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Abstract

A property of prefix codes called strong monotonicity is introduced. Then it is proven

that for a prefix code C for a given probability distribution, the following are equivalent: (i)

C is expected length minimal; (ii) C is length equivalent to a Huffman code; and (iii) C is

complete and strongly monotone. Also, three relations are introduced between prefix code

trees called same-parent, same-row, and same-probability swap equivalence, and it is shown

that for a given source, all Huffman codes are same-parent, same-probability swap equivalent,

and all expected length minimal prefix codes are same-row, same-probability swap equivalent.
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1. Introduction

Huffman codes [13] were invented in 1952 and today are widely used in many practical data

compression applications, such as for text, audio, image, and video coding. They are known to be

optimal in the sense that they achieve the minimal possible expected codeword length among all

prefix codes for a given finite discrete random source [5].

The main idea in the Huffman algorithm is to construct a code tree from a source by recursively

merging two smallest-probability nodes until only one node with probability 1 remains. The initial

source probabilities correspond to leaf nodes in the tree, and the binary paths from the tree’s root

to the leaves are the codewords.

However, for a given source, Huffman codes are not unique, due to choices that arise during

the tree construction that can be decided arbitrarily. Specifically, there are three types of choices

that can be taken during the tree building: (1) When two nodes are merged, the choice of which

node becomes a left child and which becomes a right child is arbitrary; (2) If there are three or

more smallest-probability nodes, then which two of them to merge is arbitrary; and (3) If there is a

unique smallest-probability node and two or more second-smallest-probability nodes, then which

of these to merge with the smallest-probability node is arbitrary. After the tree is constructed all

edges from parents to left children are labeled 0 and all edges from parents to right children are

labeled 1, or vice versa. Without loss of generality, we will not interpret this binary edge labeling as

a choice for generating multiple Huffman codes, since the same-parent node swaps that we address

later in the paper can account for such constructions, too. Such arbitrary choices as in (1)–(3) made

during the Huffman construction process can affect not only the codeword assignments, but also

the Huffman tree structure, and can even change the distribution of codeword lengths.

On one hand, if a source is chosen randomly from a continuous distribution (i.e., the source

probabilities are randomly chosen to lie in [0, 1] and to sum to 1), then with probability one there

will be no ties among source probabilities and no ties among tree node probabilities in the Huffman

construction process. In this case, the only variation of Huffman codes for a given randomly chosen

source is due to left-versus-right child assignments when node merges occur during Huffman tree

construction.

On the other hand, often source distributions are empirically determined through a frequency

counting process, and probability estimates consist of a set of integers, normalized by their sum. In

these cases, especially with small data sets, ties in probabilities can occur, and multiple Huffman

trees can result. The differences in these Huffman trees can be due to some or all of the arbitrary

choices mentioned above that are encountered during Huffman tree construction.

For many applications, the average length of a prefix code is the primary concern, in which case

the choice of which Huffman or other optimal non-Huffman code to use may not matter, although

an understanding of such code variations may be of theoretical interest. In some applications,

however, the specific binary codewords included in an optimal code may be critical. A survey of

lossless coding techniques can be found in [1].

One well-studied example where the codeword assignments matter is the design of lossless

codes that are easily synchronizable. Since Huffman codes are variable-length codes, they are

subject to loss of synchronization during decoding due to even a single bit error or erasure during

transmission or storage. However, Huffman codes are known to often have a self-synchronizing

string, which is a binary string (not necessarily a codeword) that, after being decoded starting
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at any internal tree node, always returns the decoding process to the root of the Huffman tree,

thus restoring synchronization. It turns out that for a given source with multiple Huffman codes,

some Huffman codes may have shorter self-synchronizing strings than others, and some Huffman

codes may not have any self-synchronizing strings at all even if other Huffman codes do. These

possibilities are illustrated in the following two examples.

Example 1.1 (Same-parent node swap produces shorter self-synchronizing string).

Let H1 and H2 be Huffman codes for a source with symbols a,b,c,d, and probabilities 1
2
, 1
4
, 1
8
, 1
8
,

respectively. The Huffman trees for H1 and H2 are shown in Figure 1. Huffman tree H2 is obtained

from H1 by exchanging node b and its sibling (i.e., a same-parent node swap). The shortest self-

synchronizing strings for Huffman trees H1 and H2 are 0 and 00, respectively.

1

1
2

1
2

1
4

1
4

1
8

1
8

0 1

0 1

0 1

a

b

c d

1

1
2

1
2

1
4

1
8

1
8

1
4

0 1

0

0 1

1
a

c d

b

Huffman code H1 Huffman code H2

Figure 1: One Huffman tree is a same-parent node swap of another and has a shorter self-

synchronizing string.

Example 1.2 (Same-parent node swap eliminates self-synchronizing string).

Let H1 and H2 be Huffman codes for a source with symbols a,b,c,d,e,f ,g,h,i, and probabilities 1
4
,

1
8
, 1

8
, 1

8
, 1
8
, 1
16

, 1
16

, 1
16

, 1
16

, respectively. The Huffman trees for H1 and H2 are shown in Figure 2.

Huffman tree H2 is obtained from H1 by exchanging the leaf b and its sibling (i.e., a same-parent

node swap). Huffman tree H1 has a self-synchronizing string of 0011, which brings each internal

node back to the root. Huffman tree H2 does not have any self-synchronizing string, since any

string which brings the root back to itself also brings the parents of a, b, and c back to one of

themselves, and thus not to the root.

Numerous theoretical and algorithmic studies of synchronizable Huffman and non-Huffman

optimal prefix codes have made use of the non-uniqueness of Huffman codes to search for short

synchronizing binary strings. Some of these investigations include Longo and Galasso [16] in

1982, Ferguson and Rabinowitz [8] in 1984, Escott and Perkins [7] in 1998, Huang and Wu [12]
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Figure 2: Huffman tree H2 is a same-parent node swap of H1, but has no self-synchronizing string

whereas H1 does.

in 2003, and Higgs, Perkins, and Smith [11] (see also [10]) in 2009. Other related work considers

correcting bit errors in Huffman encoded data streams, in which case the choice of Huffman code

can affect performance. Some of these include: Lee, Chang, Ho, and Lee [14] in 2000, Zhou and

Zhang [20] in 2002, Cao [2] in 2006, Cao, Yao, and Chen [3] in 2007, Zhou and Au [19] in 2010,

and Wang, Zhao, and Sun [17] in 2018.

The non-uniqueness of Huffman codes leads to the question of how to effectively describe

the similarities among them, as well as their differences from non-Huffman codes. In 1978, Gal-

lager [9] gave a characterization of Huffman codes as precisely those prefix codes possessing a

“sibling property”, which stipulates that a code is complete and the nodes of its code tree can be

listed in order of non-increasing probability with each node being adjacent in the list to its sibling.

For a given source, the broader class of optimal prefix codes is somewhat larger then its subset

of Huffman codes. No characterization analogous to the sibling property has been previously

given for optimal prefix codes. Only the sufficient condition given by the sibling property has been

known.

One known necessary condition for a prefix code to be optimal is “monotonicity”, which states

that any code tree node with a larger probability than another node must not appear on a lower

row than the smaller-probability node. The following example illustrates that monotonicity is not

sufficient for a complete prefix code to be optimal.

Example 1.3 (A monotone prefix code that is not optimal).

Let H be a Huffman code for a source with symbols a,b,c,d, and probabilities 3
8
, 3
8
, 1
8
, 1
8
, respec-
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tively, and let C be another prefix code for the same source. The code trees for H and C are shown

in Figure 3. The code C is monotone because any node probability on a given row is at least as

large as any node probability on a lower row. However, C is not optimal since its expected length

is 2, whereas the Huffman code H has a smaller expected length of 15
8

.
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Figure 3: A Huffman tree and code tree illustrating monotonicity without strong monotonicity.

In this paper we first provide a necessary and sufficient characterization of optimal prefix codes

by introducing a new criterion called “strong monotonicity”. In particular we show that for a prefix

code C for a given source, the following are equivalent: (i) C is optimal; (ii) C is length equivalent

to a Huffman code; and (iii) C is complete and strongly monotone.

Secondly, we investigate the transformation of code trees to other code trees using the graph

theoretic idea of swapping tree nodes. Swapping two nodes with a similar trait can transform one

code tree into another code tree that maintains certain properties, and can serve as a method for

creating new Huffman codes or new optimal prefix codes from existing ones.

Specifically, we consider swaps of two code tree nodes when they: (i) have the same parent;

(ii) lie in the same row; or (iii) have the same probability. For any given source, these three types

of node swaps always preserve the expected length of a prefix code. For example, any optimal

prefix code will be transformed by any of these operations into another optimal prefix code.

Some prior work related to node swapping has motivated some of our results.

In 1982, Longo and Galasso [16] used same-probability node swaps in the context of deter-

mining probability density attraction regions for Huffman codes. They showed that, using only

same-probability node swaps, Huffman codes could be transformed into other Huffman codes.

However, they ignored the distinguishing effects of same-row node swaps that could transform

Huffman codes to optimal non-Huffman codes. Our results more finely characterize the relation-

ship between these codes by using either same-parent or same-row node swaps. Also we use a

different proof technique and try to clarify some unaddressed points in [16].
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Ferguson and Rabinowitz [8] studied synchronous codes and considered codes that were same-

parent swap equivalent (calling them “strongly-equivalent”) and length equivalent (calling them

“weakly equivalent”), but did not provide results characterizing the class of Huffman or optimal

prefix codes.

We characterize both the class of all Huffman codes for a given source and also the broader

class of all optimal prefix codes for a given source in terms of same-probability and either same-

row or same-parent node swap transformations.

Example 1.4 (Two Huffman codes and a third optimal code tree).

Let H1 and H2 be two different Huffman codes and let C be a non-Huffman tree for a source with

symbols a,b,c,d, and probabilities 1
3
, 1
3
, 1
6
, 1
6
, respectively. The three trees are shown in Figure 4.

After nodes c and d were combined during the Huffman construction algorithm for building H1

and H2, 3 different nodes had probability 1
3
, leading to different trees resulting from different node

merges. All 3 codes achieve the minimum possible average length of 2, but the codes for H1 and

H2 are not same-row swap equivalent, since the codes are not length equivalent.

However, H1 and H2 are same-parent, same-probability swap equivalent. To see this, first

transform tree H1 by exchanging node a with the parent of nodes c and d (i.e., a same-probability

node swap). Then perform a same-parent node swap on nodes a and b, and then another same-

parent node swap on the two children of the root. The result of these three operations is the

Huffman tree H2.

The code C is not same-parent, same-probability swap equivalent to either H1 or H2, but it is

same-row, same-probability swap equivalent to both Huffman codes. To see this, transform H2 to

C by exchanging nodes b and c (i.e., a same-row node swap).
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Figure 4: Two Huffman trees and an optimal third code tree for a single source.

We show that in fact for a given source, any Huffman code can be transformed into any other

Huffman code by a sequence of same-parent and same-probability node swaps. Then we show that
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for a given source, any optimal code can be transformed into any other optimal code by a sequence

of same-row and same-probability node swaps. These characterizations of Huffman codes and

optimal codes refine a result in [16] and supplement the foundational understanding of optimal

lossless source coding.

In what follows we will define terminology and then present our main results. One of these

results (Theorems 2.4) is exploited in another recent work [4] to prove results about competitive

optimality of Huffman codes.

An alphabet is a finite set S, and a source of size n with alphabet S is a random variable X

such that |S| = n and P (X = y) = P (y) for all y ∈ S. We denote the probability of any subset

B ⊆ S by P (B) =
∑

y∈B

P (y).

A code for source X is a mapping C : S −→ {0, 1}∗ and the binary strings C(1), . . . , C(n)
are called codewords of C. A prefix code is a code where no codeword is a prefix of any other

codeword.

A code tree for a prefix code C is a rooted binary tree whose leaves correspond to the codewords

of C; specifically, the codeword associated with each leaf is the binary word denoting the path from

the root to the leaf. The length of a code tree node is its path length from the root. The rth row of

a code tree is the set of nodes whose length is r, and we will view a code tree’s root as being on

the top of the tree with the tree growing downward. That is, row r of a code tree is “higher” in the

tree than row r + 1. If x and y are nodes in a code tree, then x is a descendant of y if there is a

downward path of length zero or more from y to x. Two nodes in a tree are called siblings if they

have the same parent. For any collection A of nodes in a code tree, let P (A) denote the probability

of the set of all leaf descendants of A in the tree.

A (binary) Huffman tree is a code tree constructed from a source by recursively merging two

smallest-probability nodes1 until only one node with probability 1 remains. The initial source

probabilities correspond to leaf nodes in the tree. A Huffman code for a given source is a mapping

of source symbols to binary words by assigning the source symbol corresponding to each leaf in

the Huffman tree to the binary word describing the path from the root to that leaf.

Given a source with alphabet S and a prefix code C, for each y ∈ S the length of the binary

codeword C(y) is denoted lC(y). Two codes C1 and C2 are length equivalent if lC1
(y) = lC2

(y)
for every source symbol y ∈ S. The average length of a code C for a source with alphabet S

is
∑

y∈S

lC(y)P (y). A prefix code is optimal for a given source if no other prefix code achieves a

smaller average codeword length for the source. In particular, Huffman codes are known to be

optimal (e.g., see [5]).

A code is complete if every non-root node in its code tree has a sibling, or, equivalently, if

every node has either zero or two children.2 A code C for a given source is monotone if for any

two nodes in the code tree of C, we have P (u) ≥ P (v) whenever lC(u) < lC(v). Optimal prefix

codes are always monotone (Lemma 1.6) and are also well-known to be complete.

The Kraft sum of a sequence of nonnegative integers l1, . . . , lk is 2−l1 + · · ·+ 2−lk . We extend

the definition of “Kraft sum” to also apply to sets of source symbols with respect to a code or sets

1For more details about Huffman codes, the reader is referred to the textbook [5, Section 5.6].
2Our usage of the word “complete” has also been referred to in the literature as “full”, “extended”, “saturated”,

“exhaustive”, and “maximal”.
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of code tree nodes. In each case, we use the notation KC to denote the Kraft sum. If C is a prefix

code for a source with alphabet S, and U ⊂ S, then the Kraft sum of U is

KC(U) =
∑

x∈U

2−lC(x)

or equivalently, the Kraft sum of the corresponding sequence of codeword lengths of the set of all

leaf descendants of U in the code tree of C. The same summation is used to compute the Kraft

sum of a set of code tree nodes.

The following lemma is a standard result in most information theory textbooks and will be used

in the proofs of Lemma 2.2 and Theorem 2.4.

Lemma 1.5 (Kraft Inequality converse [5, Theorem 5.2.1]). If a sequence l1, . . . , ln of positive

integers satisfies 2−l1 + · · · + 2−ln ≤ 1, then there exists a binary prefix code whose codeword

lengths are l1, . . . , ln.

The following lemma is used in the proof of Lemma 3.4.

Lemma 1.6 (Gallager [9, p. 670]). For any source, if a prefix code is optimal, then it is monotone.

As noted earlier, Gallager characterized Huffman codes (Lemma 1.8) using the following prop-

erty.

Definition 1.7 (Gallager [9, p. 669]). A binary code tree has the sibling property if each node

(except the root) has a sibling and if the nodes can be listed in order of non-increasing probability

with each node being adjacent in the list to its sibling.

The next lemma is very useful in proving results about Huffman codes, and will be exploited

in the proofs of Theorem 2.4, Lemma 3.4, and Theorem 3.8.

Lemma 1.8 (Gallager [9, Theorem 1]). For any source, a prefix code is a Huffman code if and only

if its code tree has the sibling property.

For the remainder of this section, we describe our main results. Theorem 2.4 shows that for a

prefix code C for a given probability distribution, the following are equivalent: (i) C is optimal;

(ii) C is length equivalent to a Huffman code; and (iii) C is complete and strongly monotone. In

this theorem, the Huffman code in case (ii) may vary for different choices of C. Figure 5 depicts

these results along with some known prior art.

Next, we describe our remaining results in this paper.

Huffman codes for the same source can differ from each other in multiple ways. For example,

“twisting” a Huffman tree about any fixed node in the tree (i.e., swapping two same-parent nodes)

creates a new Huffman code for the source (Lemma 3.3).

Another transformation of a Huffman tree is to cut branches of the tree at two nodes whose

probabilities equal each other and then exchange those subtrees (i.e., perform a same-probability

node swap). Two such nodes need not lie on the same row in the tree. This transformation also

results in a new Huffman code for the same source (Lemma 3.4).
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Figure 5: Logical implications of prefix code properties for a given source. The red arrows indicate

new results presented in this paper.

Any combination of these same-parent and same-probability node swaps transforms Huffman

trees into Huffman trees. In fact, we show in Theorem 3.8 that the converse is also true, namely

that all Huffman codes for a given source are related by these transformations.

More general questions exist about the broader class of optimal prefix codes. In this case, we

know that any combination of same-parent and same-probability node swaps transforms optimal

codes to other optimal codes (Lemma 3.2), neither of which is necessarily a Huffman code. It turns

out not to be true that any optimal prefix code can be obtained from any other optimal prefix code

by a sequence of same-parent and same-probability node swaps (see H2 and C in Example 1.4).

We describe another node swap involving cutting branches of a Huffman tree at two different

nodes on the same row and then exchanging the hanging subtrees (i.e., swapping same-row nodes).

This operation preserves the average length of any prefix code, so it maps optimal prefix codes to

optimal prefix codes, but the operation need not transform Huffman codes into other Huffman

codes. (see H1 and H2 in Example 1.4).

We show that for a given source, two complete prefix codes are length equivalent if and only

if they are same-row swap equivalent (Theorem 3.6). This then implies that any prefix code for

a given source is length equivalent to a particular Huffman code (and thus is optimal) if and only

if its code tree can be obtained from the Huffman tree by a sequence of same-row node swaps

(Corollary 3.7).

If we replace same-parent node swaps by the more general same-row node swaps, then we

can characterize optimal prefix codes in another way by using node swapping. Specifically, we

show that all optimal prefix codes are same-row, same-probability swap equivalent to each other

(Theorem 3.9).
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2. Characterization of expected length minimizing prefix codes

In this section we give a new characterization of optimal prefix codes for a given source. While

all Huffman codes are optimal and were characterized by Gallager in terms of the sibling property,

not all optimal codes are Huffman codes. However, it turns out that any optimal code is length

equivalent to some Huffman code for the source as shown in Theorem 2.4.

In Theorem 2.4 we also prove a second characterization of optimal prefix codes. Specifically,

we show that a prefix code is optimal if and only if it is complete and strongly monotone. The

combination of completeness and strong monotonicity is weaker than the sibling property, and

thus a broader class of prefix codes (namely, the optimal ones) satisfies this combination.

Definition 2.1. Given a source with alphabet S, a prefix code C is strongly monotone if P (A) ≥
P (B) whenever A,B ⊆ S and KC(A) = 2−i > 2−j = KC(B) for some integers i and , j.

The strongly monotone property reduces to Gallager’s monotone property when each of A and

B consists of all leaf descendants of a single tree node. Example 1.3 illustrates that these two

properties are not equivalent. Specifically, the example shows that prefix code C is not strongly

monotone because KC({c, d}) = 2−1 > 2−2 = KC({a}) but P ({c, d}) = 1
4
< 3

8
= P ({a}). The

code H is strongly monotone since it is a Huffman code.

The following lemma easily follows from the proof of Lemma 1.5. This lemma relies on our

definition of sources (and thus codes) to be finite. Prefix codes for infinite sources need not satisfy

the lemma below (e.g. [15, p. 2027]).

Lemma 2.2. A prefix code is complete if and only if its Kraft sum equals 1.

Lemma 2.3. If two prefix codes are length equivalent, then each of the following properties holds

for one code if and only if it holds for the other code:

(1) completeness

(2) strong monotonicity

(3) optimality.

Proof. Let S be the source alphabet. Let C and C ′ be length equivalent prefix codes, i.e., lC(y) =
lC′(y) for all y ∈ S. Then for all y ∈ S,

KC(y) = 2−lC(y) = 2−l
C′(y) = KC′(y).

Since

∑

y∈S

KC(y) =
∑

y∈S

KC′(y),

Lemma 2.2 shows C is complete if and only if C ′ is complete.

Suppose C is strongly monotone. Let A,B ⊆ S with KC′(A) = 2−i and KC′(B) = 2−j for

some integers 0 ≤ i < j. Since KC(A) = KC′(A) = 2−i and KC(B) = KC′(B) = 2−j , we have

P (A) ≥ P (B) since C is strongly monotone. Thus C ′ is also strongly monotone.
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Let X be a source random variable. The average length of code C is

E[lC(X)] =
∑

y∈S

P (y)lC(y) =
∑

y∈S

P (y)lC′(y) = E[lC′(X)],

so C is optimal if and only if C ′ is. �

The following theorem is our first main result.

Theorem 2.4. For a given source, if C is a prefix code, then the following are equivalent:

(1) C is complete and strongly monotone;

(2) C is length equivalent to a Huffman code; and

(3) C is optimal.

Proof. Let S be the source alphabet, and let X be the source random variable on S. Define P (u) =
P (X = u) for all u ∈ S.

(1) =⇒ (2)
Suppose C is complete and strongly monotone. Consider the following operation on the code tree

for C. Suppose row k ≥ 1 of the code tree has the property that all non-leaves are listed in order

of non-increasing probability moving left-to-right in the row. Permute all nodes in row k such that

they are listed in order of non-increasing probability moving left-to-right in the row. Note that

the non-leaves remain in the same order among themselves as they were prior to performing the

operation, and therefore all nodes in each row m > k remain in the same order in their row as

they were prior to performing the operation. Let C ′ be the new code corresponding to the code

tree obtained after this operation. This operation may change the codewords assigned to symbols

in S, but it does not change the lengths of any codewords, and so C and C ′ are length equivalent.

Moreover, once this operation has been performed, the probabilities of the parents of the nodes in

row k are listed in order of non-increasing probability moving left-to-right in row (k − 1).
Therefore, we can apply this node permutation operation iteratively on successively higher

rows, beginning on the bottom row of the code tree for C where there are only leaves, and then

moving upward, row-by-row. Once the leaves in the bottom row have been ordered, the probabili-

ties of their parents have been ordered, and we can then proceed by induction to conclude that after

this operation has been performed on each row, the nodes in each row of the resulting code tree

are listed in order of non-increasing probability moving left-to-right in the row. Let C ′ be the code

corresponding to the resulting code tree. Inductively, based on the argument in the previous para-

graph, C ′ is length equivalent to C, and so C ′ is complete and strongly monotone by Lemma 2.3.

Consider the sequence of probabilities of nodes in the code tree for C ′ listed in raster-scan or-

der, beginning with the root node and proceeding downward, row-by-row, moving left-to-right in

each row. Then the probability of each node is adjacent in the sequence to the probability of its

sibling. Also, as concluded previously, all probabilities of nodes in the same row are listed in

non-increasing order in the sequence. Furthermore, since C ′ is strongly monotone, the rightmost

node u in a given row k ≥ 0 and the leftmost node v in row (k + 1) satisfy P (u) ≥ P (v), since

KC′(u) = 2−k > 2−(k+1) = KC′(v). Therefore, the sequence of probabilities is listed in order of
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non-increasing probability, and so the code tree for C ′ satisfies the sibling property since C ′ is also

complete. Thus, by Lemma 1.8, C ′ is a Huffman code. Since C is length equivalent to C ′, we are

done.

(2) =⇒ (3)
Suppose C is length equivalent to a Huffman code H . Then by Lemma 2.3, C is optimal because

H is.

(3) =⇒ (1)
Suppose C is optimal. If C is not complete, then there exists a non-root node u without a sibling

in the code tree for C. Replacing the parent of u by u itself results in a code tree where the

lengths of all leaf descendants of u have been decreased by 1, and the lengths of all other leaves

have remained unchanged. Therefore, the expected length of the new code is P (u) less than the

expected length of C. Since P (u) > 0, this shows C is not optimal, which is a contradiction. Thus

C is complete.

Suppose C is not strongly monotone. Then there exist A,B ⊆ S and integers i and j, such that

0 ≤ i < j, KC(A) = 2−i, KC(B) = 2−j , and P (A) < P (B). Denote the symmetric difference of

A and B by A∆B = (A− B) ∪ (B − A). Then

KC(A− B) = KC(A)−KC(A ∩ B) = 2−i −KC(A ∩ B)

KC(B − A) = KC(B)−KC(A ∩ B) = 2−j −KC(A ∩ B)

KC(S − (A∆B)) = 1−KC(A− B)−KC(B −A)

= 1− 2−i − 2−j + 2KC(A ∩B)

and

P (A− B) = P (A)− P (A ∩ B) < P (B)− P (A ∩B) = P (B − A). (1)

Let C ′ be a prefix code such that:

lC′(y) = lC(y) +











j − i if y ∈ A− B

i− j if y ∈ B − A

0 if y ∈ S − (A∆B).

(2)

Note that such a prefix code exists by Lemma 1.5, since

∑

y∈S

2−l
C′ (y)

= 2−(j−i)
∑

y∈A−B

2−lC(y) + 2j−i
∑

y∈B−A

2−lC(y) +
∑

y∈S−(A∆B)

2−lC(y) (3)

= 2−(j−i)KC(A−B) + 2j−iKC(B − A) +KC(S − (A∆B))

= 2−j − 2−(j−i)KC(A ∩B) + 2−i − 2j−iKC(A ∩B) + 1− 2−i − 2−j + 2KC(A ∩ B) (4)

= 1 + (2− 2j−i − 2−(j−i))KC(A ∩ B)

≤ 1 (5)
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where (3) follows from (2); (4) follows from KC(A) = 2−i and KC(B) = 2−j ; and (5) follows

from j > i. Equality holds in (5) if and only if KC(A ∩ B) = 0, since 2j−i ≥ 2. Finally,

E[lC′(X)] =
∑

y∈A−B

P (y)lC′(y) +
∑

y∈B−A

P (y)lC′(y) +
∑

y∈S−(A∆B)

P (y)lC′(y)

=
∑

y∈A−B

P (y)(lC(y) + (j − i)) +
∑

y∈B−A

P (y)(lC(y)− (j − i)) +
∑

y∈S−(A∆B)

P (y)lC(y)

= (j − i)(P (A− B)− P (B − A)) + E[lC(X)]

< E[lC(X)], (6)

where (6) follows from j − i ≥ 1 and P (A− B) < P (B − A) by (1). But then C is not optimal,

which is a contradiction. Therefore, C is strongly monotone. �

We note that a proof of (3) =⇒ (2) in Theorem 2.4 does not seem to have previously appeared

explicitly in the literature, although it may be hinted at in the proof of [5, Lemma 5.8.1, p. 123]

and also in 1995 by Yamamoto and Itoh [18].

The following corollary immediately follows from Theorem 2.4 and describes which codes

perform as well as Huffman codes in terms of average length.

Corollary 2.5. For a given source, a complete prefix code C is optimal if and only if C is strongly

monotone.
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3. Swapping code tree nodes

Definition 3.1. A node swap in a code tree is an exchange of the subtrees rooted at two distinct

nodes neither of which is a descendant of the other. Such a node swap is called a same-row

(respectively, same-probability) node swap if the two nodes are in the same row (respectively, have

the same probability). A same-parent node swap is a same-row node swap of two siblings. Prefix

codes C1 and C2 are same-parent swap equivalent (respectively, same-row swap equivalent, same-

probability swap equivalent) if the code tree of C1 can be transformed into the code tree of C2 by

a sequence of same-parent (respectively, same-row, same-probability) node swaps. Additionally,

prefix codes C1 and C2 are same-parent, same-probability swap equivalent (respectively, same-

row, same-probability swap equivalent) if the code tree of C1 can be transformed into the code tree

of C2 by a sequence of same-parent (respectively, same-row) and/or same-probability node swaps.

The relations of same-parent, same-row, and same-probability swap equivalence are all reflex-

ive, symmetric, and transitive, and thus are equivalence relations. Therefore, they each naturally

induce equivalence classes of prefix codes.

For a given source, any same-parent node swap transforms a Huffman tree to another Huffman

tree, since in the Huffman construction process when two nodes are merged the choice of their

order in a sibling pair is arbitrary.

The following two lemmas are straightforward, so we omit their proofs.

Lemma 3.2. For a given source, same-parent, same-row, and same-probability node swaps pre-

serve the expected length of any complete prefix code.

Lemma 3.3. For a given source, any same-parent node swap of a Huffman code produces another

Huffman code.

Since each merging in a Huffman tree construction has two possible orderings, and there are

n − 1 internal nodes in a binary tree with n leaves, there are 2n−1 different Huffman codes in

each same-parent swap equivalence class that contains at least one Huffman code. As shown in

Lemma 3.3, any Huffman code in such an equivalence class can be obtained from another Huffman

code in the class by performing a sequence of same-parent node swaps. However, two Huffman

codes for a given source need not be related by a sequence of same-parent node swaps (i.e., they

can be in different same-parent swap equivalence classes).

The next lemma shows that same-probability node swaps convert Huffman trees to other Huff-

man trees for the same source.

Lemma 3.4. For a given source, any same-probability node swap of a Huffman code produces

another Huffman code.

Proof. By Lemma 1.8, the Huffman tree H satisfies the sibling property. That is, there exists

a sequence σH = u1, u2, . . . , ui, . . . , uj, . . . of the nodes of H in non-increasing order of their

probabilities where siblings appear adjacent in the list.

Suppose nodes ui and uj are swapped in Huffman tree H to give code tree C, where P (ui) =
P (uj). Swapping nodes modifies the tree H by altering two edges, and retaining all the same

nodes and the other edges.
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The nodes of the new code tree C are the same as the nodes of H . Modify the sequence of

nodes of H by exchanging ui with uj to obtain the sequence σC = u1, u2, . . . , uj, . . . , ui, . . . ,

which is a sequence of the nodes of C.

All of the probabilities of the nodes in C remain the same as they were in H (since the par-

ent nodes of ui and uj in C have children with the same probabilities as they had in H), so the

probabilities of the nodes in the modified sequence σC are in non-increasing order. Also, ui and uj

appear adjacent in σC to their siblings, since uj and ui, respectively, do so in σH . Thus, the second

tree satisfies the sibling property, and so is a Huffman tree by Lemma 1.8. �

Note that if a Huffman tree node x lies at least two rows above node y, then Lemma 1.6 implies

the probability of x is at least as great as the probability of the parent of y, which is strictly greater

than the probability of y, so x and y cannot have the same probability. Therefore, in a Huffman tree,

any two nodes with the same probability must either lie in the same row or in adjacent rows. This

means that any same-probability node swap in a Huffman tree consists of swapping two nodes in

the same row or adjacent rows. However, sequences of same-probability node swaps can transform

one Huffman tree into another where a node can move farther than one row away, as the following

example illustrates.

Example 3.5 (Two Huffman trees with a source symbol two rows apart).

Let H1 and H2 be two different Huffman codes for a source with symbols a,b,c,d,e and probabilities
1
3
, 1
3
, 1
9
, 1
9
, 1
9
, respectively. The two trees are shown in Figure 6. The tree H1 can be transformed

into H2 by performing a same-probability node swap between leaf a and the parent of leaf c, and

subsequently performing a same-probability node swap between leaf c and leaf e. Note that the

source symbol c appears in row 2 of H1 and row 4 of H2. In fact, one can construct examples

where the same source symbol appears in two different Huffman trees in arbitrarily distant rows.

By Lemma 3.3 and Lemma 3.4 any sequence of same-parent node swaps and same-probability

node swaps converts Huffman codes to Huffman codes for the same source. Thus, the set of all

codes obtained by such transformations on a given Huffman code is an equivalence class containing

Huffman codes only. In fact, this equivalence class contains all Huffman codes for a given source

(Theorem 3.8).

Same-row node swaps preserve codeword lengths assigned to source symbols. If a same-row

node swap is not a same-parent node swap, then it may convert a Huffman code into a non-Huffman

code (e.g., the prefix code C in Figure 3). However, these non-Huffman codes are still optimal

(Corollary 3.7).

The following lemma shows that length equivalence between two complete prefix codes is the

same as being able to transform one into the other using only same-row node swaps.

Theorem 3.6. For a given source, two complete prefix codes are length equivalent if and only if

they are same-row swap equivalent.

Proof. Same-row node swaps preserve the lengths of all codewords, so length equivalence follows

immediately.

Conversely, suppose C1 and C2 are code trees for two length equivalent prefix codes. For any

complete code tree for the source, assign labels to its nodes as follows. Label each leaf node by

Sections: 1 2 3 References Page 15 of 20



Characterizations of minimal codes Congero-Zeger Tuesday 14th November, 2023

1

2
3

1
3

1
3

1
3

2
9

1
9

1
9

1
9

0

0 1

1

0

0 1

1

a b

d e

c

1

2
3

1
3

2
9

1
9

1
9

1
9

1
3

1
3

0

0

0

0 1

1

1

1

d c

e

b

a

Huffman code H1 Huffman code H2

Figure 6: Two Huffman trees for the same source with source symbol c appearing on rows differing

in level by two.

the source symbol of its associated codeword, and label each parent node as the ordered pair (a, b),
where a is the label of its left child and b is the label of its right child.

Let d be the common depth (i.e., longest codeword length) of C1 and C2. All nodes in row d in

both C1 and C2 are leaves, and since C1 and C2 are length equivalent, the set of leaf labels in row

d is identical for C1 and C2.

We will show that if the set of node labels in some row m ∈ {1, . . . , d} is identical for C1

and C2, then there exists a sequence of same-row node swaps that transforms C1 into a code tree

C ′

1 such that the set of node labels in row m−1 is identical for C ′

1 and C2. Then, since we have

already shown the set of node labels in the lowest row d is identical for C1 and C2, we conclude

by induction that there exists a sequence of same-row node swaps that transforms C1 into a code

tree C∗

1 whose root has the same label as the root of C2. The label of the root node of a code tree

specifies the code tree exactly (it’s a parenthetically nested list of node pairs used to form the tree),

so C∗

1 and C2 are the same code tree, and we conclude C1 and C2 are same-row swap equivalent.

Suppose the set of node labels in some row m ∈ {1, . . . , d} is identical for C1 and C2. In

other words, the same node labels appear in row m of each code tree, but the node labels are

possibly arranged in a different order. Then there exists a permutation that maps the arrangement

of node labels in row m of C1 to the arrangement of node labels in row m of C2. By a standard

group theory result that any finite permutation can be obtained from any other permutation by a

sequence of transpositions (e.g., see [6, p. 107]), there exists a sequence of same-row node swaps

that achieves this permutation and transforms C1 into a code tree C ′

1 whose sequence of node labels
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in row m is identical to that of C2. Since sibling nodes are adjacent in this sequence, the set of

labels of the parent nodes in row m−1 is identical in C ′

1 and C2.

Since C1 and C2 are length equivalent, the set of leaf node labels in row m−1 is identical in C1

and C2, and the same is true for C ′

1 and C2 since the leaf nodes in row m−1 of C1 were unaffected

by the same-row node swaps performed on the nodes in row m. Therefore, the set of node labels

in row m−1 is identical for C ′

1 and C2, and the induction argument is complete. �

The following theorem shows that prefix code optimality is equivalent to being able to trans-

form the code into some Huffman code using only same-row node swaps.

Corollary 3.7. For a given source, a prefix code is optimal if and only if it is same-row swap

equivalent to a Huffman code.

Proof. It follows immediately from Theorem 3.6 and Theorem 2.4. �

Corollary 3.7 guarantees for any optimal prefix code the existence of some Huffman code that is

same-row swap equivalent. However, different optimal prefix codes need not all be same-row swap

equivalent to the same Huffman code. The next theorem indicates, however, that all Huffman codes

can be transformed to each other using only same-parent, same-probability node swap operations.

Then, by combining Corollary 3.7 and Theorem 3.8, we obtain Theorem 3.9, which states that all

optimal prefix codes are same-row, same-probability swap equivalent.

Theorem 3.8. For a given source, all Huffman codes are same-parent, same-probability swap

equivalent to each other.

Proof. For any complete code tree for the source, assign labels to its nodes as follows. Label

each leaf node by the source symbol of its associated codeword, and label each parent node as the

ordered pair (a, b), where a is the label of its left child and b is the label of its right child. Given a

node label u, let P (u) be the probability of the node labeled u.

Let H1 and H2 be two Huffman code trees for a source. Then in particular, H1 and H2 are

complete by Lemma 1.8. Since H1 and H2 are code trees for the same source, the set of leaf node

labels is identical in H1 and H2.

Let (a1, b1), (a2, b2), . . . and (a′1, b
′

1), (a
′

2, b
′

2), . . . be the sequences of the parent node labels

(i.e., pairs of merged child labels) in H1 and H2, respectively, listed in the order of each step of the

Huffman construction that produced each code tree.

Let i be the smallest index such that (ai, bi) 6= (a′i, b
′

i). The set of node labels available for

merging during step i is identical in the Huffman construction of H1 and H2, since such a node

label is either a leaf node label common to both H1 and H2, or is a parent node label constructed in

a step prior to i. Then in particular, all the node labels in {ai, bi, a
′

i, b
′

i} are available for merging at

step i in the Huffman construction of bothH1 and H2. Also, since the Huffman algorithm combines

at each step two nodes of smallest probability, we have {P (ai), P (bi)} = {P (a′i), P (b′i)}.

If a′i 6∈ {ai, bi}, then there exists ui ∈ {ai, bi} such that P (ui) = P (a′i). Since both ui and a′i
appear in H1, we can remove the edges connecting ui and a′i to their parent nodes in H1, and add

edges connecting ui and a′i to the parent nodes of a′i and ui, respectively. Since P (ui) = P (a′i), this

operation is a same-probability node swap, and by Lemma 3.4 the resulting code tree is a Huffman

code tree.
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After performing this same-probability node swap if necessary, we arrive at a Huffman code

tree that combines a′i and vi ∈ {ai, bi} in step i, where P (vi) = P (b′i). If vi 6= b′i, then an analogous

argument as above shows a same-probability node swap can be performed on vi and b′i to produce

a new Huffman code tree.

After performing this same-probability node swap if necessary, we arrive at a Huffman code

tree that combines a′i and b′i in step i. If necessary, perform a same-parent node swap on the

sibling pair {a′i, b
′

i} such that their parent label is (a′i, b
′

i), and name this code tree H ′

1, which is

a Huffman code tree by Lemma 3.3. This same-parent node swap and the same-probability node

swaps described previously leave the labels of parent nodes in H1 obtained in any steps prior to

i unaffected, and as a consequence, the Huffman constructions of H ′

1 and H2 produce identical

parent node labels at each step up to and including step i.

By induction on i, there exists a sequence of same-parent node swaps and same-probability

node swaps that transforms H1 into a Huffman code tree H∗

1 , such that H∗

1 and H2 produce identical

parent node labels at every step of the Huffman construction. In particular, the root of H∗

1 has the

same label as the root of H2. The label of the root node of a code tree specifies the code tree

exactly, so H∗

1 and H2 are the same code tree, and the lemma is proved. �

Theorem 3.9. For a given source, all optimal prefix codes are same-row, same-probability swap

equivalent to each other.

Proof. Let C1 and C2 be optimal prefix codes. By Corollary 3.7, C1 is same-row swap equivalent

to some Huffman code H1, and C2 is same-row swap equivalent to some Huffman code H2. Then

by Theorem 3.8, H1 is same-parent, same-probability swap equivalent to H2. Therefore, C1 and

C2 are same-row, same-probability swap equivalent to each other. �
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