can verify that no words in F1 or F2 can
be either prefixes or suffixes of any words in F3.

The expected Kraft sum of F3 is then lower bounded
as follows:

E[K (F3)]

=
�

(Z1,Z2,Z3,Z4)∈I
E[K (YZ1,Z2 ∩ WZ3,Z4)]

=
K (C)

8
+

1
4 −K (C)

4
+

K (C)
8

+
K (D)

4
+

K (C)K (D)
2

+ K (D)
�

1
4
−K (C)

�
+

K (C)K (D)
2

+ K (D)2 (33)

= K (D) +
�
K (D) − 1

4

�2

≥ K (D)

=
3
4
− μ12−λ1 − μ22−λ2 (34)

where (33) follows from Lemma VI.1 when
Z1 = Z3 = Z4 = 1, and otherwise from Lemma VIII.3;
and (34) follows from (32).

The current case is then finished by applying the same
reasoning used following (4) to the end of Part 1, Overlap
Case 1.

• Overlap Case 2: 2l−k = 1.

Let G = 0Al−21An−l+1 − C, so that E[K (G)] =
1
4 −K (C). Let

Yi,j =

�
DAk−l if i=0, j=1
1Al−20An+k−l if i=1, j=0

Wi,j =

�
Ak−liAl−2C if j=0
Ak−l(D ∪ GAl−1) if i=0, j=1.

Let I = {(0, 1, 0), (1, 0, 0), (1, 0, 1)} and define the set
F3 by:

F3 =
�

(Z1,Z2,Z3)∈I
(YZ1,Z2 ∩ WZ2,Z3)

where YZ1,Z2 ∩ WZ2,Z3 ⊆ Z1A
l−2Z2A

l−2Z3A
n. In this

case, F3 is comprised of 3 of the 8 possible sets obtained
from the pattern Z1A

l−2Z2A
l−2Z3A

n.
The expected Kraft sum of F3 can be lower bounded

as follows:

E[K (F3)]

=
�

(Z1,Z2,Z3)∈I
E[K (YZ1,Z2 ∩ WZ2,Z3)]

= K (C)K (D) +
K (C)

4
+

K (D)
2

+
1
4 −K (C)

2
(35)

=
(1 − 2K (C))(1 − 4K (D))

8
+ K (D)

≥ K (D) (36)

=
3
4
− μ12−λ1 − μ22−λ2 (37)

where (35) follows from Lemma VIII.3; (36) follows
since K (C) ≤ 1

2 and K (D) ≤ 1
4 ; and (37) follows

from (32).
The current case is then finished by applying the same

reasoning used following (4) to the end of Part 1, Overlap
Case 1.

• Overlap Case 3: 2l−k > 1.
This case follows from the same reasoning as in Overlap
Case 1, except using ≥ in (33), since in this case (i.e.,
when 2l − k > 1) Lemma VI.1 shows

E[K (Y1,1 ∩ W1,1)] = E[K �DAk−l ∩ Ak−lD
�
]

≥ K (D)2 .

C. Proof of Theorem VIII.1(c)

The proof of Theorem VIII.1(c) uses the following lemma,
whose proof can be found in the appendix.

Lemma VIII.4: Let n, l, k ≥ 1 be integers such that
2 ≤ l < k and n ≥ l − 1. Let C0 be a set of a fixed
size chosen uniformly at random from 0Al−20An−l+1, and
let C = 0Al−21An−l+1 ∪ C0. For i ∈ {0, 1}, let Di be a set
of a fixed size chosen uniformly at random from iAl−21 An.
For any b ∈ A, if 2l − k �= 1, then
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• (i) E[K �1Al−20An+k−l ∩ Ak−lbAl−2C
�
]

= K (C) /8
• (ii) E[K �C0A

k−1 ∩ Ak−lbAl−2C
�
]

= K (C) (K (C) − 1
4 )/2

• (iii) E[K �C0A
k−1 ∩ Ak−lD1

�
]

= (K (C) − 1
4 )K (D1)

• (iv) E[K �D1A
k−l ∩ Ak−lbAl−2C

�
]

= K (C)K (D1) /2.

If 2l − k = 1, then

• (v) E[K �1Al−20An+k−l ∩ Ak−l0 Al−2C
�
]

= K (C) /4
• (vi) E[K �C0A

k−1 ∩ Ak−l0Al−2C
�
]

= K (C) (K (C) − 1
4 )

• (vii) E[K �1Al−20An+k−l ∩ Ak−lD0

�
]

= K (D0) /2
• (viii) E[K �C0A

k−1 ∩ Ak−lD0

�
]

= 2(K (C) − 1
4 )K (D0)

• (ix) E[K �D0A
k−1 ∩ Ak−l1Al−2C

�
]

= K (C)K (D0).
Proof of Theorem VIII.1(c): Here we assume λ2 < 2λ1

(or equivalently n > l − 2 by (1)) and μ12−λ1 < 1
4 and

1
4 ≤ μ22−λ2 ≤ 1

2 .
Let C = C1 ∪ C0 be a set of size 2n − μ1, where C1 =

0 Al−21 An−l+1 and C0 is chosen uniformly at random from
among the 2n−1 length-λ1 elements of 0Al−20 An−l+1. Note
that

|C0| = 2n − μ1 − 2n−1 = 2n−1 − μ1

and

K (C0) = K (C) −K (C1) = K (C) − 1
4
.

Since 0 ≤ μ12−λ1 < 1
4 , we have 0 ≤ μ1 ≤ 2n−1, which

shows 0 ≤ |C0| ≤ 2n−1 = |0Al−20 An−l+1|, and so there are
enough words from which to choose C0. Define the following
(random) set:

F1 = 0An−C.

• For Overlap Cases 1 and 3 below:
Let D be a set of size 2λ2−1 − μ2 chosen uniformly

at random from among the 2n+l−2 length-λ2 elements of
1Al−21An, and let

F2 = (1Al−21An − D) ∪ 0Al−21An.

• For Overlap Case 2 below:
Let D be a set of size 2λ2−1 − μ2 chosen uniformly

at random from among the 2n+l−2 length-λ2 elements of
0Al−21An, and let

F2 = 1Al−21An ∪ (0Al−21An − D).

Then K (D) = 1
2 − μ22−λ2 , so

0 ≤ K (D) ≤ 1
2
− 1

4
=

1
4
.

This means there are enough words from which to choose D,
since

1
4

= K �1Al−21An
�

= K �0Al−21An
�
.

Note that none of the words in F2 start with a word from
0Al−20An−l+1 or end with a word from 0An, and so no word
in F1 ⊆ 0Al−20An−l+1 is a prefix or suffix of any word
in F2.

Also, in all 3 cases,

|F1| = |0An| − |C| = 2n − (2n − μ1) = μ1

|F2| = |1Al−21An| + |0Al−21An| − |D|
= 2n+l−2 + 2n+l−2 − 2λ2−1 + μ2

= μ2

so the set F1 contains μ1 words, each of length λ1, and
F2 contains μ2 words, each of length λ2.

In each case, we will also construct a third random set F3,
consisting of μ3 words, each of length λ3. The random set

F = F1 ∪ F2 ∪ F3

on average forms the desired fix-free code. The union of
non-random instances of F1, F2, and F3 will then yield the
asserted fix-free code.

• Overlap Case 1: 2l−k < 1.
Let

Yi,j =

⎧⎪⎨⎪⎩
C0A

k−1 if i=j=0
1Al−20An+k−l if i=1, j=0
DAk−l if i=j=1

Wi,j =

�
Ak−liAl−2C if j=0
Ak−lD if i=j=1.

Let I = A4 − (01A2 ∪ A201) and define the set F3 by:

F3 =
�

(Z1,Z2,Z3,Z4)∈I
(YZ1,Z2 ∩ WZ3,Z4)

where

YZ1,Z2 ∩ WZ3,Z4 ⊆ Z1A
l−2Z2A

k−2lZ3A
l−2Z4A

n.

Here F3 is comprised of only 9 of the 16 possible sets
obtained from the pattern

Z1A
l−2Z2A

k−2lZ3A
l−2Z4A

n,

namely by excluding patterns with (Z1, Z2) = (0, 1) or
(Z3, Z4) = (0, 1) from the union. One can verify that no
words in F1 or F2 can be either prefixes or suffixes of
any words in F3.

The expected Kraft sum of F3 is then lower bounded
as follows:

E[K (F3)]

=
�

(Z1,Z2,Z3,Z4)∈I
E[K (YZ1,Z2 ∩ WZ3,Z4)]

=
K (C) (K (C) − 1

4 )
2

+
K (C) (K (C) − 1

4 )
2

+ K (D)
�
K (C) − 1

4

�
+

K (C)
8

+
K (C)

8
+

K (D)
4

+
K (C)K (D)

2
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+
K (C)K (D)

2
+ K (D)2 (38)

= K (C) + K (D) − 1
4

+
�
K (C) + K (D) − 1

2

�2

≥ K (C) + K (D) − 1
4

=
3
4
− μ12−λ1 − μ22−λ2 (39)

where (38) follows from Lemma VI.1 when Z1 = Z3 =
Z4 = 1, and otherwise from Lemma VIII.4; and (39)
follows from the quantities |C| and |D| stated earlier in
the proof.

The current case is then finished by applying the same
reasoning used following (4) to the end of Part 1, Overlap
Case 1.

• Overlap Case 2: 2l−k = 1.
Let

Yi,j =

⎧⎪⎨⎪⎩
C0A

k−1 if i=j=0
1Al−20An+k−l if i=1, j=0
DAk−l if i=0, j=1

Wi,j =

�
Ak−liAl−2C if j=0
Ak−lD if i=0, j=1.

Let I = A3 − (11A ∪ A11) and define the set F3 by:

F3 =
�

(Z1,Z2,Z3)∈I
(YZ1,Z2 ∩ WZ2,Z3)

where

YZ1,Z2 ∩ WZ2,Z3 ⊆ Z1A
l−2Z2A

l−2Z3A
n.

In this case, F3 is comprised of only 5 of the 8 possible
sets obtained from the pattern Z1A

l−2Z2A
l−2Z3A

n,
namely excluding (Z1, Z2, Z3) being (1, 1, 0), (0, 1, 1),
or (1, 1, 1).

The expected Kraft sum of F3 can be lower bounded
as follows:

E[K (F3)]

=
�

(Z1,Z2,Z3)∈I
E[K (YZ1,Z2 ∩ WZ2,Z3)]

= K (C)
�
K (C) − 1

4

�
+ 2K (D)

�
K (C) − 1

4

�
+ K (C)K (D) +

K (C)
4

+
K (D)

2
(40)

= K (C) + K (D) − 1
4

+
�
K (C) + K (D) − 1

2

�2

+ K (D) (K (C) −K (D))

≥ K (C) + K (D) − 1
4

(41)

=
3
4
− μ12−λ1 − μ22−λ2 (42)

where (40) follows from Lemma VIII.4; (41) follows
since K (D) ≤ 1

4 ≤ K (C); and (42) follows from the
quantities |C| and |D| stated earlier in the proof.

The current case is then finished by applying the same
reasoning used following (4) to the end of Part 1, Overlap
Case 1.

• Overlap Case 3: 2l−k > 1.
This case follows from the same reasoning as in Overlap
Case 1, except using ≥ in (38), since in this case (i.e.,
when 2l − k > 1) Lemma VI.1 shows

E[K (Y1,1 ∩ W1,1)] = E[K �DAk−l ∩ Ak−lD
�
]

≥ K (D)2 .

D. Proof of Theorem VIII.1(d)

The proof of Theorem VIII.1(d) uses the following lemma,
whose proof can be found in the appendix.

Lemma VIII.5: Let n, l, k ≥ 1 be integers such that
2 ≤ l < k and n ≥ l − 1. Let C0 be a set of a fixed
size chosen uniformly at random from 0Al−20An−l+1, and
let C = 0Al−21An−l+1 ∪ C0. Let D be a set of a fixed size
chosen uniformly at random from 1Al−2C. Then

• (i) E[K �1Al−20An+k−l ∩ Ak−1C
�
] = K (C) /4

• (ii) E[K �C0A
k−1 ∩ Ak−1C

�
]

= K (C) (K (C) − 1
4 )

• (iii) E[K �DAk−l ∩ Ak−1C
�
]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K (C)K (D)
if 2l − k < 1

2(K (C) − 1
4 )K (D)

if 2l − k = 1
K (C)K (D)

if 2l − k > 1 and (k − l) � (2l − k − 1)

K (C)K (D) + K(D)(K(C)− 1
4 )( 1

2−K(C))

K(C)(2n−1−1)

if 2l − k > 1 and (k − l) | (2l − k − 1).
If 2l − k < 1, then

• (iv) E[K �1Al−20An+k−l ∩ Ak−lD
�
] = K (D) /4

• (v) E[K �C0A
k−1 ∩ Ak−lD

�
]

= (K (C) − 1
4 )K (D) .

Proof of Theorem VIII.1(d): Here we assume λ2 < 2λ1

(or equivalently n > l − 2 by (1)) and μ12−λ1 < 1
4 and

μ22−λ2 > 1
2 .

Let C = 0 Al−21 An−l+1 ∪ C0 be a set of size 2n − μ1,
where C0 is chosen uniformly at random from among the 2n−1

length-λ1 elements of 0Al−20 An−l+1. Note that

|C0| = 2n − μ1 − 2n−1 = 2n−1 − μ1,

and thus |C0| ≤ 2n−1, so there are enough words from
which to choose C0. Let D be a set of size μ2 − 2λ2−1

chosen uniformly at random from among the 2l−2 · |C| length-
λ2 elements of 1Al−2C. Define the following (random) sets:

F1 = 0An−C

F2 = 1Al−21An ∪ 0Al−21An ∪ D.
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Then K (D) = μ22−λ2 − 1
2 , so

0 ≤ K (D) ≤
�

3
4
− μ12−λ1

�
− 1

2

=
1
4
− μ12−λ1

≤ 1
2

�
1
2
− μ12−λ1

�
= K �1Al−2C

�
which means there are enough words from which to choose
D. None of the words in F2 start with a word from
0Al−20 An−l+1 or end with a word from F1, and so no word
in F1 ⊆ 0Al−20An−l+1 is a prefix or suffix of any word in
F2. Also in all 3 cases,

|F1| = |0An| − |C| = 2n − (2n − μ1) = μ1

|F2| = |1Al−21An| + |0Al−21An| + |D|
= 2n+l−2 + 2n+l−2 + μ2 − 2λ2−1

= μ2

so the set F1 contains μ1 words, each of length λ1, and
F2 contains μ2 words, each of length λ2.

In each case, we will also construct a third random set F3,
consisting of μ3 words, each of length λ3. The random set

F = F1 ∪ F2 ∪ F3

on average forms the desired fix-free code. The union of
non-random instances of F1, F2, and F3 will then yield the
asserted fix-free code.

• Overlap Case 1: 2l−k < 1.
Define the following sets:

F3,1 = 1 Al−20 An+k−l ∩ Ak−1C

F3,2 = C0A
k−1 ∩ Ak−1C

F3,3 = DAk−l ∩ Ak−1C

F3,4 = 1 Al−20 An+k−l ∩ Ak−lD

F3,5 = C0A
k−1 ∩ Ak−lD

F3 = (F3,1 ∪ F3,2) − (F3,3 ∪ F3,4 ∪ F3,5).

Each set F3,p consists of words of length λ3, and these
sets are random, since they involve the random sets C
or D. It is easy to verify that none of the words of F1

(respectively, F2) are prefixes or suffixes of any words in
F2 or F3 (respectively, F3), and that F3,1 and F3,2 are
disjoint. Note that F3,3∪F3,4∪F3,5 is the set of all words
of F3,1 ∪ F3,2 that have some word of D as a prefix or
suffix. We have

E[K (F3,1 ∪ F3,2)]

= E[K �1Al−20 An+k−l ∩ Ak−1C
�
]

+ E[K �C0A
k−1 ∩ Ak−1C

�
] (43)

=
K (C)

4
+ K (C0)K (C) (44)

= K (C)2

E[K (F3,3 ∪ F3,4 ∪ F3,5)]

≤ E[K �DAk−l ∩ Ak−1C
�
]

+ E[K �1Al−20 An+k−l ∩ Ak−lD
�
]

+ E[K �C0A
k−1 ∩ Ak−lD

�
]

= K (C)K (D) +
K (D)

4
+ K (C0)K (D) (45)

= 2K (C)K (D)
E[K (F3)]
= E[K (F3,1 ∪ F3,2)]−E[K (F3,3 ∪ F3,4 ∪ F3,5)] (46)

≥ K (C)2 − 2K (C)K (D) .

E[K (F1 ∪ F2 ∪ F3)]
= E[K (F1)] + E[K (F2)] + E[K (F3)]

= E[K (0An−C)] + E[K �1Al−21An
�
]

+ E[K �0Al−21An
�
] + E[K (D)] + E[K (F3)]

≥ 1
2
−K (C) +

1
4

+
1
4

+ K (D) + K (C)2

− 2K (C)K (D) (47)

=
3
4

+
�

1
2
−K (C)

��
1
2
−K (C) + 2K (D)

�
≥ 3

4
(48)

where (43) follows since F3,1 and F3,2 are disjoint; (44)
and (45) follow from Lemma VIII.5; (46) follows from
F3,3 ∪ F3,4 ∪ F3,5 ⊆ F3,1 ∪ F3,2; (47) follows from
Lemma V.2; and (48) follows since K (C) ≤ 1

2 and
K (D) ≥ 0.

The current case is then finished by applying the same
reasoning used following (4) to the end of Part 1, Overlap
Case 1.

• Overlap Case 2: 2l−k = 1.
Define the following sets:

F3,1 = 1 Al−20 An+l−1 ∩ Ak−1C

F3,2 = C0A
k−1 ∩ Ak−1C

F3 = (F3,1 ∪ F3,2) − (DAk−l ∩ Ak−1C).

The sets F3,1, F3,2, and (DAk−l ∩ Ak−1C) consist of
words of length λ3, and these sets are random since they
involve the random sets C or D. It is easy to verify that
none of the words of F1 (respectively, F2) are prefixes or
suffixes of any words in F2 or F3 (respectively, F3), and
that F3,1 and F3,2 are disjoint. Also note that DAk−l ∩
Ak−1C is the set of all words of F3,1 ∪ F3,2 that have
some word of D as a prefix or suffix.

Then we have

E[K (F3,1 ∪ F3,2)]

= E[1Al−20 An+l−1 ∩ Ak−1C]

+ E[C0A
k−1 ∩ Ak−1C] (49)

=
K (C)

4
+ K (C0)K (C) = K (C)2 (50)

E[K �DAk−l ∩ Ak−1C
�
] = 2

�
K (C) − 1

4

�
K (D)

(51)
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E[K (F3)] = K (C)2 − 2
�
K (C) − 1

4

�
K (D) (52)

E[K (F1 ∪ F2 ∪ F3)]
= E[K (F1)] + E[K (F2)] + E[K (F3)]

= E[K (0An−C)] + E[K �1Al−21An
�
]

+ E[K �0Al−21An
�
] + E[K (D)] + E[K (F3)]

=
�

1
2
−K (C)

�
+

1
4

+
1
4

+ K (D) + K (C)2

− 2
�
K (C) − 1

4

�
K (D) (53)

=
3
4
+
�

1
2
−K (C)

�2

+2K (D)
�

3
4
−K (C)

�
≥ 3

4
(54)

where (49) follows since F3,1 and F3,2 are disjoint; (51)
follows from Lemma V.11; (52) follows from DAk−l ∩
Ak−1C ⊆ F3,1 ∪ F3,2; (53) follows from Lemma V.2;
and (54) follows since K (C) ≤ 1

2 < 3
4 .

The current case is then finished by applying the same
reasoning used following (4) to the end of Part 1, Overlap
Case 1.

• Overlap Case 3: 2l−k > 1.

If n = 1 then μ12−λ1 < 1
4 implies μ12−λ1 = 0, in which

case the proof is covered by Theorem III.1 since then
there are codewords of only two distinct lengths λ2 and
λ3. So assume n ≥ 2.

Of the calculated expected values of the Kraft sums
of F3,1, F3,2, F3,3, F3,4, and F3,5 in Overlap Case 1,
the only quantity that changes under the condition of
Overlap Case 3 is E[K (F3,3)], as seen in Lemma V.11.
In particular, since 2l−k > 1 in this case, we have

E[K (F3,3)]

= E[K �DAk−l ∩ Ak−1C
�
]

≤ K (C)K (D) +
K (D) (K (C) − 1

4 )(1
2 −K (C))

K (C) (2n−1 − 1)
.

Therefore, in the calculation of E[K (F1 ∪ F2 ∪ F3)], we
get the lower bound

E[K (F1 ∪ F2 ∪ F3)]

≥ 3
4

+
�

1
2
−K (C)

��
1
2
−K (C) + 2K (D)

�
− K (D) (K (C) − 1

4 )(1
2 −K (C))

K (C) (2n−1 − 1)

=
3
4

+
�

1
2
−K (C)

��
1
2
−K (C)

+2K (D) · K (C) (2n − 3) + 1
4

K (C) (2n − 2)

�
≥ 3

4
(55)

where (55) follows from K (C) ≤ 1
2 and 2n ≥ 4.

The current case is then finished by applying the same
reasoning used following (4) to the end of Part 1, Overlap
Case 1.

APPENDIX

PROOFS OF LEMMAS

Proof of Lemma V.1: Suppose a sequence of positive
integers consists of μn > 0 occurrences of integer ln, for
1 ≤ n ≤ M . Suppose its Kraft sum is less than 3/4 and
define

μ�
n =

⎧⎪⎨⎪⎩
μn if 1 ≤ n ≤ M − 1

3 · 2lM−2 −
M−1�
k=1

μk2lM−k if n = M.

Note that

μ�
M =

�
3
4
−

M�
k=1

μk2−k

�
2lM + μM > μM

and the new Kraft sum is

M�
n=1

μ�
n2−ln =

M−1�
n=1

μn2−ln+
3
4
−

M�
k=1

μk2−k + μM2−lM

=
3
4
.

If the sequence with multiplicities {μ�
n} has a fix-free code,

then discarding any μ�
M − μM codewords of length M yields

a fix-free code for the sequence with multiplicities {μn}.
Proof of Lemma V.3: Suppose w ∈ Rl(U). Then the ith

bit of the length-l prefix of w must be the same as the ith bit
of the length-l suffix of w (which lies at position i + m − l).
In other words, w ∈ Rl(U) if and only if w ∈ U and wi =
wi+m−l for all 1 ≤ i ≤ l. The condition on wi is equivalent to
wi being constant whenever i is congruent to p mod (m− l),
and 1 ≤ i ≤ m, and p ∈ {1, . . . , m − l}.

For any word w ∈ Rl(U), the constant bit value wi associ-
ated with each congruence class can be assigned independently
of any other congruence class. Thus, the cardinality of Rl(U)
is equal to the product of the number Np of allowable constant
bit values for each congruence class. That is,

|Rl(U)| =
m−l�
p=1

Np.

Let Ip = {i ∈ {1, . . . , m} | i ≡ p mod (m − l)} be the
set of positions in w that are in the pth congruence class.
If Ui = A for each i ∈ Ip, then Np = 2, since any word
w ∈ Rl(U) could have either a 0 or 1 in the positions of
Ip. If there exist i, j ∈ Ip such that Ui = 0 and Uj = 1, then
Np = 0, since there is no way to label the positions in Ip with
a constant bit value. Otherwise, Np = 1, since then there exists
at least one i ∈ Ip such that Ui ∈ {0, 1}, and Uj ∈ {Ui, A}
for every other j ∈ Ip. Hence, Np equals the cardinality of
the intersection of the sets Ui taken over all i ∈ Ip.

Proof of Lemma V.4: For each i ∈ {1, 2}, let

gi = |{j : (Xi)j = A}|
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be the number of positions in Xi that are not fixed points.
Then for all u ∈ U1 ∩ U2, by independence, we have

E [K (W1 ∩ W2)]

= E

� �
u∈U1∩U2

1W1∩W2(u)2−m

�
= 2−m

�
u∈U1∩U2

P (u ∈ (W1 ∩ W2))

= 2−m
�

u∈U1∩U2

P (u ∈ W1)P (u ∈ W2)

= 2−m
�

u∈U1∩U2

P (u ∈ AaY1A
b)P (u ∈ AcY2A

d)

= 2−m
�

u∈U1∩U2

2�
i=1

|Yi| · 2m−mi

2gi+m−mi

=
|U1 ∩ U2|

2m
·

2�
i=1

|Yi|/2m

2gi/2m

= K (U1 ∩ U2)
2�

i=1

K (Yi)
K (Xi)

. (56)

Let fV denote the set of positions where V has a fixed
point. Then fU1∩U2 = fU1 ∪ fU2 , so using Lemma V.2,

K (U1 ∩ U2) = 2−|fU1∩U2 |

= 2−|fU1∪fU2 |

= 2p · 2−|fU1 |2−|fU2 |

= 2p · K (U1)K (U2) .

Combining this with (56) proves the lemma.
Proof of Corollary V.5: By Lemma V.4,

E[K �AaY Ab ∩ U
�
]

= E[K �(AaY Ab ∩ U) ∩ (An+k ∩ An+k)
�
]

= K (U) · K (Y )
K (X)

· K �An+k
� · K �An+k

�
K (An+k)

= K (U) · K (Y )
K (X)

.

Proof of Lemma V.6: If |C| = 0, then clearly the lemma
holds. Suppose |C| ≥ 1. If u ∈ X , then the probability that
u ∈ C is �|X|−1

|C|−1

��|X|
|C|
� =

|C|
|X | .

Now suppose |C| ≥ 2. If u, v ∈ X are distinct, then the
probability that u, v ∈ C is�|X|−2

|C|−2

��|X|
|C|
� =

|C|(|C| − 1)
|X |(|X | − 1)

.

Finally, note that this last equation also fits the |C| = 1 case,
since then the probability that such particular distinct u and v
lie in C is zero, as |C| contains only one element.

Proof of Lemma V.7: Let

X = CAp+1 ∩ bUbAn ∩ Ap+1C.

By Lemma V.3, |Rn+1(bUbAn)| = |U |, and so

|bUbAn − Rn+1(bUbAn)| = |U | · 2n − |U | = |U | · (2n − 1).

A word of Rn+1(bUbAn) is in X if its (n + 1)-bit prefix
(which is also its (n + 1)-bit suffix) is selected during the
construction of C, and a word of bUbAn−Rn+1(bUbAn) is in
X if the distinct (n+1)-bit prefix and suffix are both selected
during the construction of C. Thus the expected number of
words of bUbAn with a prefix and a suffix in C is

E[|CAp+1 ∩ bUbAn ∩ Ap+1C|]

= E

� �
v∈bUbAn

1CAp+1∩Ap+1C (v)

�
=

�
v∈bUbAn

P{v ∈ CAp+1 ∩ Ap+1C}

=
�

v∈bUbAn

P{∃w ∈ C : v ∈ wAp+1 ∩ Ap+1w}

+
�

v∈bUbAn

P
�
v ∈ CAp+1 ∩ Ap+1C, �w ∈ C :

v ∈ wAp+1 ∩ Ap+1w
�

= |U | · |C|
2n

+ |U | · (2n − 1)
|C| · (|C| − 1)
2n(2n − 1)

(57)

= |U | · |C|2
2n

,

where (57) follows using Lemma V.6. These words all have
length p + 2 + n, so their expected Kraft sum is

E[K �CAp+1 ∩ bUbAn ∩ Ap+1C
�
]

=
E[|CAp+1 ∩ bUbAn ∩ Ap+1C|]

2p+n+2

=
1

2p+2+n
· |U | · |C|2

2n

=
|U |
2p

·
� |C|

2n+1

�2

= K (U)K (C)2 .

Proof of Lemma V.8: First suppose n = 0 = l − 2. Then
either D = ∅ or D = {11}. Since k ≥ 3, we have 2l−k ≤ 1.
If D = ∅, then clearly E[K �DAk−l ∩ Ak−lD

�
] = 0, and so

the lemma holds. If D = {11} and 2l − k = 1, then

E[K �DAk−l ∩ Ak−lD
�
] = E[K (111)]

=
1
8

= 2 · 1
16

= 2K (D)2 ,

and if 2l − k < 1, then

E[K �DAk−l ∩ Ak−lD
�
] = E[K �11Ak−2l11

�
]

=
1
16

= K (D)2 ,

by Lemma V.2. Thus the lemma holds when n = 0 = l − 2.
Now suppose n > 0 or l > 2, so that the set 1Al−21 An

from which we choose D has at least 2 elements. We consider
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three cases, depending on the value of 2l − k. In each of the
cases, we will define a particular pattern X ⊆ {0, 1, A}k+n

such that the randomly created set DAk−l ∩ Ak−lD is a
subset of the deterministic set X . For each such case, let
G1 = Rn+l(X) and G2 = X −G1. Then |G2| = |X | − |G1|,
since G1 ⊆ X . Note that a word of G1 is in DAk−l ∩Ak−lD
if and only if the common (n + l)-bit prefix and suffix is in
D, and a word of G2 is in DAk−l ∩Ak−lD if and only if the
distinct (n + l)-bit prefix and suffix are in D. Therefore,

E[K �DAk−l ∩ Ak−lD
�
]

= E[K �DAk−l ∩ X ∩ Ak−lD
�
]

= E

��
u∈X

1DAk−l∩Ak−lD (u) · 2−(n+k)

�

=
1

2n+k

��
u∈G1

P{u ∈ DAk−l ∩ Ak−lD}

+
�

u∈G2

P{u ∈ DAk−l ∩ Ak−lD}
�

=
1

2n+k

�
|G1| · |D|

2n+l−2
+|G2| · |D|(|D|−1)

2n+l−2(2n+l−2−1)

�
(58)

=
|D|

22n+k+l−2

�
|G1| + (|XAn| − |G1|) · |D| − 1

2n+l−2 − 1

�
,

(59)

where (58) follows from Lemma V.6.
• Case 1: 2l − k < 1.

Let X = 1Al−21Ak−2l1Al−21An. By Lemma V.3,
|G1| = 2k−l−2. Therefore, from (59),

E[K �DAk−l ∩ Ak−lD
�
]

=
|D|

22n+k+l−2

·
�

2k−l−2 +
(|D| − 1)

�
2k+n−4 − 2k−l−2

�
2n+l−2 − 1

�

=
� |D|

2n+l

�2

= K (D)2 .

• Case 2: 2l − k = 1.
Let X = 1Al−21Al−21An. By Lemma V.3, |G1| = 2l−2.
Therefore, from (59),

E[K �DAk−l ∩ Ak−lD
�
]

=
|D|

22n+k+l−2

·
�

2l−2 +
(|D| − 1)

�
22l−4+n − 2l−2

�
2n+l−2 − 1

�

= 2
� |D|

2n+l

�2

= 2K (D)2 .

• Case 3: 2l − k > 1.
Let

a = k − l − 1
b = 2l − k − 2

X = 1Aa1Ab1Aa1 An.

By Lemma V.3, |G1| = β2a, where

β =

�
1 if (a + 1) | (b + 1)
1/2 if (a + 1) � (b + 1).

Therefore, from (59),

E[K �DAk−l ∩ Ak−lD
�
]

=
|D|

22n+k+l−2

·
�
|G1| + (2k+n−4 − |G1|) · |D| − 1

2n+l−2 − 1

�
=
� |D|

2n+l

�2

+
� |D|

2n+l

�
(2β − 1)(1

4 − |D|2−l−n)
2n+l−2 − 1

= K (D)2 +
K (D) (1

4 −K (D))(2β − 1)
2n+l−2 − 1

.

Proof of Lemma V.10: First suppose D is a set of a fixed
size chosen uniformly at random from 1Al−2C. Then given a
word is in 1Al−2CAk−l∩g(C), the probability that that word
is in DAk−l is the probability that the (n + l)-bit prefix is
in D, which is

|D|/|1Al−2C| = K (D) /(K (C) /2).

Therefore, letting

X = 1Al−2CAk−l ∩ g(C)

(and noting that DAk−l ∩ g(C) = DAk−l ∩ X),

E[K �DAk−l ∩ g(C)
�
]

=
1

2n+k
E

⎡⎣ �
u∈An+k

1DAk−l∩X(u)

⎤⎦
=

1
2n+k

�
u∈An+k

E [1DAk−l∩X(u)]

=
1

2n+k

�
u∈An+k

P (u ∈ DAk−l ∩ X)

=
1

2n+k

�
u∈An+k

P (u ∈ DAk−l | u ∈ X)P (u ∈ X)

=
K (D)

K (C) /2
· 1
2n+k

�
u∈An+k

P (u ∈ X)

=
K (D)

K (C) /2
E[K �1Al−2CAk−l ∩ g(C)

�
].

The other cases follow similarly.
Proof of Lemma V.11: For any C as in the Lemma state-

ment, we have

K �CAk−l ∩ Ak−lC
�

= K �C1A
k−l ∩ Ak−lC1

�
+ K �C1A

k−l ∩ Ak−lC0

�
−K �C0A

k−l ∩ Ak−lC1

�
+ K �C0A

k−l ∩ Ak−lC0

�
.
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Using Lemma V.4,

K �C1A
k−l ∩ Ak−lC1

�
=

�
0 if k = 2l − 1
1
16 otherwise

E[K �C0A
k−l ∩ Ak−lC1

�
] =

�K(C0)
2 if k = 2l − 1

K(C0)
4 otherwise

E[K �C1A
k−l ∩ Ak−lC0

�
] =

�
0 if k = 2l − 1
K(C0)

4 otherwise,

and by Corollary V.9,

E[K �C0A
k−l ∩ Ak−lC0

�
]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K (C0)
2

if 2l − k < 1
2K (C0)

2

if 2l − k = 1
K (C0)

2

if 2l − k > 1 and (k − l) � (2l − k − 1)

K (C0)
2 + K(C0)(

1
4−K(C0))

2n−1−1

if 2l − k > 1 and (k − l) | (2l − k − 1).

Thus

E[K �CAk−l ∩ Ak−lC
�
]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(K (C0) + 1
4 )2

if 2l − k < 1
K (C0) (2K (C0) + 1

2 )
if 2l − k = 1

(K (C0) + 1
4 )2

if 2l − k > 1
and (k − l) � (2l − k − 1)

(K (C0) + 1
4 )2 + K(C0)(

1
4−K(C0))

2n−1−1

if 2l − k > 1
and (k − l) | (2l − k − 1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K (C)2

if 2l − k < 1
2K (C) (K (C) − 1

4 )
if 2l − k = 1

K (C)2

if 2l − k > 1
and (k − l) � (2l − k − 1)

K (C)2 + (K(C)− 1
4 )( 1

2−K(C))

2n−1−1

if 2l − k > 1
and (k − l) | (2l − k − 1).

The lemma now follows using Lemma V.10 since

E[K �DAk−l ∩ Ak−1C
�
]

= E[K �DAk−l ∩ 1Al−2CAk−l ∩ Ak−1C
�
]

=
K (D)

K (C) /2
· E[K �1Al−2CAk−l ∩ Ak−1C

�
]

=
K (D)
K (C)

· E[K �CAk−l ∩ Ak−lC
�
] (60)

where (60) follows by Lemma V.2.

Proof of Lemma V.12: First suppose n ≤ a. Then

E[K �1AaCAa+b+2 ∩ 1 Aa0 Ab0 Aa1 An

∩Aa+b+2CAa+1
�
]

= E[K �1Aa(CAb+1 ∩ 0 Ab0 An ∩ Ab+1C)Aa−n1An
�
]

= K (1Aa)E[K �CAb+1 ∩ 0 Ab0 An ∩ Ab+1C
�
]

· K �Aa−n1An
�

(61)

=
1
2
· K (C)2 K �Ab

� · 1
2
· (62)

=
K (C)2

4
(63)

where (61) follows from Lemma V.2; (62) follows from
Lemma V.2 and Lemma V.7; and (63) follows from
Lemma V.2.

Now suppose n > a. By Lemma V.3,

|Rn+1(0Ab0Aa1An−(a+1))|

=

�
2b−1 if (b + 1) � (a + 1)
0 otherwise

. (64)

Let X = Rn+1(0Ab0Aa1An−(a+1)). If (b+1) � (a+1), then
the expected Kraft sum is

E[K �1AaCAa+b+2 ∩ 1 Aa0 Ab0 Aa1 An

∩Aa+b+2CAa+1
�
]

= E
!
K
�
1Aa(CAb+1 ∩ 0 Ab0 Aa1 An−(a+1)

∩Ab+1C)Aa+1
� "

(65)

= K (1Aa)

· E
!
K
�
CAb+1 ∩ 0 Ab0 Aa1 An−(a+1) ∩ Ab+1C

�"
· K �Aa+1

�
=

1
2
E
!
K
�
CAb+1 ∩ 0 Ab0 Aa1 An−(a+1) ∩ Ab+1C

�"
(66)

=
1
2

� |X |
2n+b+2

· |C|
2n

+
�

1
8
− |X |

2n+b+2

� |C|(|C|−1)
2n(2n−1)

�
(67)

=
1

2n+4

� |C|
2n

+
2n − 1

2n
· |C|(|C| − 1)

2n − 1

�
(68)

=
|C|2
2n+4

=
K (C)2

4
(69)

where (66) follows from Lemma V.2; (67) follows from the
fact that K �0Ab0Aa1An−(a+1)

�
= 1/8 (by Lemma V.2) and

from Lemma V.6; (68) follows from (64).
On the other hand, if (b + 1) | (a + 1), then following the

same Kraft sum calculation as in (65)-(67) gives

E[K �1AaCAa+b+2 ∩ 1 Aa0 Ab0 Aa1 An

∩Aa+b+2CAa+1
�
]

=
1
2

�
0

2n+b+2
· |C|

2n
+
�

1
8
− 0

2n+b+2

� |C|(|C|−1)
2n(2n−1)

�
(70)
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=
K (C)2

4
− 1

2n+4
· |C|

2n
+

1
2n+4

· |C|(|C| − 1)
2n(2n − 1)

(71)

=
K (C)2

4
− |C|

22n+4

�
1 − |C| − 1

2n − 1

�
=

K (C)2

4
− K (C)

2n+3
· 2n − |C|

2n − 1

=
K (C)2

4
− K (C) (1

2 −K (C))
4(2n − 1)

where (70) follows from (64); and (71) follows from (68)
and (69).

Proof of Lemma V.13: Let X = 0Aa0Ab0Aa1An. If n ≤
b, then using Lemma V.3,

|Rn+1(X)|
= |Rn+1(0Aa0An)Ab−n0Aa1An|
= |Rn+1(0Aa0An)| · |Ab−n0Aa1An|
= 2a · 2a+b = 22a+b.

If b < n ≤ a + b + 1, then using Lemma V.3,

|Rn+1(X)|
= |Rn+1(0Aa0Ab0An−(a+b+1))Aa+b+1−n1An|
= |Rn+1(0Aa0Ab0An−(a+b+1))| · |Aa+b+1−n1An|

=

�
22a+b+1 if (a + 1) | (b + 1)
22a+b otherwise.

If n > a + b + 1, then

|Rn+1(X)|
= |Rn+1(0Aa0Ab0Aa1An−(a+b+2))Aa+b+2|
= |Rn+1(0Aa0Ab0Aa1An−(a+b+2))| · |Aa+b+2|
= 0,

using Lemma V.3, since Xa+b+3 = 0, X2a+b+4 = 1, and
a + b + 3 ≡ (2a + b + 4) mod (a + 1).

Then using a similar probability calculation as in the proof
of Lemma V.7, when |Rn+1(X)| = 22a+b we have

E[K (X)]

= E[K (Rn+1(X))] · |C|
2n

+ E[K �A2a+b+n − Rn+1(X)
�
] · |C|(|C| − 1)

2n(2n − 1)

=
22a+b

22a+b+n+4
· |C|

2n

+
�

22a+b+n

22a+b+n+4
− 22a+b

22a+b+n+4

�
· |C|(|C| − 1)

2n(2n − 1)

=
1
4
· |C|2
22(n+1)

=
K (C)2

4
.

Otherwise, when |Rn+1(X)| = 22a+b + β22a+b for β ∈
{−1, 1}, we have, using the previous calculation,

E[K (X)]

=
K (C)2

4
+ β

22a+b

22a+b+n+4

� |C|
2n

− |C|(|C| − 1)
2n(2n − 1)

�
=

K (C)2

4
+ β

1
4(2n − 1)

K (C)
�

1
2
−K (C)

�
.

Proof of Lemma V.14: Let

G1 = 1Aa1AbRn+1(0Aa0An)

G2 = 1Aa1Ab0Aa0An − G1

H1 = Rn+a+b+3(1Aa1Ab0Aa0An)

H2 = 1Aa1Ab0Aa0An − H1.

Then H1 ⊆ G1 and G2 ⊆ H2. Then Lemma V.3 implies

|G1 ∩ H1| = |H1| =

�
2a−1 if (a+1) � (b+1)
0 otherwise

|G1 ∩ H2| = |G1 − H1|

=

�
22a+b − 2a−1 if (a+1) � (b+1)
0 otherwise

|G2 ∩ H2| = |G2| = 22a+b+n − |G1|
= 22a+b+n − 2a+b2a

= 22a+b(2n − 1).

Let S = DAa+1 ∩ 1Aa1Ab0Aa0An ∩Aa+1D. If C is cho-
sen uniformly at random from 0An, and D is chosen uniformly
at random from 1Aa+b+1C ⊆ 1Aa+b+10An, then for any
word of length n+l+a+1, the probability it lies in S∩G1∩H1

is
|C|
2n

· |D|
|C| · 2a+b+1

,

the probability it lies in S ∩ G1 ∩ H2 is

|C|
2n

· |D| · (|D| − 1)
|C| · 2a+b+1 · (|C| · 2a+b+1−1)

,

and the probability it lies in S ∩ G2 ∩ H2 is

|C| · (|C|−1)
2n(2n−1)

· |D| · (|D| − 1)
|C| · 2a+b+1 · (|C| · 2a+b+1−1)

.

Therefore, if (a + 1) � (b + 1), then

E[K (S)]

= E[K (S ∩ G1 ∩ H1)] + E[K (S ∩ G1 ∩ H2)]

+ E[K (S ∩ G2 ∩ H2)]

=
2a−1

2n+2a+b+4
· |C|

2n
· |D|
|C| · 2a+b+1

+
22a+b − 2a−1

2n+2a+b+4
· |C|

2n

· |D| · (|D| − 1)
|C| · 2a+b+1(|C| · 2a+b+1 − 1)
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+
22a+b(2n − 1)

2n+2a+b+4
· |C| · (|C| − 1)

2n(2n − 1)

· |D| · (|D| − 1)
|C| · 2a+b+1(|C| · 2a+b+1 − 1)

= K (D)2 (72)

where (72) follows from K (D) = |D|
2n+a+b+3 .

On the other hand, if (a + 1) | (b + 1), then

E[K (S)]

= K (D)2 − 2a−1

2n+2a+b+4
· |C|

2n
· |D|
|C| · 2a+b+1

+
2a−1

2n+2a+b+4
· |C|

2n

· |D| · (|D| − 1)
|C| · 2a+b+1(|C| · 2a+b+1 − 1)

= K (D)2 − K (D)
|C| · 2a+b+1−1

�K (C)
2

−K (D)
�

.

Proof of Lemma V.15: Let r = 2n and s = 2l. Then

f(x, y) = y2

�
xrs

xrs − 2

�
−y

�
1
2
−

1
2 − x

2(r − 1)
+

x

xrs − 2

�
+

1
16

+
x(1

2 − x)
2(r − 1)

.

Since

f
�
x,

x

2

�
=

r

4(r − 1)

�
x − 1

2

��
x − 1

2
+

1
2r

�
≥ 0 ∀x ≤ 1

2
− 1

2r

f

�
1
2
, y

�
=
�

rs

rs − 4

��
y − 1

4

��
y − 1

4
+

1
rs

�
≥ 0 ∀y ≤ 1

4
− 1

rs

and f(1/2, 1/4) = 0, the lemma holds when y = x/2 and
also when x = 1/2. Note that

f

�
x,

x

2
− 1

rs

�
=

1
4

�
1
2
− x

��
1
2
− x − x

r − 1

�
+

1
2 − x

rs

�
1 − 1

2(r − 1)

�
which is 0 when x = 1

2 , and when x ≤ 1
2 − 1

2r , satisfies

f

�
x,

x

2
− 1

rs

�
≥ 1

4
· 1
2r

�
1
2r

− 1
2r

�
+

1
2r2s

�
1 − 1

2

�
> 0.

Thus f(x, y) ≥ 0 when y = x
2 − 1

rs and x ∈ [0, 1
2 − 1

2r ]∪{ 1
2},

i.e., the lemma holds when y = x
2 − 1

rs .
For all x ∈ [ 1

2r , 1
2− 1

2r ], since xrs ≥ (1/2r)rs ≥ 4, we have

∂f

∂y

			
y= x

2− 1
rs

= −
�

1
2
−x

��
2r − 3
r − 1

�
− 2x

xrs − 2
< 0.

Thus, for any fixed x ∈ [0, 1
2 − 1

2n+1 ], the function f is a
convex parabola in y, which at y = x

2− 1
rs is both non-negative

and has a negative slope, and is therefore non-negative for all
y ≤ x

2 − 1
rs .

Proof of Lemma VI.1: For cases (i)–(ix), we will assume
2l − k �= 1. For these cases, the set

Z1A
l−2Z2A

n+k−l ∩ Ak−lZ3A
l−2Z4A

n

has bits Z2 and Z3 in different positions, so it is either the
pattern

Z1A
l−2Z2A

k−2lZ3A
l−2Z4A

n

(when 2l − k < 1) or the pattern

Z1A
k−l−1Z3A

2l−k−2Z2A
k−l−1Z4A

n

(when 2l− k > 1), which in both cases has exactly four fixed
bits.

• (i) The set

1Al−20An+k−l ∩ Ak−l0Al−21An

is a pattern with exactly four fixed bits, and thus, by
Lemma V.2, its Kraft sum is 1/16.

• (ii),(iii) The set

CAk−1 ∩ 0Al−2b1A
n+k−l ∩ Ak−l0Al−21An

equals CAk−1 ∩ 0U (where U ∈ {0, 1, A}n+k−1 is
a pattern with exactly three fixed bits), and thus, by
Corollary V.5, its expected Kraft sum is K (C) /8. Similar
reasoning proves case (iii).

• (iv) The set

CAk−1 ∩ 0Al−2b1A
n+k−l ∩ Ak−lb2A

l−2C

equals CAk−1∩ 0U0An∩Ak−1C (where U∈{0, 1, A}k−2

is a pattern with exactly two fixed bits) and thus, by
Lemma V.7, its expected Kraft sum is K (C)2 /4.

• (v),(vi) The set

DAk−l ∩ Ak−l0Al−21An

equals DAk−l ∩ U , where U ∈ {0, 1, A}n+k is either
the pattern 1Al−21Ak−2l0Al−21An (when 2l − k < 1)
or the pattern 1Ak−l−10 A2l−k−21 Ak−l−11 An (when
2l − k > 1), both of which have exactly four fixed bits.
Thus, by Corollary V.5, the set’s expected Kraft sum is
K (D) /4. Similar reasoning proves case (vi).

• (vii),(viii) The set

CAk−1 ∩ 0Al−2b1A
n+k−l ∩ Ak−lD,

by Lemma V.4, has expected Kraft sum is
K (C)K (D) /2. Similar reasoning proves case (viii).

• (ix) This case follows immediately from Lemma V.8.

For cases (x)–(xvi), we will assume 2l − k = 1. For these
cases, the set

Z1A
l−2Z2A

n+k−l ∩ Ak−lZ3A
l−2Z4A

n

is empty if Z2 �= Z3, and otherwise is a pattern with exactly
three fixed bits.
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• (x) The set

1Al−20An+k−l ∩ Ak−l0Al−21An

is a pattern with exactly three fixed bits, and thus, by
Lemma V.2. its Kraft sum is 1/8.

• (xi),(xii) The set

CAk−1 ∩ 0Al−20An+k−l ∩ Ak−l0Al−21An

equals CAk−1 ∩ 0U , (where U ∈ {0, 1, A}n+k−1 is
a pattern with exactly two fixed bits), and thus, by
Corollary V.5, its expected Kraft sum is K (C) /4. Similar
reasoning proves case (xii).

• (xiii) The set

CAk−1 ∩ 0Al−2b1A
n+k−l ∩ Ak−lb1A

l−2C

equals CAk−1 ∩ 0U0An ∩ Ak−1C (where U ∈
{0, 1, A}k−2 is a pattern with exactly one fixed bit), and
thus, by Lemma V.7, its expected Kraft sum is K (C)2 /2.

• (xiv),(xv) The set

CAk−1 ∩ 0Al−21An+k−l ∩ Ak−lD

equals CAk−1 ∩ Ak−lD, and thus, by Lemma V.4, its
expected Kraft sum is K (C)K (D). Similar reasoning
proves case (xv).

• (xvi) This case follows directly from Lemma V.8.

Proof of Lemma VII.1: The proof is similar to that of
Lemma VI.1. For cases (i)–(iii), we will assume 2l − k �= 1.

• (i) The set

1Al−2(0An−C)Ak−l ∩ Ak−l0Al−21An

equals the set Al−1(0An−C)Ak−l ∩ U (where U ∈
{0, 1, A}n+k is a pattern with exactly four fixed bits),
and thus, by Corollary V.5, its expected Kraft sum is
K (0An−C) /8 = (1

2 − K (C))/8, since 0An − C is
chosen uniformly at random from 0An (by Lemma V.2).

• (ii) The expected Kraft sum of the set

1Al−2(0An−C)Ak−l ∩ Ak−l0 Al−2C

= (1Al−20An+k−l ∩ Ak−l0 Al−2C)

− (1Al−2CAk−l ∩ Ak−l0 Al−2C)

is 1
8K (C) − 1

4K (C)2 = 1
4K (C) (1

2 − K (C)), since the
expected Kraft sums of its two parts are 1

8K (C) (by
Lemma VI.1) and 1

4K (C)2 (by Lemma V.7).
• (iii) The sets C and D1 are chosen independently

of each other, and the locations of the fixed bits of
the sets from which they are drawn do not overlap
(since 2l − 1 �= k). Therefore, the expected Kraft sum
of 1Al−2(0An−C)Ak−l ∩ Ak−lD1, by Lemma V.4, is
(1/2)(1

2 − K (C))K (D1), since the probability that it
contains any particular word of length n+k is the product
of the probabilities that the word lies in each of the two
intersected sets.

For cases (iv)–(ix), we will assume 2l − k = 1.
• (iv) The set

1Al−2(0An−C)Ak−l ∩ Ak−l0Al−21An

equals the set Al−1(0An−C)Ak−l ∩ U (where U ∈
{0, 1, A}n+k is a pattern with exactly three fixed bits),
and thus, by Corollary V.5, its expected Kraft sum is
1
4K (0An−C) = 1

4 (1
2 −K (C)), since 0An−C is chosen

uniformly at random from 0An.
• (v) By Lemma VI.1,

E[K �CAk−1 ∩ 0Al−21An+k−l ∩ Ak−l1Al−2C
�
]

=
K (C)2

2
,

and so by Lemma V.10, using

g(C) = CAk−1 ∩ 0Al−21An+k−l

and
Ak−lD2 ⊆ Ak−l1Al−2C,

we get

E[K �CAk−1 ∩ 0Al−21An+k−l ∩ Ak−lD2

�
]

=
K (C)2

2
· K (D2)
K (C) /2

= K (C)K (D2) .

• (vi) The expected Kraft sum of the set

1Al−2(0An−C)Ak−l

∩ Ak−l0 Al−2C

= 1Al−20An+k−l

∩ Ak−l0 Al−2C − 1Al−2CAk−l ∩ Ak−l0 Al−2C.

is 1
4K (C) − 1

2K (C)2 = 1
2K (C) (1

2 − K (C)), since
the expected Kraft sums of its two parts are K (C) /4
(by Lemma VI.1) and K (C)2 /2 (by Lemma V.2 and
Lemma V.7).

• (vii) Since 1Al−2CAk−l ∩ Ak−l0Al−21An equals
Al−1CAk−l ∩ U (where U ∈ {0, 1, A}n+k is a pattern
with exactly three fixed bits), by Corollary V.5. its
expected Kraft is K (C) /4. Then by Lemma V.10,

E[K �D2A
k−l ∩ Ak−l0Al−21An

�
]

=
(K (C) /4)K (D2)

K (C) /2
= K (D2) /2.

• (viii) By Lemma V.2 and Lemma V.7, we have

E[K �1Al−2CAk−l ∩ Ak−l0Al−2C
�
]

= K �1Al−2
�
E[K �CAk−l ∩ Al−1C

�
]

= K (C)2 /2

so by Lemma V.10, the claimed expected Kraft sum is

(K (C)2 /2)K (D2)
K (C) /2

= K (C)K (D2) .

Proof of Lemma VIII.2: The proof is similar to that of
Lemma VI.1. For cases (i)–(iii), we will assume 2l − k < 1.
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• (i) The set

CAl−2−n0An+k−l ∩ Ak−l(0An−C)Al−2−n1An

= CAl−2−n0Ak−2l0Al−21An

− CAl−2−n0Ak−2lCAl−2−n1An

has expected Kraft sum

1
8
K (C) − 1

4
K (C)2 = K (C) (

1
2
−K (C))/4,

since its first term has expected Kraft sum K (C) /8 (by
Corollary V.5) and its second term has expected Kraft
sum K (C)2 /4 (by Lemma V.2 and Lemma V.7).

• (ii) This case follows from Lemma V.12, since 0An−C
is chosen uniformly at random from 0An, and since n ≤
l − 2.

• (iii) Since 0An−C and D1 are chosen independently and
the fixed bits of 1Al−21An+k−l and Ak−l0Al−21An do
not overlap, Lemma V.4 implies the claimed expected
Kraft sum is

K �1Al−21An+k−l
� · K (D1)

K (1Al−21An)

· K �Ak−l0Al−21An
� · K (0An−C)

K (0An)

=
K (D1) (1

2 −K (C))
2

.

For cases (iv)–(v), we will assume 2l−k = 1.
• (iv) The set

CAl−2−n0An+k−l ∩ Ak−l(0An−C)Al−2−n1An

= CAl−2−n0Al−21An − CAl−2−nCAl−2−n1An

has expected Kraft sum

1
4
K (C) − 1

2
K (C)2 = K (C) (

1
2
−K (C))/2,

where its first term has expected Kraft sum K (C) /4 (by
Lemma VI.1) and its second term has expected Kraft sum
K (C)2 /2 (by Lemma V.2 and Lemma V.7).

• (v) The expected Kraft sum of

1Al−2(0An−C)Ak−l ∩ Ak−l(0An−C)Al−2−n1An

= 1Al−2(0An−C)Al−2−n1An

is (1
2 −K (C))/4 by Lemma V.2.

For cases (vi)–(xii), we will assume 2l−k > 1.
• (vi) Since

K �CAl−2−n0An+k−l ∩ Ak−l1Al−2C
�
=

1
4
K (C)2

by Lemma VI.1, the desired expected Kraft sum is

(K (C)2 /4)K (D2)
K (C) /2

= K (C)K (D2) /2.

• (vii) By Lemma V.10, the expected Kraft sum of the set

1Al−2(0An−C)Ak−l ∩ Ak−l1Al−2C

= 1 Ak−l−11 A2l−k−20 Ak−l−1C

− 1 Ak−l−11 A2l−k−2
�
CAk−l ∩ 0 Ak−l−10 An

∩Ak−lC
�

is

K (D2)
K (C) /2

�
K (C)

8
− K (C)2

4

�

=
(1
2 −K (C))K (D2)

2

since the expected Kraft sum of the first term is K (C) /8
(by Lemma V.2) and the expected Kraft sum of the second
term is K (C)2 /4 (by Lemma V.2 and Lemma V.7).

• (viii) Lemma V.2 and Lemma V.7 imply

K �1Al−2−nCAk−l ∩ Ak−l0Al−2C
�

= K �1Ak−l−10 A2l−k−2(CAk−l ∩ 0 Ak−l−10 An

∩Ak−lC)
�

= K (C)2 /4

so the claimed expected Kraft sum is

1
4
K (C)2

K (D2)
K (C) /2

= K (C)K (D2) /2.

• (ix) We have

K �CAl−2−n0An+k−l

∩Ak−l(0An−C)Al−2−n1An
�

= K �CAl−2−n0An+k−l ∩ Ak−l0Al−21An
�

−K �CAk−l ∩ 0 Ak−l−10 A2l−k−20 Ak−l−11An

∩Ak−lC
�

=
K (C)

8
− K (C)2

4

−

⎧⎪⎨⎪⎩
K(C)( 1

2−K(C))

4(2n−1) if n ≥ 2l − k − 1
and (k − l) | (2l − k − 1)

0 otherwise

by Lemma V.2 and Lemma V.13 (with a = k− l− 1 and
b = 2l − k − 2).

• (x) This case follows immediately by Lemma V.12 (since
0An−C is drawn uniformly at random from 0An), with
a = k − l − 1 and b = 2l − k − 2.

• (xi) We have

K �1Al−2CAk−l ∩ Ak−l(0An−C)Al−2−n1An
�

= K �1Al−2CAk−l ∩ Ak−l0Al−21An
�

−K �1Al−2CAk−l ∩ Ak−lCAl−2−n1An
�

=
K (C)

8
− K (C)2

4

+

⎧⎪⎨⎪⎩
K(C)( 1

2−K(C))

4(2n−1) if n ≥ k − l

and (2l−k−1) | (k−l)
0 otherwise

,
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so by Lemma V.10,

E[K �D2A
k−l ∩ Ak−l(0An−C)Al−2−n1An

�
]

=
K (D2)
K (C) /2

· K �1Al−2CAk−l ∩ Ak−l(0An−C)Al−2−n1An
�

=
(1
2 −K (C))K (D2)

2

+

⎧⎪⎨⎪⎩
K(D2)( 1

2−K(C))

2(2n−1) if n ≥ k − l

and (2l−k−1) | (k−l)
0 otherwise

.

• (xii) This case follows directly from Lemma V.14.

Proof of Lemma VIII.3: The proof is similar to that of
Lemma VI.1. For cases (i)–(iv), we will assume 2l − k �= 1.

• (i) The set

1Al−20An+k−l ∩ Ak−lbAl−2C

equals the set U0An∩Ak−1C (where U ∈ {0, 1, A}k−1 is
a pattern with exactly three fixed bits), so by Lemma V.2,
its expected Kraft sum is K (C) /8.

• (ii) The claimed expected Kraft sum is

(1/4)K (G) =
�

1
4
−K (C)

�
/4,

by Lemma V.4.
• (iii) The claimed expected Kraft sum is

K (D1) · (1/4)K (C) /(1/2) = K (C)K (D1) /2,

by Lemma V.4.
• (iv) The claimed expected Kraft sum is

K (D1)K (G) = K (D1)
�

1
4
−K (C)

�
,

by Lemma V.4.

For cases (v)–(viii), we will assume 2l−k = 1.

• (v) The set

1Al−20An+k−l ∩ Ak−l0Al−2C

equals the set 1Al−20Al−2C, which has expected Kraft
sum K (C) /4 by Lemma V.2.

• (vi) The set

1Al−20An+k−l ∩ Ak−lGAl−2

equals the set 1Al−2GAl−2, which has expected Kraft
sum K (G) /2 = (1

4 −K (C))/2 by Lemma V.2.
• (vii) We have

E[K �1Al−20An+k−l ∩ Ak−lCAl−1
�
]

= E[K �1Al−2CAl−1
�
] = K (C) /2

by Lemma V.2, so the claimed expected Kraft
sum is (K (D2) /K (C))(K (C) /2) = K (D2) /2, by
Lemma V.10.

• (viii) We have

Rn+1(0Al−21Al−20Al−21An−(l−1))

= 22(l−2) = 22l−4 = 2k−3

by Lemma V.3. Therefore, using Lemma V.6, the
expected Kraft sum of

CAk−1 ∩ Ak−l1Al−2C

⊆ 0Al−21Al−20Al−21An−(l−1)

is

2k−3

2n+k
· |C|
2n−1

+
�

1
16

− 2k−3

2n+k

�
· |C|(|C| − 1)
2n−1(2n−1 − 1)

=
|C|

22(n+1)
+

1
8

�
2n−1 − 1

2n

� |C|(|C| − 1)
2n−1(2n−1 − 1)

=
|C|2

22(n+1)
= K (C)2 .

Thus the claimed expected Kraft sum is

(K (D2) /K (C))K (C)2 = K (C)K (D2) ,

by Lemma V.10.

Proof of Lemma VIII.4: The proof is similar to that of
Lemma VI.1. For cases (i)–(iv), we will assume 2l − k < 1.

• (i) The set

1Al−20An+k−l ∩ Ak−lbAl−2C

equals the set U0An∩Ak−1C (where U ∈ {0, 1, A}k−1 is
a pattern with exactly three fixed bits), so, by Lemma V.2,
its expected Kraft sum is K (C) /8.

• (ii) We have

Rn+1(0Al−20Ak−1 ∩ Ak−lbAl−20Al−20An−(l−1))

= 2k−4

by Lemma V.3, since exactly 3 of the first k − 1 posi-
tions in the set above are fixed bits. Therefore, using
Lemma V.6,

E[K �C0A
k−l ∩ Ak−1bAl−2C0

�
]

=
2k−4

2n+k

|C0|
2n−1

+
�

1
25

− 2k−4

2n+k

� |C0|(|C0| − 1)
2n−1(2n−1 − 1)

=
|C0|

22n+3
+

1
16

�
2n−1 − 1

2n

� |C0|(|C0| − 1)
2n−1(2n−1 − 1)

=
1
2
· |C0|2
22(n+1)

=
K (C0)

2

2
.
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Corollary V.5 then implies

E[K �C0A
k−1 ∩ Ak−lbAl−2C

�
]

= E
!
K
�
C0A

k−1 ∩ Ak−lbAl−20Al−21An−(l−1)
�"

+ E[K �C0A
k−1 ∩ Ak−lbAl−2C0

�
]

=
K (C0)

8
+

K (C0)
2

2

=
K (C0) (1

4 + K (C0))
2

=
K (C) (1

4 −K (C))
2

.

• (iii) By Lemma V.4, the claimed expected Kraft sum is

K (C0)K (D1) =
�
K (C) − 1

4

�
K (D1) .

• (iv) By Lemma V.4, the claimed expected Kraft sum is

K (D1) · (1/4)K (C) /(1/2) = K (C)K (D1) /2.

For cases (v)–(ix), we will assume 2l−k = 1.

• (v) The set

1Al−20An+k−l ∩ Ak−l0Al−2C

equals the set 1Al−20Al−2C, so the claimed expected
Kraft sum is K (C) /4 by Lemma V.2.

• (vi) We have

E[K �C0A
k−1 ∩ Ak−l0Al−2C

�
]

= E
!
K
�
C0A

k−1 ∩ Ak−l0Al−20Al−11An−(l−1)
�"

+ E[K �C0A
k−1 ∩ Ak−l0Al−2C0

�
].

The first expected Kraft sum on the right equals
K (C0) /4 by Corollary V.5, and the second expected
Kraft sum on the right equals K (C0)

2 by Corollary V.9.
Thus the claimed expected Kraft sum is

K (C0) /4 + K (C0)
2 = K (C0)

�
1
4

+ K (C0)
�

=
�
K (C) − 1

4

�
K (C) .

• (vii) The set 1Al−20An+k−l ∩ Ak−lD0 equals the set
1Al−2D0, and so the claimed expected Kraft sum is
K (D0) /2 by Lemma V.2.

• (viii) By Lemma V.4, the claimed expected Kraft sum is

2K (C0)K (D0) = 2
�
K (C) − 1

4

�
K (D0) .

• (ix) We have

E[K �D0A
k−l ∩ Ak−l1Al−2C

�
]

= E[K �D0A
k−l ∩ Ak−l1Al−2C0

�
]

+ E
!
K
�
D0A

k−l ∩ Ak−l1Al−20Al−21An−(l−1)
�"

.

The first expected Kraft sum on the right equals

2K (D0) · (1/8)K (C0) /(1/4) = K (C0)K (D0)

by Lemma V.4, and the second expected Kraft sum on the
right equals 2K (D0) (1/8) = K (D0) /4 by Lemma V.4.
Thus the claimed expected Kraft sum is

K (C0)K (D0) +
K (D0)

4

= (K (C) − 1/4)K (D0) +
K (D0)

4
= K (C)K (D0) .

Proof of Lemma VIII.5: The proof is similar to that of
Lemma VI.1.

• (i) We have

1Al−20An+k−l ∩ Ak−1C = 1Al−20Ak−l−1C,

so its expected Kraft sum is K (C) /4 by Lemma V.2.
• (ii) If 2l − k �= 1, then

E[K �C0A
k−1 ∩ Ak−1C

�
]

= E[K �C0A
k−1 ∩ Ak−l0Al−2C

�
]

+ E[K �C0A
k−1 ∩ Ak−l1Al−2C

�
]

= K (C)
�
K (C) − 1

4

�
by Lemma VIII.4. If 2l − k = 1, then

E[K �C0A
k−1 ∩ Ak−1C

�
]

= E[K �C0A
k−1 ∩ Ak−l0Al−2C

�
]

= K (C)
�
K (C) − 1

4

�
by Lemma VIII.4.

• (iii) This case follows directly from Lemma V.11.

For cases (iv) and (v), we will assume 2l−k < 1.

• (iv) We have

E[K �1Al−20An+k−l ∩ Ak−l1Al−2C
�
]

= E[K �1Al−20Ak−2l1Al−2C
�
] = K (C) /8

by Lemma V.2. Then by Lemma V.10, the claimed
expected Kraft sum is

(K (D) /(K (C) /2))(K (C) /8) = K (D) /4.

• (v) We have

E
#K �C0A

k−1 ∩ Ak−l1Al−2C
�$

= E
!
K
�
C0A

k−2l1Al−20Al−21An−(l−1)
�"

+ E[K �C0A
k−2l1Al−2C0

�
]

=
K (C0)

8
+

K (C0)
2

2

=
(K (C) − 1

4 )K (C)
2

by Lemma V.2 and Corollary V.9, and using the fact
that C0A

k−2l1Al−2C0 contains exactly half of the words
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of C0A
k−l−1C0. Then by Lemma V.10, the claimed

expected Kraft sum is

(K (D) /(K (C) /2))
��

K (C) − 1
4

�
K (C) /2

�
=
�
K (C) − 1

4

�
K (D) .
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