
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 1, JANUARY 2022 153

Hexagonal Run-Length Zero Capacity
Region—Part II: Automated Proofs
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Abstract— The zero capacity region for hexagonal (d, k) run-
length constraints is known for many, but not all, d and k. The
pairs (d, k) for which it has been unproven whether the capacity
is zero or positive consist of: (i) k = d + 2 when d ≥ 2;
(ii) k = d + 3 when d ≥ 1; (iii) k = d + 4 when either d = 4
or d is odd and d ≥ 3; and (iv) k = d + 5 when d = 4.
Here, we prove the capacity is zero in case (i) when 2 ≤ d ≤ 9,
in case (ii) when 3 ≤ d ≤ 11, and in case (iii) when d ∈
{4, 5, 7, 9}. We also prove the capacity is positive in case (ii)
when d ∈ {1, 2}, in case (iii) when d = 3, and in case (iv).
The zero capacities for k = d + 4 are the first and only known
cases equal to zero when k − d > 3. All of our results are
obtained by developing three algorithms that automatically and
rigorously assist in proving either the zero or positive capacity
results by efficiently searching large numbers of configurations.
The proofs involve either upper bounding the number of paths
through certain large directed graphs, finding forbidden strings,
or building distinct tileable square labelings. Some of the proofs
examine over 20 billion cases using a supercomputer. In Part I
of this two-part series, it is proven that the capacity is zero for
all of case (i), and for case (ii) whenever d ≥ 7. Thus, the only
remaining unknown cases are now when k = d+4, for any odd
d ≥ 11.

Index Terms— Channel capacity, run length coding, hexagonal
constraint.

I. INTRODUCTION

THIS paper is Part II of a two-part series. Some of the
background, motivation, and basic definitions will be

repeated here so that the presentation can be followed in a
self-contained manner. The reader is referred to Part I [7] for
other details.

A one-dimensional run-length constraint imposes both lower
and upper bounds on the number of zeros that occur between
consecutive ones in a binary string. Specifically, if d and
k are nonnegative integers, or ∞, then a binary string is
said to satisfy a (d, k) constraint if every consecutive pair of
ones in the string has at least d zeros between them and the
string never has more than k zeros in a row. We will assume
throughout that k < ∞. It is known that if k > d, then the
number of (one-dimensional) N -bit binary strings that satisfy
the (d, k) constraint grows exponentially in N (e.g., [9]) and
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that the logarithm (base two) of that number, divided by N ,
approaches a positive limit as N grows to infinity. This limit
is known as the “capacity” of the constraint.

The concepts of (d, k) constraints and capacities have been
generalized to two dimensions, where the one-dimensional
(d, k) constraint is imposed both vertically and horizontally.
Sometimes these two-dimensional constraints are referred to
as “rectangular constraints”. To determine the capacity of
a rectangular constraint, one counts the number of binary
labelings of an N ×N square that satisfy the constraint, takes
its logarithm, and then divides by the area N2 of the square.
It is known that this quantity approaches a limit Crect(d, k)
(called the “capacity” again) as N grows to infinity (e.g., [12]).

The zero capacity region for a particular type of constraint
is the set of all pairs (d, k) for which the (d, k) capacity
equals zero. If a particular constraint has zero capacity, then
the number of valid labelings of a region does not grow
exponentially fast in terms of the volume (e.g., length for 1
dimension, area for 2 dimensions, etc.) of the region.

Various estimates of the two-dimensional rectangular capac-
ity were obtained for the particular case Crect(1,∞) ≈
0.587891162 by Calkin and Wilf [5], Weeks and Blahut [23],
Baxter [3], Pavlov [18], and in [16]. This rectangular (1,∞)
constraint is sometimes referred to as the “hard square model”
by physicists [2], and its capacity is known to equal the
rectangular capacity Crect(0, 1).

For two-dimensional rectangular (d, k) constraints, the zero
capacity region was completely characterized in [12], where it
was shown that the capacity satisfies Crect(d, k) > 0 if and only
if k ≥ d+2, when d ≥ 1 (i.e., Crect(d, k) = 0 when k = d+1).
It is also known that Crect(0, k) > 0 and Crect(k,∞) > 0 for
all k ≥ 1. Bounds on the two-dimensional rectangular (d, k)
capacity were given in [12], by Sharov and Roth in [20], and
were later improved and generalized to higher dimensions by
Schwartz and Vardy in [19].

A two-dimensional “hexagonal” constraint imposes one-
dimensional (d, k) constraints along the 3 primary directions
on a hexagonal lattice. An equivalent way to view the hexag-
onal constraint on a rectangular lattice is to impose the (d, k)
constraint both horizontally and vertically, and also along one
of the two diagonal directions (we will use the northeast-
southwest direction, but refer to it as the “northeast diagonal”)
[2, p. 409].

The hexagonal (d, k) capacity, denoted by Chex(d, k), is the
limit as N → ∞ of the logarithm base two of the number
of N ×N squares satisfying the hexagonal (d, k) constraint,
divided by the area N2 of the square.
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The hexagonal (d, k) capacity Chex(d, k) is known to be
positive for certain pairs (d, k). In fact, if Chex(d, k) > 0, then
it immediately follows that Chex(d′, k′) > 0 whenever either
d′ < d or k′ > k (or both), since the constraints weaken in
either instance. Positive lower bounds on the hexagonal (d, k)
capacity were previously proven for d = 0, and for all values
of d ≥ 5 for sufficiently large k (for example, k = d + 5
suffices), and now also for 1 ≤ d ≤ 4 with our results in this
paper. In what follows, we will summarize, for each d > 0,
the smallest known k such that Chex(d, k) > 0.

The only exactly known non-zero capacity of a hexagonal
(d, k) constraint is for the case (1,∞), which is known in the
physics literature as the “hard hexagon model”. As with the
rectangular constraint, it is easy to show that the hexagonal
(0, 1) and (1,∞) capacities are the same, by reversing the
roles of 0s and 1s. The problem of counting the number of
patterns in a bounded area that satisfy the hexagonal (1,∞)
constraint was considered in the context of Ising models in
physics, by Onsager [17], and Wannier [22]. An equivalent
problem is to find the number of configurations of non-
attacking kings on a chessboard with regular hexagonal cells.

Metcalf and Yang [15] conjectured that the capacity of
the hexagonal (1,∞) constraint was log2 e1/3 ≈ 0.48090,
but this was disproven by Baxter and Tsang [4], who
obtained a slightly more accurate estimate. Baxter [1], [2], and
Joyce [10], [11] performed numerous intricate calculations,
which when combined determine the exact hexagonal (1,∞)
capacity.

Using the technique of finding two distinct tileable squares,
Censor and Etzion [6] proved that Chex(d, d + 4) > 0 for all
even d ≥ 6. An immediate consequence is that Chex(d, d +
5) > 0 for all odd d ≥ 5, since the hexagonal (d, d + 5)
constraint is weaker than the (d + 1, d + 5) constraint. In
this paper, we present a tiling algorithm that automatically
generates distinct tileable square labelings that demonstrate
positive hexagonal (d, k) capacities for certain pairs (d, k). In
particular, we prove that the capacities Chex(1, 4), Chex(2, 5),
Chex(3, 7), and Chex(4, 9) are all positive.

Also, we note that the positive hexagonal (d, k) capacities
obtained in [6] were for the case of k = d + 4 when d is
even and d ≥ 6, but the proof technique does not apply to
odd d ≥ 5. In this paper, in contrast to even d ≥ 6, we show
that some of the open cases with k = d + 4 when d is odd
have zero capacity.

Whether or not Chex(d, k) is positive or zero has been
unproven1 for the following cases:

(i) k = d+ 2 when d ≥ 2
(ii) k = d+ 3 when d ≥ 1

(iii) k = d+ 4 when either d = 4, or d is odd and d ≥ 3
(iv) k = d+ 5 when d = 4.
Among these open cases, we prove in Part I that the hexagonal
(d, k) capacity equals zero in all of case (i), and in case (ii)
whenever d ≥ 7. Here, in Part II, we prove that the capacity is
zero in case (i) when 2 ≤ d ≤ 9 and case (ii) when 3 ≤ d ≤ 11
(in Corollary II.11 and Corollary III.4), and in case (iii) when

1Some of these cases were stated in [13] and [14] and are included here
for archival purposes.

Fig. 1. Tiling configuration for demonstrating positive capacities with the
Rectangle Tiling Algorithm. If each of two different binary labelings A and
B of an M × N rectangle can arbitrarily occupy each of the four positions
shown without violating the hexagonal (d, k) constraint, then the constraint
has positive capacity.

d ∈ {4, 5, 7, 9} (in Corollary II.11), and that the capacity is
positive in case (ii) when d ∈ {1, 2}, in case (iii) when d = 3,
and in case (iv) (in Theorem IV.1).

Table I summarizes the present knowledge of the zero
capacity region when d is less than 19 and k is less than
25, including the results we present in Parts I and II of these
papers. The results from Part I are shown surrounded by
squares and the results from Part II are shown surrounded by
circles. We note that four of the results turn out to be produced
by both the methods in Part I and Part II, and we denote them
in the table being surrounded by both a circle and a square.
Proofs of the results in Part I and Part II have not previously
appeared in the literature. We note that although we provide
here and in Part I the first published proofs of the cases where
k = d+2, those satisfying d ≥ 7 are not listed as new results
in the table, since they directly follow from our stronger (but
more complex) k = d+ 3 proof in Part I.

We also note that no positive capacities in the table were
previously proven on any of the four rows corresponding to
d = 1, 2, 3, 4, but our results in Theorem IV.1 imply that the
entire row to the right of each of our newly added “+” entries
is filled with positive capacities.

One way to demonstrate that a particular hexagonal (d, k)
capacity is positive is to exhibit at least two rectangular
labelings of the same dimensions that can validly tile the
plane in any configuration. For example, for some fixed d
and k, suppose A and B are two different M ×N rectangles
filled with 0s and 1s that each satisfy the hexagonal (d, k)
constraint, and such that d < k < M ≤ N . If each of
the 16 possible assignments of rectangles A and B to the
four possible positions shown in Figure 1 causes the resulting
2N × 2M rectangle to satisfy the (d, k) hexagonal constraint,
then arbitrary tilings of the plane by rectangles A and B also
satisfy the same constraint. In such a case, since the rectangles
A and B each have area MN and the four positions can
be chosen freely as either A or B, the capacity is at least
1/(MN), which is positive.

We create a Rectangle Tiling Algorithm (discussed in
Section IV) using this technique, and show in Theorem IV.1
that Chex(1, 4), Chex(2, 5), Chex(3, 7), and Chex(4, 9) are all
positive. For each of these cases, a square is determined that
can take on two distinct labelings which can arbitrarily tile
the plane without violating the constraint. These squares are
depicted in Figures 16–19, in which a variable x can be
set as either 0 or 1 to obtain two distinct tileable squares
(note that x = 1 − x). Similarly, for d = 0, while the fact
that Chex(0, 1) > 0 follows from elaborate derivations of
Baxter [1] and Joyce [10], [11], a much simpler proof is given
in Theorem IV.1 using two distinct tileable squares.
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TABLE I

SUMMARY OF THE KNOWN ZERO HEXAGONAL (d, k) CAPACITY REGION FOR SMALL d AND k. ZERO AND POSITIVE CAPACITIES ARE DENOTED BY
“0” AND “+”, RESPECTIVELY. THE CIRCLED SYMBOLS DENOTE OUR CONTRIBUTIONS IN THE PRESENT PAPER (PART II) AND THE ZEROS IN

SQUARES ARE FROM OUR PART I PAPER [7], AND THOSE WITH BOTH SQUARES AND CIRCLES OCCURRED IN BOTH

PARTS I AND II. THE QUESTION MARKS ARE REMAINING UNSOLVED CASES

Prior to this present paper, for the case of k = d+ 4, some
hexagonal (d, k) capacities were known to be positive but
none were known to equal zero. Specifically, it was previously
known [1], [10], [11] that Chex(0, 1) > 0, and it is shown
here (Theorem IV.1) that Chex(1, 4) > 0, Chex(2, 5) > 0, and
Chex(3, 7) > 0, from which it follows that Chex(d, d+ 4) > 0
whenever 0 ≤ d ≤ 3. Additionally, it was proven by Censor
and Etzion [6] that Chex(d, d + 4) > 0 for all even d ≥ 6.
This knowledge left as open problems whether Chex(d, d+ 4)
is positive or zero in the d = 4 or odd d ≥ 5 cases.

In our present paper, we demonstrate the first known cases
for k = d+4 where the hexagonal capacity is zero, specifically
whenever d ∈ {4, 5, 7, 9}. The fact that the k = d + 4 cases
alternate between zero and positive hexagonal capacities from
d = 5 to d = 10 contrasts the case of k = d + 3 where we
showed (in Part I) that Chex(d, d+3) = 0 for all d ≥ 3. Also,
in the rectangular constraint case, there is no such alternation
between zero and positive capacities [12].

Here, in Part II, one of our approaches to proving particular
hexagonal (d, k) capacities are zero is to show that the number
of valid labelings of an N × N square grows like 2O(N) as
N → ∞, whereas one would need 2Ω(N2) to assure a positive
capacity. To accomplish this, we create the Constant Position
Algorithm (defined formally in Section II-D), which assists in
the proof by showing that a valid hexagonal (d, k) labeling

of any (k + 1) consecutive rows in an N ×N square allows
only a small number of choices for validly labeling the row
immediately above the (k + 1) consecutive rows. The exact
number of such valid labelings of that new row is shown to be
bounded, as N → ∞. This in turn implies that there are only
2O(N) valid labelings of the square as N → ∞, which yields
zero capacity. These facts are established by constructing two
directed graphs representing allowable sequences of labelings
of a (k+1)×(k+1) square that slides horizontally or vertically,
one row or column at a time, respectively.

In order to upper bound the number of paths through
these two directed graphs, we show that it suffices to deter-
mine which pairs of paths through the horizontal graph have
vertically compatible vertices. To aid this automated search,
we show the useful fact that there is no loss of generality
in restricting paths to strongly connected components of the
graphs (Lemma II.8). The computation yields an upper bound
on the number of ways that a valid labeling of a (k+ 1)×N
horizontal strip can be extended upwards by one row, and,
consequently, gives an upper bound on the number of valid
labelings of an N ×N square.

It is shown that if a certain constant position property,
defined in Section II-D, exists for a particular hexagonal (d, k)
constraint, then the upper bound is tight enough to make a
positive capacity impossible for that constraint (Theorem II.9).
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We use our Constant Position Algorithm to efficiently verify
if the constant position property holds for the (d, k) cases
of concern. The algorithm reduces the complexity of such a
search from what we assess to be “virtually impossible” with
today’s technology, down to “manageable”, using a multi-node
supercomputer with extensive memory capabilities. When the
algorithm was implemented and executed, over 20 billion
separate cases were examined, and as a result we directly
observed that the constant position property indeed holds
for 11 new cases. Namely, assisted by the Constant Position
Algorithm, we prove in Corollary II.11 that Chex(d, k) = 0
whenever

(d, k) ∈{(3, 6), (4, 7), (4, 8), (5, 8), (5, 9), (6, 9),
(7, 10), (7, 11), (8, 11), (9, 12), (9, 13)} .

In fact, we also observed that the constant position property
holds more generally for all cases of zero hexagonal (d, k)
capacity when d ≤ 9.

In addition to the Constant Position Algorithm and the
Rectangle Tiling Algorithm, we also introduce a third auto-
mated proof technique, which we call the Forbidden String
Algorithm. The Forbidden String Algorithm, discussed in
Section III, proves some hexagonal (d, k) capacities are zero
by showing that certain binary strings can never occur in large
validly labeled rectangles. It uses the fact that Chex(d, k) =
Chex(d + 1, k) if 10d1 is forbidden, and Chex(d, k) =
Chex(d, k − 1) if 10k1 is forbidden.

The emphasis in this paper will be on the Constant Position
Algorithm, as this algorithm takes the most effort to describe,
and gives the best results. After that, we will discuss the For-
bidden String Algorithm and the Rectangle Tiling Algorithm.

Some preliminary definitions are now provided. A rec-
tangle is an M × N two-dimensional array, where M is
the number of rows and N is the number of columns. If
M < N (respectively, M > N ), then the rectangle is called
a horizontal strip (respectively, a vertical strip). A labeling
of a set is an assignment l(x) ∈ {0, 1} to each element x
of the set. A labeling l of a rectangle is said to satisfy the
hexagonal (d, k) constraint (or is valid) if along every row,
column, and northeast diagonal, the number of 0s between
any two 1s is at least d, and no run of 0s is longer than
k. A position in an M × N rectangle is a relative location
(x, y), indexed by integer-valued Cartesian coordinates. The
ith row (respectively, column) of such a rectangle consists
of positions with second (respectively, first) coordinate i. For
example, the bottom-left element of any rectangle is at position
(1, 1) and the top-right (i.e. in row M and column N ) element
is at position (N,M).

If l is a labeling, then l(x, y) will denote the value of the
labeling l at position (x, y).

Let L(M,N) denote the set of valid labelings of an M×N
rectangle. The capacity of the hexagonal (d, k) constraint is
defined as

Chex(d, k) = lim
M,N→∞

log2 |L(M,N)|
MN

and is known to exist for all d and k by subadditivity
(e.g., [12]). Note that if Chex(d, k) > 0, then the number of

valid labelings is lower bounded as |L(M,N)| = 2Ω(MN).
For the remainder of the paper, it is assumed that d and k are
fixed and all logarithms are base 2.

II. CONSTANT POSITION ALGORITHM FOR PROVING

ZERO HEXAGONAL (d, k) CAPACITY

The Constant Position Algorithm is an automated com-
puter search that examines as many as billions of cases in
order to assist the rigorous proof of certain zero hexagonal
(d, k) capacity cases. Our proof relies on a peculiar property,
which we call the constant position property and describe in
Section II-D, that turns out to be a sufficient condition for the
hexagonal (d, k) capacity to be zero (see Theorem II.9).

The algorithm tries to determine if a given hexagonal (d, k)
constraint has zero capacity. The main idea is to check how
many valid labelings there are of a horizontal (k + 1) × N
strip, given the (valid) labeling of the horizontal (k + 1)×N
strip immediately below it (i.e., shifted one row down). If
the number of such labelings of the upper horizontal strip is
small enough, no matter which labeling is used for the lower
horizontal strip, then the number of valid labelings of an N×N
square can be upper bounded tightly enough to avoid 2Ω(N2)

growth, thus proving the (d, k) constraint has zero capacity.
In order to efficiently determine if the labelings of such

shifted horizontal strips are severely constrained, it is con-
venient to create a directed graph, whose nodes are valid
labelings of a (k + 1) × (k + 1) square, and whose directed
edges convey whether one square labeling can overlay the
other, but shifted one column to the right. We also create an
analogous graph for vertical sliding compatibility. We examine
labelings corresponding to walks through the constructed (hor-
izontal) graph that do not change from one graph component
to another. We prove that this is, in fact, possible to do
without sacrificing generality (see Lemma II.8). As a result,
the Constant Position Algorithm below focuses on horizontal
(k + 1) × N labelings that each correspond to a walk in a
single arbitrary component of the (horizontal) graph.

We note that as k grows, the number of valid labelings of
(k+ 1)× (k+ 1) squares grows rapidly, which makes storage
and processing computationally difficult. Thus, the computa-
tional complexity of performing the Constant Position Algo-
rithm increases, and at some point becomes infeasible, even
with massive computing power (typically when k ≥ 11).
However, for every computationally feasible case, our results
establish that Chex(d, k) = 0 if and only if the constant position
property holds, We suspect the “only if” direction of this
assertion may be true for even more complex cases, but we
leave it as an open question in Conjecture II.12.

A. Definitions

Let Λ be the set of valid labelings of a (k + 1) × (k + 1)
square. Define two directed graphs

Gh = (Λ, Eh)
Gv = (Λ, Ev)

such that (x, y) ∈ Eh if and only if the x-labeling of the
rightmost k columns of the (k+1)×(k+1) square is identical
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Fig. 2. Illustration of an edge in Gh. Two 3×3 labeled squares (the vertices)
are overlaid to form a 3×4 horizontal strip. The letters represent binary values
according to some valid labeling.

to the y-labeling of the leftmost k columns of the square, and
such that (x, y) ∈ Ev if and only if the x-labeling of the
topmost k rows of the square is identical to the y-labeling of
the bottommost k rows of the square. Any such graphs will
be called label graphs.

Figure 2 illustrates labelings of two 3× 3 squares and how
they can form the vertices of a single edge in Gh. Thus if
there is an edge from x to y in Gh, then the valid labeling x
can be extended rightward by one column to a valid labeling
of a (k + 1) × (k + 2) rectangle, using the y-labeling of the
rightmost column of the (k+1)× (k+1) rectangle. Similarly,
if there is an edge from x to y in Gv , then the valid x-labeling
can be extended upward one row using the y-labeling of the
topmost row of the (k + 1)× (k + 1) rectangle. In particular,
if (λ1, λ2) is an edge in Gv, then labeling λ2 ∈ Λ is said to
be vertically compatible above labeling λ1 ∈ Λ.

The label graph Gh is defined so that a labeling of a
(k+1)×N horizontal strip is valid if and only if the sequence
of labelings of (k+1)×(k+1) squares, obtained by sliding one
column at a time from left to right in the strip, is a (directed)
walk in the graph Gh. Similarly, the label graph Gv is defined
so that a labeling of a M × (k + 1) vertical strip is valid if
and only if the sequence of labelings of squares, obtained by
sliding one row at a time from bottom to top in the strip, is
a (directed) walk in the graph Gv . In these cases, the walk
in Gh is said to correspond to the labeling of the horizontal
strip, and the walk in Gv is said to correspond to the labeling
of the vertical strip.

Define LG1,G2(M,N) to be the set of labelings l of an
M×N rectangle such that the restriction of l to any (k+1)×N
horizontal strip corresponds to a walk through G1 and the
restriction of l to any M × (k + 1) vertical strip corresponds
to a walk through G2. The two label graphs G1 and G2 are
said to generate LG1,G2(M,N).

One basic fact that we will repeatedly rely on is that any
labeling of an M × N square is valid if and only if the
labeling is valid on every (k + 1) × (k + 1) subsquare of
the M ×N square. This is due to the fact that any violation
of the k constraint (i.e., the existence of a string 0k+1) along
a horizontal, vertical, or diagonal would have to occur in a
(k + 1) × (k + 1) subsquare (as would any violation of the
d contraint). A consequence (shown in Lemma II.5) is that
LGh,Gv(M,N) = L(M,N).

A directed graph is called strongly connected if there exist
directed paths from every vertex to every other vertex in the
graph. A strongly connected subgraph K of G is maximal
if no other strongly connected subgraph of G contains K .
Maximal strongly connected subgraphs of G will be referred
to as components. The components of G partition the vertices
of G, but not necessarily the edges. A key property that we
will make use of is that any walk through a directed graph
that leaves a particular component can never return to that
component.

A component is called cyclic if it contains a directed cycle.
In Gh, any component K is cyclic if and only if a bi-infinite
walk through K corresponds to a labeling of a (k + 1) ×∞
horizontal strip. In fact, the only non-cyclic components are
single vertices without self-loops, and thus the lone vertex
in a non-cyclic component can appear in the labeling of a
(k+1)×N horizontal strip at most once. Analogous statements
apply to cyclic and non-cyclic components in Gv .

If d > 0 and k < ∞, then the graphs Gh and Gv cannot
contain any self-loops, since the vertex in any self-loop would
necessarily contain either an all-0 or all-1 labeling of a row or
column of a (k+1)×(k+1) square. More generally, all cycles
in Gh and Gv must have at least d + 1 edges, and thus all
cyclic components of Gh and Gv must contain at least d+ 1
vertices.

The following example illustrates the types of components
that can occur in Gh or Gv .

Example II.1: The directed graph in Figure 3 has compo-
nents whose vertex sets are {1, 2, 3}, {4}, {5, 6}, and {7, 8, 9},
and whose edge sets consist of all edges that connect vertices
within each vertex set. Of these components, all are cyclic
except the component whose vertex set is {4}.

In the following example, we use the hexagonal (3, 4)
constraint to illustrate the correspondence between walks
through the graph Gh and sequences of labelings of (k+1)×
(k+ 1) squares in (k+ 1)×M horizontal strips for an actual
valid example labeling. The capacity of the hexagonal (3, 4)
constraint is known to be zero (it is implied by the known zero
capacity of the rectangular (3, 4) constraint), and it results in
a relatively small label graph Gh.

Example II.2: Figure 4 illustrates the directed graph Gh
for the hexagonal (3, 4) constraint. The graph Gh consists of 7
components: three disjoint 5-cycles, and four isolated vertices.
Each vertex is a labeling of a 5 × 5 square. Figure 5 shows
an example of a valid labeling of a 15 × 20 rectangle. It can
be seen that the labeling of any horizontal strip of width 5
corresponds to a walk through one of the 3 cycles in the graph.

Let R be the set of all (k + 1) × (k + 1) squares in an
M × N rectangle. Each square in R lies entirely in one
particular (k + 1) × N horizontal strip within the M × N
rectangle. Each such horizontal strip contains (N−k) squares
of size (k+ 1)× (k+ 1), and for any labeling of the M ×N
rectangle, the labeling of each such (k + 1) × (k + 1) square
within the strip belongs to exactly one component of Gh. In
fact, when scanning a strip from left to right, if the labeling
of a (k + 1) × (k + 1) square lies in a particular component,
but the labeling of the next square to its right (i.e., sliding
one column rightward) in the strip does not lie in the same
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Fig. 3. Graph used in example II.1.

Fig. 4. The graph Gh for the hexagonal (3, 4) constraint. The graph Gh consists of 3 disjoint 5-cycles and 4 isolated vertices, where each vertex is a valid
labeling of a 5 × 5 square.

Fig. 5. A labeling of a 15×20 rectangle satisfying the hexagonal (3, 4) constraint. The labeling of each 5×20 horizontal strip in the rectangle corresponds
to a walk through the second component of Gh listed in Figure 4. For example, the labeling of the horizontal strip consisting of the top 5 rows of the rectangle
corresponds to the sequence of 16 vertices that starts at v6 and continues through the cycle in the second component of Gh, i.e., v6, v7, v8, v9, v10, v6, . . ..

component, then the former component can never be revisited
within that strip.

Given a fixed valid labeling l of an M ×N rectangle, we
identify, for each horizontal strip and for each component of

Gh, the first (i.e., leftmost) occurrence in the strip of a (k +
1) × (k + 1) square labeling from the component. We use
the notation Th(l) to denote the set of all such leftmost squ-
ares in all strips of the M ×N rectangle. Specifically, for any
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l ∈ LGh,Gv(M,N), define

Th(l) = {r ∈ R : the labeling of each (k + 1) × (k + 1)
square to the left of r in the same strip belongs to a different

component of Gh as the labeling of r}.

Note that every (k + 1) × (k + 1) square whose labeling
under l is in a non-cyclic component of Gh necessarily lies
in Th(l).

For any fixed labeling l ∈ LGh,Gv (M,N), each (k+1)×N
horizontal strip in the M ×N rectangle corresponds to a walk
through the graph Gh. Each node in such a walk belongs to
exactly one component of Gh. If (a, b) is a directed edge in
such a walk and a and b belong to different components of
Gh, then the rectangle being labeled by b is in Th(l). Thus,
Th(l) is the set of all locations of component transitions in
Gh for the horizontal strips of the M ×N rectangle.

We define the equivalence relation ∼ between labelings
l1, l2 ∈ LGh,Gv(M,N) so that l1 ∼ l2 iff Th(l1) = Th(l2),
and denote the associated equivalence class of any l ∈
LGh,Gv(M,N) by [l].

The Constant Position Algorithm is described in
Section II-D in terms of 6 Steps, and in this section
we offer a preview in order to convey the gist of how it
works. The following definition will be used throughout the
remainder of the paper.

Definition II.3: For a given hexagonal (d, k) constraint, let
H1, . . . , Hα and V1, . . . , Vβ , respectively, denote the compo-
nents of the directed graphs Gh and Gv . Also, define the
disjoint graph unions

H =
α⋃
i=1

Hi and V =
β⋃
i=1

Vi.

The graphs H and V are obtained from the graphs Gh
and Gv , respectively, by removing all edges between different
components. For some pairs (d, k), it may happen that none
of the components of Gh (respectively, Gv) are connected by
edges to any other components (e.g., see Example II.2), in
which case H = Gh (respectively, V = Gv).

B. Preview of Step 5 of the Algorithm

An explicit description of the Constant Position Algorithm
is given in Section II-D. Here, we motivate Step 5, a key part
of the algorithm.

Consider a valid labeling of a (k + 2) × (k + 1) vertical
rectangle within an N × N square. Denote the labelings of
the lower and upper (k + 1) × (k + 1) squares within this
vertical rectangle by λ and λ′, respectively, and let λ and λ′

be nodes common to both H and V . Note that λ′ is vertically
compatible above λ, i.e., the ordered pair (λ, λ′) is a directed
edge in V . Since the lower and upper squares overlap in k
rows, the number of possibilities for the pair (λ, λ′) is limited.

Denote by ρ the top row of the (k+2)× (k+1) rectangle.
For any given labeling λ, all possible labelings λ′ that are
vertically compatible above λ may agree with each other in
certain locations of ρ. By observing numerous such labelings
for the (d, k) pairs of interest, we discovered that for every
fixed pair of components that λ and λ′ could belong to in H ,

there always appears to be at least one position in ρ that gets
labeled the same by every λ′ that is vertically compatible
above a given λ.

In other words, whereas the noted position in ρ depends
only on the fixed pair of components of λ and λ′, the value
of the labeling at that position depends additionally on the
specific choice of λ within its component. However, the value
is constant for each λ′ in its component that is vertically
compatible above λ. The existence of such a position seems
to arise due to the smallness of the difference (k − d) in our
cases of interest, and provides a crucial step in our proof that
certain hexagonal capacities are zero.

C. Preview of Lemma II.8

Lemma II.8 provides an important reduction in the amount
of computational complexity needed to determine whether the
constant position property holds for the particular hexagonal
(d, k) constraint being examined. Specifically, it allows one
to restrict attention to searching the connected components of
two directed graphs rather than the entire graphs. We now
provide a preview and summary of the proof of this lemma.

Let l ∈ LGh,Gv(N,N). Then the labeling of each (k+1)×
N horizontal strip induced by l corresponds to a walk through
Gh containing exactly (N −k) nodes, and there are at most α
vertices whose previous vertex in the walk is from a different
component (since there are α components in Gh). These at
most α vertices in a component are the first occurrences in
the walk of a vertex from the component they lie in, and are
called “transition vertices”. Similarly, there are exactly (N−k)
horizontal strips of size (k+ 1)×N in the N ×N square, so
there are at most α(N − k) ≤ αN transition vertices among
all of the (N−k) horizontal strips. We call the squares labeled
by the transition vertices “transition squares”.

In Lemma II.7, we show that there are not too many possible
arrangements of these transition squares in the N ×N square.
More specifically, in each (k+1)×N horizontal strip, any of
the at most α transition squares can be appear in at most
(N − k) locations or not at all. Thus there are at most
(N − k+ 1)α possible arrangements of the transition squares
in such a strip. Since there are (N − k) horizontal strips, it
follows that there are at most

(N − k + 1)α(N−k) ≤ 2αN logN = 2o(N
2)

possible arrangements of the transition squares in the entire
N ×N square.

Now suppose the number of valid labelings of an N × N
square is large enough (asymptotically) to yield a positive
capacity, i.e., |LGh,Gv(N,N)| = 2Ω(N2). Then, by the pre-
vious argument, there exists a particular arrangement of these
transition squares for which there are many labelings in
LGh,Gv (N,N) (specifically 2Ω(N2)) that induce this exact
arrangement of transition squares in the N × N square.
We show in Lemma II.8 that for such a fixed particular
arrangement, there exists a smaller subsquare of the N × N
square that:

(i) is disjoint from the transition squares, and
(ii) has many valid labelings.
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Fig. 6. Illustration of the constant position property.

Specifically, this subsquare has side length of order
√
N , and

has 2Ω(N) valid labelings.
To find such a subsquare, we partition the N × N square

into a grid of about N/σ2 subsquares with side lengths
approximately σ

√
N , and we can (and do) choose σ so that the

percentage of these subsquares that intersect transition squares
stays arbitrarily small as N grows.

The subsquares that intersect transition squares have a
total area equal to the number of subsquares (approximately
(k + 1)2αN ) times the subsquare area (approximately σ2N ).
Thus, the number of valid labelings of all the subsquares that
intersect transition squares is at most 2(k+1)2ασ2N2

, whose
growth rate as N → ∞ can be made arbitrarily less than that
of the capacity growth rate, 2Chex(d,k)N

2
, by choosing σ small

enough. This fact implies that the growth rate of the number
of valid labelings of all the subsquares that do not intersect
transition squares can be made asymptotically arbitrarily close
to 2Chex(d,k)N

2
. Since there are only N/σ2 subsquares in total,

we can show that at least one subsquare that does not inter-
sect any transition square must have about 2Chex(d,k)N valid
labelings.

Such a subsquare satisfying (i) and (ii) above can be

found for any side length
√
N by considering larger

and larger N × N squares, and so |LH,Gv(
√
N,

√
N)| is

asymptotically 2Chex(d,k)N , and thus |LH,Gv(N,N)| is asymp-
totically 2Chex(d,k)N

2
. Applying the same argument to tran-

sitions between components of Gv that occur in labelings of
LH,Gv(N,N) shows that |LH,V (N,N)| is also asymptotically
2Chex(d,k)N

2
. In other words, in Lemma II.8 we show the

capacity of the hexagonal (d, k) constraint is unchanged even
if we constrain all walks through Gh and Gv , corresponding
to labelings of (k + 1) × N horizontal and N × (k + 1)
vertical strips, to stay within a single component each. This
theorem justifies restricting attention to the components of
Gh and Gv in Steps 3, 4, and 5 of the Constant Position
Algorithm.

D. Algorithm Description

We say that an ordered pair of components (Ha, Hb) of Gh
is vertically semi-compatible if at least one vertex in Hb is
vertically compatible above at least one vertex in Ha.

Definition II.4: A hexagonal (d, k) constraint has the con-
stant position property if for every pair (Ha, Hb) of ver-
tically semi-compatible components from Gh, there exists
j ∈ {1, . . . , k + 1}, such that for each labeling λa in Ha,
the value at position (j, k + 1) of every labeling λb in Hb

vertically compatible above λa is constant (note: the value
can vary with λa).

The constant position property is the key observation
that allows us to successfully find new hexagonal (d, k)
capacities that equal zero. This property is illustrated
in Figure 6.

It is assumed that the bottom-most (k + 1) ×N horizontal
strip of the M × N rectangle contains (k + 1) × (k + 1)
square labelings from the component Ha in Gh, and that
the overlapping (k + 1) × N horizontal strip one row higher
contains (k+1)×(k+1) square labelings from the component
Hb in Gh. The four (k + 1) × (k + 1) squares shown in the
bottom strip of Figure 6 are assumed to have labelings λa and
λ′a, as indicated. Any location denoted by x or y is at position
(j, k+1) of the (k+1)× (k+1) squares that are shifted one
row up from the squares labeled by λa or λ′a. If the constraint
has the constant position property, then the values at each such
x are the same no matter which (k + 1) × (k + 1) labeling
from Hb is chosen, and similarly for the values of each such y,
although the value of y may differ from the value of x.

The Constant Position Algorithm is not guaranteed to find
all such zero capacity constraints, but has proven effective for
all cases within its computational complexity capabilities (see
Theorem II.13).

Constant Position Algorithm

• Step 1: Create the set Λ of valid labelings of a (k+1)×
(k + 1) square.
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• Step 2: Create label graphs Gh = (Λ, Eh) and Gv =
(Λ, Ev).

• Step 3: Determine the components of Gh and Gv,
i.e., H1, . . . , Hα and V1, . . . , Vβ .

• Step 4: Identify all pairs (Ha, Hb) of vertically semi-
compatible components.

• Step 5: Determine if the hexagonal (d, k) constraint has
the constant position property.

• Step 6: If the determination in Step 5 is true, then output
“success”; otherwise, output “failure”.

E. Lemmas for Zero Capacity Proof

In this section, four lemmas are given that lead to the
main technical result, Theorem II.9 in Section II-F, which
asserts that the hexagonal (d, k) capacity is zero whenever
the constant position property occurs.

Lemma II.5: LGh,Gv (M,N) = L(M,N).
Proof: Suppose l ∈ L(M,N), i.e., l is a valid labeling of

an M ×N rectangle. For any (k+1)×N horizontal strip, the
sequence of labelings of (k + 1) × (k + 1) squares, sliding
left to right one column at a time within the strip, forms
a walk through Gh, since these (k + 1) × (k + 1) square
labelings are necessarily valid and each successive pair of
labelings corresponds to an edge in Gh by the construction
of Gh. Similarly, labelings of vertical strips correspond to
walks in Gv.

Conversely, if l 
∈ L(M,N), then either the d constraint
or the k constraint is violated somewhere in the M × N
rectangle, which implies that the labeling of some (k + 1) ×
(k + 1) subsquare is not valid. Therefore the labelings of the
horizontal and vertical strips containing this subsquare do not
correspond to walks through Gh and Gv, respectively. Thus
l 
∈ LGh,Gv(M,N).

The label graphs Gh and Gv contain components, some
of which may be reachable from other components. Any
edge that connects a vertex from one component to another
component cannot itself lie in any component. Thus, a label
graph consists of a disjoint union of components together
with connecting edges not belonging to any component. If we
remove all such connecting edges of the label graphs Gh and
Gv , then we are left with the disjoint unions of components
of Gh and Gv . For any fixed M ×N rectangle, those disjoint
unions of components generate a subset of the labelings
of the rectangle that are valid under the hexagonal (d, k)
constraint (i.e., LH,V (M,N) ⊆ L(M,N)). Thus, using the
number of such valid labelings generated by the reduced label
graphs to estimate the hexagonal (d, k) capacity will yield a
number less than or equal to Chex(d, k) (i.e., |LH,V (M,N)| ≤
|L(M,N)|). Lemma II.8 below however, shows that, in fact,
the capacity Chex(d, k) is still obtained with equality by only
counting the number of valid labelings in this reduced case
(i.e., |LH,V (M,N)| and |L(M,N)| have the same growth rate
as M,N → ∞).

First we provide two technical lemmas to aid in the proof
of Lemma II.8. In particular, the following lemma gives: (i) a
linear (in the number of rows of an M ×N rectangle) upper
bound on the number of component transition locations in

Th(l); and (ii) an upper bound on the number of different tran-
sition sets Th(l) that can occur across all l ∈ LGh,Gv(M,N).

Lemma II.6: Suppose label graphs Gh and Gv generate a
set of labelings LGh,Gv(M,N) of an M ×N rectangle. Then
the following hold:

(i) |Th(l)| ≤ αM for any l ∈ LGh,Gv (M,N),
(ii) |LGh,Gv(M,N)/ ∼ | ≤ 2α log(N+1)M .

Proof: Let l ∈ LGh,Gv(M,N) be a labeling of an
M×N rectangle generated by Gh and Gv . Then, in particular,
the labeling of each (k + 1) × N horizontal strip of l
corresponds to a walk through Gh. From the definition of
Th(l), a (k + 1) × (k + 1) square r can be included in Th(l)
only if the labeling of each (k + 1) × (k + 1) square to the
left of r in the same strip belongs to a component of Gh
other than the component containing the labeling of r. Thus
there can be at most α (i.e., the number of components in Gh)
(k + 1) × (k + 1) squares of any horizontal strip included in
Th(l), and therefore |Th(l)| ≤ αM .

Now for the second part. In a given (k+1)×N strip there
are at most N+1 options for the position of a (k+1)×(k+1)
square r ∈ Th(l), where the one extra option corresponds to
labelings from a component not appearing in the horizontal
strip at all. Thus there are at most (N + 1)α ways to arrange
the at most α possible such squares from Th(l) that can appear
in a given horizontal strip. Since the number of (k + 1) ×N
horizontal strips is at most M , there are no more than
(N + 1)αM ways to position all of the squares in Th(l).
Therefore, |LGh,Gv(M,N)/ ∼ | ≤ 2α log(N+1)M .

Recall that two labelings of an M × N rectangle are
equivalent under the relation ∼ if the labelings transition
within horizontal strips from one component of Gh to another
at the same locations. The following lemma helps us prove
Lemma II.8 by allowing us to restrict attention to one equiv-
alence class of such labelings.

Lemma II.7: If Chex(d, k) > 0, then for any � > 0, there
exist constants M1 and N1 such that for all M > M1 and
N > N1, there exists an equivalence class [l] ∈
LGh,Gv (M,N)/∼ whose size is at least 2(Chex(d,k)−ε)MN .

Proof: Let � > 0. Since

Chex(d, k) = lim
M,N→∞

log |LGh,Gv(M,N)|
MN

> 0

we can find constants M0 and N0 such that
|LGh,Gv(M,N)| ≥ 2(Chex(d,k)− ε

2 )MN for all M > M0

and N > N0. By Lemma II.6, |LGh,Gv(M,N)/∼ | ≤
2α log(N+1)M , where α is the number of components in Gh,
and thus for any M > M0 and N > N0,

2(Chex(d,k)− ε
2 )MN ≤ |LGh,Gv (M,N)|

=
∑

[l]∈LGh,Gv (M,N)/∼
|[l]|

≤ 2α log(N+1)M max
[l]∈LGh,Gv (M,N)/∼

|[l]|.

Therefore,

max
[l]∈LGh,Gv (M,N)/∼

|[l]| ≥ 2(Chex(d,k)− ε
2 )MN−α log(N+1)M

= 2(Chex(d,k)− ε
2−α log(N+1)

N )MN .
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Taking N large enough gives α · log(N+1)
N ≤ ε

2 , proving the
lemma.

The following lemma shows that, when enumerating the
valid labelings of an M × N rectangle in order to calculate
the hexagonal (d, k) capacity, it suffices to count only those
labelings for which the labeling of each (k+1)×N horizontal
strip corresponds to a path in a single component of Gh, and
the labeling of each M × (k+1) vertical strip corresponds to
a path in a single component of Gv .

Lemma II.8:

Chex(d, k) = lim
M,N→∞

log |LH,V (M,N)|
MN

.

Proof: First suppose Chex(d, k) = 0. Then since H and
V are subgraphs of Gh and Gv , respectively, for all M
and N we have LH,V (M,N) ⊆ LGh,Gv(M,N), and thus
|LH,V (M,N)| ≤ |LGh,Gv(M,N)|. In this case,

0 ≤ lim
M,N→∞

log |LH,V (M,N)|
MN

≤ lim
M,N→∞

log |LGh,Gv(M,N)|
MN

= 0.

Thus we will assume Chex(d, k) > 0. Note that the limits
on the right and left sides in the statement of the theorem
exist by [12]. Let � ∈ (0, 2). Then by Lemma II.7, there exist
M1, N1 such that for all M > M1 and all N > N1, there
exists an equivalence class [l] ∈ LGh,Gv(M,N)/ ∼ such that
|[l]| ≥ 2(Chex(d,k)− ε

3 )MN .
In what follows, we may assume M = N > max{M1, N1}.

We will use floor functions to ensure the dimensions of the
required subsets of an N ×N square are integers. Let σ be a
positive real number such that

σ ≤
√

�

2(k + 1)2α
(1)

(where α is the number of components in Gh) and consider
an f(N) × f(N) square ψ, where f(N) = �σ√N (assume
N is large enough so that f(N) ≥ 1). Thus,

f(N)2 ≤ σ2N. (2)

Define s(N) = f(N)�√N/σ to be the side length of a
large square subset, which occupies nearly all of the N ×N
square. Such an s(N)×s(N) square can be tiled in the obvious
way by using �√N/σ2 disjoint copies of ψ. Let Ψ denote
the set of these disjoint subsquares of the s(N)×s(N) square.
Thus,

|Ψ| =
⌊

1
σ

√
N

⌋2

≤ N/σ2. (3)

Note that the number of positions of the N ×N square that
are not covered by any ψ ∈ Ψ is N2 − s(N)2.

The number of component transitions that occur among all
the horizontal strips in the N × N square is the size of the
transition set Th(l), whereas the number of f(N) × f(N)
subsquares is the size of Ψ. We will demonstrate that there are
more of these subsquares than there are component transitions,

and in fact, there is always at least one subsquare which does
not overlap any (k + 1) × (k + 1) square associated with a
component transition in Gh. Any such subsquare in Ψ will be
called safe, and otherwise, unsafe.

Since α is the number of components of Gh, by Lemma II.6,
we have |Th(l)| ≤ αN , for all l ∈ LGh,Gv(M,N). That means
there are at most (k+1)2αN of the N2 positions in the N×N
square that are contained in some (k + 1) × (k + 1) square
of Th(l). Each such position can be located in at most one of
the (disjoint) squares in Ψ. Thus, the number of safe squares
in Ψ is at least

|Ψ| − (k + 1)2αN (4)

=
⌊

1
σ

√
N

⌋2

− (k + 1)2αN

>

(
1
σ

√
N − 1

)2

− (k + 1)2αN

≥
(√

2(k + 1)2αN/�− 1
)2

− (k + 1)2αN [from (1)]

> 0 (5)

for sufficiently large N (since � < 2). Therefore, there exists
at least one safe square in Ψ.

In the remainder of the proof, we will show that at least
one safe square has many valid labelings. Note that there are
at most

2((k+1)2αN)f(N)2 ≤ 2(k+1)2ασ2N2
[from (2)] (6)

ways to label the unsafe squares in Ψ.
For any subsquare ψ ∈ Ψ, let [l](ψ) denote the set of label-

ings of the subsquare ψ induced by the N×N square labelings
from the equivalence class [l]. The quantity |[l]| is the number
of valid labelings (of the N ×N square) which are equivalent
under ∼ to l. This number of valid labelings can be upper
bounded by multiplying: (i) the number of labelings of the
slightly smaller s(N)× s(N) square induced by the labelings
in equivalence class [l]; and (ii) the number of (possibly non-
valid) labelings of the set of N2 − s(N)2 positions in the
N × N square that lie outside of the s(N) × s(N) square.
Furthermore, for these two quantities in the product, (i) can
be upper bounded by multiplying the numbers of labelings of
each ψ in Ψ, induced by the labelings in [l]; and (ii) can be
upper bounded by raising 2 to the number of positions in the
N×N square that lie outside the s(N)×s(N) square. Thus,

2(Chex(d,k)− ε
3 )N2

≤ |[l]| [from Lemma II.7]

≤
⎛
⎝∏
ψ∈Ψ

|[l](ψ)|
⎞
⎠ · 2N2−s(N)2

=

⎛
⎝ ∏

unsafe ψ∈Ψ

|[l](ψ)|
⎞
⎠
⎛
⎝ ∏

safe ψ∈Ψ

|[l](ψ)|
⎞
⎠ · 2N2−s(N)2

≤ 2(k+1)2ασ2 N2 ·
⎛
⎝ ∏

safe ψ∈Ψ

|[l](ψ)|
⎞
⎠ · 2N2−s(N)2

[from (6)]
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≤ 2(k+1)2ασ2 N2 ·
⎛
⎝ ∏

safe ψ∈Ψ

max
safe ψ∈Ψ

|[l](ψ)|
⎞
⎠ · 2N2−s(N)2

≤ 2(k+1)2ασ2 N2 ·
(

max
safe ψ∈Ψ

|[l](ψ)|
)|Ψ|

· 2N2−s(N)2

≤ 2(k+1)2ασ2 N2 ·
(

max
safe ψ∈Ψ

|[l](ψ)|
)N/σ2

· 2N2−s(N)2

[from (3)] .

(Note that each “max” in the lines above is over a nonempty
set by (5).) Solving for the max gives

max
safe ψ∈Ψ

|[l](ψ)|

≥
(
2(Chex(d,k)− ε

3 )N2−(k+1)2ασ2 N2−N2+s(N)2
)σ2/N

= 2(Chex(d,k)− ε
3−(k+1)2ασ2−1+(s(N)2/N2))σ2 N .

In other words, since any safe ψ is an f(N)×f(N) square
in which each strip of height (k + 1) contains labelings from
a particular component of Gh, one gets

|LH,Gv(f(N), f(N))| (7)

≥ 2(Chex(d,k)− ε
3−(k+1)2ασ2−1+(s(N)2/N2))σ2N

≥ 2(Chex(d,k)− ε
2−(k+1)2ασ2)σ2N (8)

for N large enough, since s(N)2/N2 approaches one from
below as N → ∞. Therefore,

lim
N→∞

log |LH,Gv(N,N)|
N2

= lim
N→∞

log |LH,Gv(f(N), f(N))|
f(N)2

≥ lim
N→∞

log(2(Chex(d,k)− ε
2−(k+1)2ασ2)σ2 N )
σ2 N

[from (8)]

= Chex(d, k) − �

2
− (k + 1)2ασ2

≥ Chex(d, k) − � [from (1)] .

Note that the first two limits above exist by subadditivity
(e.g. [12]). Thus, we have

Chex(d, k)

≤ lim
N→∞

log |LH,Gv(N,N)|
N2

(since � was arbitrary)

≤ Chex(d, k) (since LH,Gv(N,N) ⊆ LGh,Gv (N,N)).

If we now start with H and Gv (instead of Gh and Gv)
and repeat the argument in the vertical direction, then we will
obtain

lim
N→∞

log |LH,V (N,N)|
N2

= lim
N→∞

log |LH,Gv(N,N)|
N2

= Chex(d, k),

which completes the proof of the lemma.

F. Zero Capacity Theorem

The following theorem establishes that Chex(d, k) = 0
whenever the Constant Position Algorithm outputs “success”.

Theorem II.9: If the hexagonal (d, k) constraint has the
constant position property, then the hexagonal (d, k) capacity
is zero.

Proof: Lemma II.5 showed that there is a bijection
between valid labelings of strips and certain walks through Gh
and Gv , and so instead of counting valid labelings, it suffices
to count corresponding walks.

Let si denote the (k+1)×N horizontal strip (in an M×N
rectangle), whose bottom row is the ith row, counting from the
bottom, of the M ×N rectangle, i.e. 1 ≤ i ≤M − k.

Let Wa be a valid labeling of the bottommost (k+ 1)×N
horizontal strip, s1. Let Wb be a valid labeling of s2, such that
Wa and Wb agree on s1 ∩ s2.

Suppose the walk through Gh corresponding to Wa lies
in a component Ha, and the walk corresponding to Wb lies
in a component Hb (these components must be cyclic since
N > k+1). Since Wa and Wb agree on their common k×N
horizontal strip (i.e., on rows 2 through k+1 from the bottom
of the M×N rectangle), the labeling λa of any (k+1)×(k+1)
square labeled by Wa, and the labeling λb of the (k + 1) ×
(k+ 1) square shifted one row upward labeled by Wb, satisfy
(λa, λb) ∈ Ev . Thus (Ha, Hb) is a pair of vertically semi-
compatible components identified in Step 4.

Now, since the hexagonal (d, k) constraint has the constant
position property by assumption, let j ∈ {1, . . . , k + 1} be
an index corresponding to (Ha, Hb) specified in the constant
position property.

By the constant position property, for each particular label-
ing Wa of s1, the labeling by Wb of column j of the top row
of the leftmost (k + 1) × (k + 1) square in s2 is completely
determined by the labeling by Wa of the leftmost (k + 1) ×
(k + 1) square in s1. (Recall that the walks corresponding to
Wa and Wb do not transition between different components of
Gh.) The same fact remains true if the two (k+ 1)× (k+ 1)
squares slide together one column at a time from left to right.
Thus, the sequence of values of the labeling by Wb in the top
row of s2, from horizontal positions j to N − (k + 1 − j) in
the M × N rectangle, are all completely determined by the
labeling of s1. These positions consist of at least the middle
N − 2k positions in the top row of s2, for any j. In sum,
the labeling of s1 immediately determines the labeling of k
out of k + 1 rows of s2, and now we have shown that it
also determines all but at most 2k of the positions in the top
row of s2. As a result, the number of different possible valid
labelings of s2, corresponding to walks from a given cyclic
component of Gh, for a given labeling of s1 corresponding to
walks from a (possibly different) given cyclic component of
Gh, is at most 22k. Varying the labelings Wb of s2 over the
α cyclic components of Gh increases this upper bound to at
most α22k.

Continuing the argument from the previous paragraph
inductively, moving one row upward in the M ×N rectangle
each time, shows that, for a given labeling of s1, there are
at most (α22k)M−k ways to label the M × N rectangle
excluding s1.
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Then, using the loose upper bound that there are at most
2(k+1)N possible valid labelings of s1 corresponding to a
walks through any particular cyclic component of Gh, there
are at most

2(k+1)N (α22k)M−k ≤ 2(k+1)N+(2k+logα)M (9)

labelings in LH,V (M,N). Therefore,

0 ≤ Chex(d, k)

= lim
M,N→∞

log |LH,V (M,N)|
MN

[from Lemma II.8]

≤ lim
M,N→∞

log
(
2(k+1)N+(2k+logα)M

)
MN

[from (9)]

= lim
M,N→∞

(k + 1)N + (2k + logα)M
MN

= 0.

By successful execution of the Constant Position Algo-
rithm presented in Section II-D, we have obtained the fol-
lowing result.

Result II.10: The Constant Position Algorithm verified that
the following hexagonal (d, k) constraints satisfy the constant
position property:

• k = d+ 2 and 2 ≤ d ≤ 9
• k = d+ 3 and 3 ≤ d ≤ 9
• k = d+ 4 and d ∈ {4, 5, 7, 9}.
The following corollary follows from Result II.10 and

Theorem II.9. We note that, while the proof of this corollary
is rigorous, verification of the constant position property
aspect of it appears to be virtually impossible to do by hand,
and relies on computer-assisted verification of an enormous
number of cases.

Corollary II.11: The hexagonal (d, k) capacity is zero
whenever

• k = d+ 2 and 2 ≤ d ≤ 9
• k = d+ 3 and 3 ≤ d ≤ 9
• k = d+ 4 and d ∈ {4, 5, 7, 9}.
We note that some of the zero capacities in Corollary II.11

immediately imply others,2 since Chex(d + 1, k) ≤ Chex(d, k)
and Chex(d, k−1) ≤ Chex(d, k), but we include them since they
were previously unproven. The following conjecture states a
converse to Theorem II.9.

Conjecture II.12: If the hexagonal (d, k) capacity is zero,
then the hexagonal (d, k) constraint has the constant position
property.

While we presently do not know if this conjecture is true in
general, we have verified it computationally for a substantial
number of cases for small d and k, namely for all d ≤ 9.

Theorem II.13: Conjecture II.12 is true for all d ≤ 9.

2Specifically, Chex(4, 8) = 0 implies Chex(4, 7) = 0 and Chex(5, 8) = 0;
Chex(5, 9) = 0 implies Chex(5, 8) = 0 and Chex(6, 9) = 0; Chex(7, 11) = 0
implies Chex(7, 10) = 0 and Chex(8, 11) = 0; and Chex(9, 13) = 0 implies
Chex(9, 12) = 0.

G. Algorithm Implementation Details

We describe below specific implementation details of
each step of the Constant Position Algorithm, and indi-
cate the greatest computational burdens and ways to reduce
complexity.

1) Step 1: Creating the Valid Labelings of a (k+1)×(k+1)
Square: An iterative method is used that recursively creates
the valid labelings of a (k + 1) × (k + 1) square from valid
labelings of smaller rectangles. Pointers are used to represent
adjacent subsquares in labelings, which leads to a massive
saving in computational complexity in Step 2.

Let Bm be the collection of valid labelings of a (k+1)×m
rectangle. We first create B1, B2, . . . , Bd+1 (in that order)
and then use Bd+1 to create Bk+1, thus avoiding explicit
generation of Bd+2, . . . , Bk. Generating these sets wastes
memory, since the d constraint has no effect on the validity
of labelings once m > d + 1, and the k constraint does not
start having an effect until m = k + 1. In fact, the sizes
of Bd+2, . . . , Bk can be quite large, but Bk+1 is generally
much smaller, since the k constraint plays a role. Thus, directly
generating Bk+1 from Bd+1 saves memory at the expense of
extra computation.

In order to create B1, all valid labelings of a (k + 1) ×
1 rectangle (i.e., a column) are generated directly, and each
is given a unique ID. To create B2, it is determined which
labelings of B1 may be placed horizontally next to each other
to create valid labelings of a (k + 1) × 2 rectangle.

In order to create B3, B4, . . . , a particular data structure
built from pointers (which will be called IDs) is used to
represent a labeling. Suppose 2 ≤ m ≤ d+ 1, and let λ be a
labeling in Bm. Also, let λa, λb ∈ Bm−1 be the labelings of
the left-most and right-most (k+ 1)× (m− 1) subrectangles,
respectively, of the (k + 1) ×m rectangle labeled by λ. The
labeling λ is represented using a data structure that contains:
(1) an ID (unique among labelings in Bm); (2) an array
containing the IDs of the labelings of each column; (3) an
array containing the IDs of λa and λb.

Creation of Bm, with 3 ≤ m ≤ d + 1, is now described.
For every two labelings λ, λ′ ∈ Bm−1 such that λb = λ′a,
a labeling λ∗ of a (k + 1) × m rectangle is induced, where
the labeling of the left-most (k+ 1)× (m− 1) rectangle is λ,
and the labeling of the right-most column is the labeling of
the right-most column of λ′. The new labeling λ∗ is valid if
and only if the restriction of λ∗ to each row and diagonal does
not violate the d constraint, since the restriction of λ∗ to any
column is valid by construction, and the rows and diagonals
are not long enough for the labeling to violate the k constraint.
If λ∗ passes these validity checks, it is added to Bm.

Finally, generating Bk+1 from Bd+1 follows essentially
the same procedure, except now consideration is made of all
(k−d+1)-tuples of labelings in Bd+1 that can be overlaid on
each other successively (as in the previous paragraph) to create
a labeling of a (k+1)×(k+1) rectangle. This labeling is valid
if and only if the restriction to any row and diagonal does not
violate the k constraint, since the restriction to any column
is valid by construction, and the restriction to any row or
diagonal already satisfies the d constraint, since any d + 1
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consecutive positions are labeled by some labeling in Bd+1.
If the labeling passes these checks of validity, it is added
to Bk+1.

Figure 9 shows the complexity reduction using this method
compared to two other less efficient methods.

2) Step 2: Creating the label graphs Gh and Gv: A method
is given to create the edge sets Eh and Ev . Each construction
is described separately, as they are slightly different.

To determine the out-edges in Eh from a labeling (i.e., a ver-
tex of Gh) λ of a (k + 1) × (k + 1) square, the data
structure from Step 1 that represents λ is useful. Recall that
Step 1 assigns an ID to each labeling of a (k + 1) × (d + 1)
rectangle that appears in λ, and let λI denote the (k− d+1)-
length array of the IDs of these sub-rectangles. Then to check
if there is an edge in Gh from λ to a labeling λ′ of a (k+1)×
(k + 1) square, it suffices to check if λI(j) = λ′I(j − 1) for
j = 2, . . . , k−d+1. This reduces the problem of determining
if (λ, λ′) ∈ Eh to comparing (k−d) pairs of integers (instead
of the more complex comparison of all k(k+1) values of the
bit positions in the overlapping rectangles).

The runtime of this step can be reduced by decreasing the
number of pairs of valid square labelings that are examined.
In practice, for the constraints of interest, each valid square
labeling has relatively few out-edges in Eh (typically, almost
all have out-degree equal to one, and the rest generally have
out-degree less than 5). As a pre-processing step, each labeling
λ′ is sorted by the element λ′I(1), which is the ID of the
leftmost (k + 1) × (d + 1) sub-rectangle of λ′. Then for
each square labeling λ, only square labelings λ′ satisfying
λ′I(1) = λI(2) are examined to find the out-edges from
λ in Eh.

However, the same method cannot be used in determining
the edges of Gv , since no record of any (d + 1) × (k + 1)
sub-rectangles was made in Step 1. Nevertheless, a similar
pre-processing step is performed by assigning an integer ID
to each valid (k+ 1)× 1 column, and then sorting the square
labelings based on the ID of each square’s leftmost column.
Then a search is made for out-edges in Ev only between square
labelings λ and λ′ for which the labeling of the top k positions
of the leftmost column of λ agree with the labeling of the
bottom k positions of the leftmost column of λ′. This method
indeed helps in practice, even though it does not prune the
potential set of edges in Ev as much as the previous method
pruned the potential set of edges in Eh.

3) Step 3: Finding the Components of the label graphs Gh
and Gv: We prune the label graphs Gh and Gv by iteratively
removing the square labelings from Λ that are sources or sinks
in either Gh or Gv . When such a labeling is removed, the
corresponding vertices in bothGh andGv are eliminated, since
if a square labeling is a source or sink in either graph, then it
cannot appear in a labeling of the infinite plane, and so it can
be removed from both graphs (see Lemma II.8).

Since removing sources or sinks from one graph may create
more sources or sinks in the other graph, the implementation of
the Constant Position Algorithm ping-pongs between remov-
ing sources and sinks from both Gh and Gv until the process
halts.

Fig. 7. Plot showing the number of valid labelings of a (k + 1) × (k + 1)
square versus d, and the number of pruned valid labelings of a (k+1)×(k+1)
square versus d, where k = d + 4.

We note that Tarjan’s algorithm for finding the components
of Gh (as described next) would also identify the sources and
sinks in Gh, but our tests indicate that pruning sources and
sinks drastically reduces the number of valid labelings of (k+
1) × (k + 1) squares (see Figure 7), and so it was performed
here to reduce memory consumption.

The components of the pruned Gh are determined using
Tarjan’s algorithm [21]. The runtime of Tarjan’s algorithm is
linear in the number of vertices and edges, i.e., O(|Λ|+ |Eh|).
The pruning step described previously is in part to prevent
stack overflow, as the implementation of Tarjan’s algorithm is
recursive, and some (d, k) constraints allow on the order of
billions of valid labelings of a (k+1)× (k+1) square, which
could potentially result in as many levels of recursion.

Note that no explicit determination is made of the compo-
nents of Gv , since such information is not needed in the rest
of the algorithm.

4) Step 4: Finding the Pairs (Ha, Hb) of vertically semi-
compatible Components of Gh: To find pairs (Ha, Hb) that are
vertically semi-compatible, we examine each component Ha

of the prunedGh, and every labeling λa in Ha, and check if λa
has an out-edge in the prunedGv to a labeling in Hb. Note that
this condition does not guarantee that a walk throughHa and a
walk through Hb could correspond to labelings of (vertically)
successive (k+1)×N horizontal strips in an M×N rectangle.
However, this weaker condition is much simpler to verify, and
performs well despite creating more cases to check, since in
practice the out-degree of most vertices is small.

5) Step 5: Showing the Hexagonal (d, k) Constraint Has the
constant position property: For the particular hexagonal (d, k)
constraints considered in this paper, we observed that each
component of the pruned Gh is vertically semi-compatible
with a very small number of other components, often just one
or two (see Table II). This fact, combined with the small out-
degrees of vertices in the pruned Gv , allows relatively quick
verification of the constant position property.
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TABLE II

COMPUTATIONAL COMPLEXITY PARAMETERS FOR ALL HEXAGONAL (d, k) CONSTRAINTS WITH d ≤ 9 WHERE CHEX(d, k) = 0. THE QUANTITIES
REFER TO THE SIZE OF VARIOUS PARAMETERS OF THE DIRECTED GRAPH Gh , EITHER BEFORE OR AFTER PRUNING. OUR NEWLY DISCOVERED

CASES FOR k = d + 3 AND k = d + 4 ARE INDICATED BY THE ASTERISKS ON THE FAR LEFT. EVERY ROW IN THIS TABLE CORRESPONDS

TO A HEXAGONAL (d, k) CONSTRAINT THAT WAS CONFIRMED VIA COMPUTER SEARCH

TO SATISFY THE CONSTANT POSITION PROPERTY

H. Computational Complexity of the Algorithm

The Constant Position Algorithm was run for a number
of previously open cases, and succeeded in showing that
Chex(d, k) = 0 in the following five new (d, k) constraints:
(6, 9), (4, 8), (5, 9), (7, 11), and (9, 13). These cases are listed
in order of increasing computational complexity. Even though
the (6, 9) case follows immediately from the (5, 9) case, since
Chex(6, 9) ≤ Chex(5, 9) = 0, we include it and other already-
known cases in the information below as these cases provide
interesting data about complexity.

The run time of the algorithm is shown in Figure 8 for
constraints of the form (d, d + 4), for 0 ≤ d ≤ 9 (the case
(6, 9) is not shown, but runs about as fast as the (4, 8) case).
Even though our results were limited in this plot to the cases
d = 4, 5, 7, 9, the algorithm was run for all d ≤ 9 in order to
better understand the complexity.

There is roughly exponential growth for 1 ≤ d ≤ 9, but
there is a sharp decline from d = 0 to d = 1, with the
runtime of the d = 0 case on the order of the runtime for
the d = 9 case. There are two reasons for this phenomenon.
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Fig. 8. Runtime, in seconds, on a supercomputer of the constant posi-
tion algorithm for hexagonal (d, k) constraints, as a function of d, where
k = d + 4. Note that one day is about 216.4 seconds.

First, as seen in Figure 7, the number of valid (k+1)×(k+1)
squares in the d = 0 case, even after pruning, is many orders
of magnitude larger than the number of valid (k+1)× (k+1)
squares in the d = 1 case. Second, since there is essentially
no d constraint in the d = 0 case, the graphs Gh and Gv
in the d = 0 case are highly connected, which slows the
Constant Position Algorithm in multiple places. The high
connectivity of the graphs Gh and Gv in the d = 0 case is evi-
denced by the fact that even the (0, 1) constraint has positive
capacity [1], [10], [11].

The highest complexity case that could be run in reasonable
time was when (d, k) = (9, 13), in which case the runtime was
about 216 seconds, or about one full day. The next open case of
interest would be when (d, k) = (11, 15), which is projected to
take at least about 8 days of runtime to complete. Since our
supercomputer time allocation was limited to two full days
at a time, the d = 11 case was not attempted. Furthermore,
the amount of memory usage grew exponentially in d, which
posed further difficulties.

Table II shows, for each hexagonal (d, k) constraint having
zero capacity and with d ≤ 9, the specific sizes of vertex and
edge sets in Gh, the size of Gh after pruning, the number
of (both total and non-cyclic) components of Gh, the average
number of vertices per component, and the number of pairs
of vertically semi-compatible components.

One contribution of the Constant Position Algorithm is
its dramatic reduction in computational complexity com-
pared to more straightforward approaches. This complexity
improvement enables the algorithm to discover zero hexagonal
capacity constraints that would otherwise be computationally
prohibitive. In particular, the algorithm adaptively prunes the
set of putative valid labelings for each width m rectangle, and
recursively builds the set of valid labelings of width m+1 from
those obtained for width m. This reduction in the number of
labelings to inspect makes the overall task more manageable.

Fig. 9. Plot showing the number of putative valid labelings of a (k+1)×m
rectangle versus m for the case (d, k) = (9, 13) based on three different
methods: a direct method, a complexity reduced method, and our adaptive
pruning method.

A plot of the number of putative valid (k + 1) × m
labelings, as a function of the rectangle width m, is illustrated
in Figure 9 for the case (d, k) = (9, 13). The green curve
corresponds to our complexity reduced version of the Constant
Position Algorithm. The “direct approach” (shown in red)
corresponds to a naive implementation without complexity
reduction, i.e., checking all 2(k+1)m possible labelings of a
(k+1)×m rectangle for validity, one-by-one. The “complexity
reduced” method (shown in blue) corresponds to first creating
the valid labelings of a column of height (k + 1), and then
checking which possible arrangements of these columns create
valid labelings of a (k+ 1)×m rectangle. It can be seen that
at the highest level of complexity when m = 14, the number
of labelings that we must check for validity in our algorithm
is about 234, which is considerably lower than the roughly 264

required for the complexity-reduced blue curve.
A plot of the number of valid (k + 1) × (k + 1) squares

versus d, where k = d+4, is shown in Figure 7. The blue curve
shows the number of valid labelings of a (k + 1) × (k + 1)
square that are found in Step 1 of the algorithm, while the
red curve shows the number of these squares retained after
pruning all sources and sinks in the label graphs Gh and
Gv in Step 2. As the plot indicates, for larger values of d,
the vast majority of valid labelings of a (k + 1) × (k + 1)
square do not appear in a component of Gh and a component
of Gv , Eliminating these squares from consideration during
Step 2 of the algorithm drastically improves the efficiency of
the subsequent steps.

1) Computing Resources: Due to the large amount of mem-
ory required to run the Constant Position Algorithm for larger
values of d and (k − d), the algorithm was implemented on
a large-memory node of the Comet supercomputer at the San
Diego Supercomputer Center. These nodes have a clock speed
of 2.2 GHz. The OpenMP API was used for implementing the
parallelism, primarily in Steps 1-3 of the algorithm. We used
64 CPUs in parallel and a total of 800 gigabytes of shared
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memory. The computationally most complex case we ran was
(d, k) = (9, 13), which took about one full day to run and had
about 2 billion valid 14 × 14 square labelings.

The next unsolved case for which the hexagonal capacity
is not known to be zero or positive is (11, 15), which could
not be performed with our current resources. Using statistical
sampling, we estimate it would have about 80 billion valid
16 × 16 square labelings, which suggests that the time and
space complexities would increase by about 40-fold compared
to the (9, 13) case. Such resources are presently not easily
available.

III. FORBIDDEN STRING ALGORITHM FOR PROVING

ZERO HEXAGONAL (d, k) CAPACITY

In this section we present a second algorithm for auto-
matically and rigorously proving that certain hexagonal (d, k)
capacities are zero. In this entire section, we will frequently
use the notation A(i, j) to denote the labeling of a position in
an array by a binary value, or else an “Unused” indicator. The
position (i, j) uses ordinary Cartesian integer coordinates.3

A binary string is forbidden for a hexagonal (d, k) constraint
if there exists a positive integer N such that for any rectangle
with side lengths at least N , no valid labelings of the rectangle
contain the string in any horizontal, vertical, or northeast
diagonal. For some pairs (d, k) there exist one or more
forbidden strings of the form 10z1, where d ≤ z ≤ k, whereas
for other pairs no such strings are forbidden.

If it is known that Chex(d, k−1) = 0 and 10k1 is a forbidden
string for the hexagonal (d, k) constraint, then we deduce
Chex(d, k) = Chex(d, k−1) = 0. Similarly, if Chex(d+1, k) =
0 and 10d1 is a forbidden string for the hexagonal (d, k)
constraint, then Chex(d, k) = Chex(d + 1, k) = 0. The basic
idea behind our Forbidden String Algorithm is to establish,
by a computer-generated proof, that either 10d1 or 10k1 is
forbidden for the hexagonal (d, k) constraint, and then rely
on a previously known fact that either Chex(d, k − 1) = 0 or
Chex(d+ 1, k) = 0.

A. Non-Forbidden Strings

Sometimes, however, it is provably impossible for certain
strings 10z1 to be forbidden. Here, we demonstrate a number
of such cases, and thereby concentrate the use of the Forbidden
String Algorithm on other cases.

In what follows, we will assume only integer valued coor-
dinates of points in the plane. Suppose all of the points on the
northwest line y = −x + a and the northeast line y = x + c
are labeled 1 and all other points on the integer lattice are
labeled 0. These two lines intersect if and only if a and c are
either both even or both odd. As a result, any point on the line
y = −x+a lies on the same northeast line as one point on the
line y = −x+b if and only iff a and b have the same parity, or
equivalently, if and only if b− a is even. The horizontal (and
vertical) number of points between the two northwest lines
y = −x+ a and y = −x+ b is b− a− 1.

3In contrast, in Section IV, we use matrix (row,column) coordinates for our
arrays.

Suppose (u, v) lies on the line y = −x+a and (s, t) lies on
the line y = −x+b, and both points lie on the same northeast
line y = x + c. Then u = (a − c)/2, v = (a + c)/2, s =
(b−c)/2, and t = (b+c)/2, so (s, t) = (u, v)+(1, 1)(b−a)/2.
Thus, the diagonal number of points between these two lines
is b−a

2 −1 = z−1
2 , where z = b−a−1. In other words, if two

northwest lines, separated horizontally by an odd number z of
points, are labeled by 1s and every other point is labeled 0,
then the string 10z1 appears horizontally and vertically, and
the string 10(z−1)/21 appears diagonally.

For any sequence of nonnegative integers a1, . . . , an, define
sj = j + a1 + · · · + aj for all j ≥ 1 and let s0 = 0. Define a
labeling by

La1,...,an(x, y)

=

{
1 if x+ y = sj mod sn where 0 ≤ j ≤ n− 1
0 else.

Then La1,...,an consists of periodically repeating infinite
northwest diagonals of 1s. Each infinite horizontal row is
labeled by infinitely repeating the pattern 10a110a21 . . . 10an

to the left and right. The 1 on the far left side of this pattern
is at the origin, and the entire pattern shifts one position to
the left each time one moves upward by one row. This lattice
contains runs of a1, a2, …,an zeros horizontally and vertically
between consecutive 1s.

If ai is odd, then the string 0ai appears horizontally and
vertically and the string 0(ai−1)/2 appears diagonally, between
the consecutive northwest diagonal lines passing through the
points (si−1, 0) and (si, 0) in the labeling La1,...,an .

On the other hand, if ai and ai+1 are both even, then the
number of points horizontally between the northwest diagonal
lines passing through (si−1, 0) and (si+1, 0) is odd, so the
string 0(ai+ai+1)/2 appears diagonally between these two
diagonal lines (i.e. it skips the diagonal line passing through
the point (si, 0)). The string 0ai appears horizontally and
vertically between the diagonal lines passing through (si−1, 0)
and (si, 0), and the string 0ai+1 appears horizontally and
vertically between the diagonal lines passing through (si, 0)
and (si+1, 0).

The following theorem eliminates certain possible strings as
being forbidden.

Theorem III.1: For a given hexagonal (d, k) constraint, the
string 10z1 is not forbidden whenever d̂ ≤ z ≤ k̂, where

d̂ =

{
d if d even

d+ 1 if d odd
k̂ =

{
k if d even

k − 1 if d odd.

Proof: Take a1 = d̂, a2 = d̂ + 2, a3 = d̂+ 4, …an = k̂
in La1,...,an , and note that each ai is even.

When 1 ≤ i ≤ n− 1, we have ai+1 = ai + 2, so the string
0(ai+ai+1)/2 = 0ai+1 appears diagonally and the strings 0ai

and 0ai+1 appear horizontally and vertically. And when i = n,
the string 0(a1+an)/2 appears diagonally and the strings 0a1

and 0an appear horizontally and vertically.
In summary, the pattern 10z1 appears along every hor-

izontal row and vertical column whenever z is even and
d̂ ≤ z ≤ k̂. Also, since (ai + ai+1)/2 = ((d̂ + 2(i − 1)) +
(d̂ + 2(i − 1) + 1)/2 = d̂ + 2i − 1, the pattern 10z1
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Fig. 10. A tileable valid labeling of a 15 × 15 square for the hexagonal
(5, 8) constraint. The string 1051 appears in the top row (in red) and thus is
not forbidden.

appears along every northeast diagonal whenever z is odd and
d̂ ≤ z ≤ k̂.

Thus, the labeling satisfies the hexagonal (d, k) constraint
and 10z1 is not forbidden, since it appears in the valid labeling
Ld̂,d̂+2,...,k̂.

The Forbidden String Algorithm relies on deducing that
Chex(d, k) = Chex(d + 1, k) by showing 10d1 is forbidden,
or Chex(d, k) = Chex(d, k − 1) by showing 10k1 is forbid-
den. Theorem III.1 shows that, in particular, if both d and
k are even, then this approach will not work, since 10d1
and 10k1 are not forbidden strings of the hexagonal (d, k)
constraint.

In some cases, certain strings of the form 10z1 cannot
be forbidden for a given hexagonal (d, k) constraint, but
they do not fall within the scope of Theorem III.1. In the
theorem below, for each hexagonal (d, k) constraint given, we
exhibit a single square labeling that can validly tile the plane,
and we deduce therefore that any strings within it are not
forbidden.

Theorem III.2: The string 10z1 is not forbidden for the
hexagonal (d, k) constraint in the following cases: (i) d = 5,
k = 8, z = d; (ii) d = 7, k = 11, z ∈ {d, k}.

Proof: The following square labelings in Figure 10 and
Figure 11 satisfy the mentioned constraint, can tile the
plane, and contain the strings asserted to not be forbidden.
Figure 12 shows portions of the hexagonal lattice tiled by these
labelings.

B. Algorithm Description

Forbidden String Algorithm
• Step 1: Set A(i, j) = Unused, for all i, j.
• Step 2: Assume A(0, 0) = 1 and A(z + 1, 0) = 1.
• Step 3: Force 0s for the d constraint.
• Step 4: If there does not exist 0k+1 horizontally, verti-

cally, or diagonally, then go to Step 5.
Else repeatedly pop the stack until the top of the

stack is an assumed 1.

Fig. 11. A tileable valid labeling of a 24 × 24 square for the hexagonal
(7, 11) constraint. The strings 1071 and 10111 appear (in red) in rows 1 and 2,
respectively, and thus are not forbidden.

If the top of the stack is the original assumption
A(0, 0) = 1, then a proof is found, so exit.

Else convert the top of the stack to a forced 0
and repeat Step 4.

• Step 5: Select an unused position (x, y) and assume
A(x, y) = 1.

• Step 6: Go to Step 3.

C. Algorithm Details

The nonnegative integer z is an input parameter chosen to
determine the initial assumed string 10z1 in Step 2. In every
case tested, we chose z = d or z = k.

Each point in the array A has integer coordinates and is
marked as either “Unused”, or else labeled “0” or “1”. The
goal is to try to show that the original two assumptions in
Step 2 lead to a violation of the hexagonal (d, k) constraint,
thus implying that 10z1 is a forbidden string.

A stack is used to keep track of the current state of the
algorithm, namely which array positions (i, j) are labeled
0 or 1 and whether they achieved those values by being
assumed or by being forced. Each “assume” or “force” instruc-
tion in the algorithm is also pushed onto the top of the
stack.

In Step 3, the algorithm forces unused points to be 0 if
they lie within d positions of a point labeled 1 horizontally,
vertically, or diagonally. In other words,

• If A(x + i, y) = Unused and 1 ≤ |i| ≤ d, then force
A(x+ i, y) = 0.
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Fig. 12. The upper labeling satisfies the hexagonal (5, 8) constraint, and the lower labeling satisfies the hexagonal (7, 11) constraint. Red hexagons indicate
1s, and white hexagons indicate 0s. The upper labeling shows 1051 is not a forbidden string under the hexagonal (5, 8) constraint, and the lower labeling
shows 1071 and 10111 are not forbidden strings under the hexagonal (7, 11) constraint.

• If A(x, y + i) = Unused and 1 ≤ |i| ≤ d, then force
A(x, y + i) = 0.

• If A(x + i, y + i) = Unused and 1 ≤ |i| ≤ d, then force
A(x+ i, y + i) = 0.

Since the algorithm always forces 0s after a 1 is added, the
array A is guaranteed to obey the d constraint. If k < 2d, then

additional 0s can be forced when a 1 is inserted, in order to
prevent a violation of the k constraint. Specifically, in addition
to points at distances 1, . . . , d in all 3 directions, 0s can be
forced at distances k+ 2, . . . , 2d+ 1 in all 3 directions, since
otherwise, if any of these points were labeled 1, a string of
0k+1 would result.
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Step 4 checks for violations of the k constraint, and,
if found, then removes previously forced bits until the top
of the stack is an assumed 1, at which point the assumed 1
is converted to a forced 0. We then repeat Step 4 until the
k constraint is enforced. To reduce search complexity, each
stack push records the smallest bounding rectangle containing
all 0s and 1s in the array up to that point. Only that bounding
rectangle, rather than the entire array A, needs to be searched
for strings 0k+1.

In Step 5, the algorithm finds some unused position and
labels it as an assumed 1. This can be a deterministic process
or randomized. We chose to search the array loosely in an
order defined by a spiral space filling curve starting at the
origin and eventually covering the entire array, but with an
additional randomized component.

In practice an N×N char array is used, with the coordinates
indexed from 0 to N − 1, and N chosen sufficiently large
(e.g., N = 100 generally suffices). The location (N/2, N/2) is
chosen as the origin. If the algorithm ever attempts to assume
or force a labeling of a position (x, y) that lies outside the
range of the array A, then the algorithm halts and declares a
failure to find a proof of a forbidden string. This can occur
when there exists a valid labeling of all locations in the array,
under the original assumptions.

A recursive implementation of the Forbidden String Algo-
rithm is given in Appendix A, which may be useful for
alternate implementations or a formal correctness proof.

D. Example for d = 1 and k = 3

We illustrate in Figure 13 the Forbidden String Algo-
rithm with the hexagonal (1, 3) constraint, by showing
that 1031 is a forbidden string, and thus Chex(1, 3) =
Chex(1, 2) = 0. The automated proof is shown on the left-hand
side and the labeled bits at various stages on the right-hand
side. Each time an “unused” (i.e., not labled) bit is labeled
either 0 or 1, that bit labeling is pushed onto a stack and is
represented by an extra indentation of the proof line in the
figure. Conversely, when a bit is popped off the stack it is
marked as “unused” and a reduction of indentation occurs.

For example, the original two assumed 1s are pushed on the
stack at lines 1 and 8 of the proof, at locations (0, 0) and (4, 0),
respectively. The forced 0s that resulted from these initial
1s are pushed after each assumption, namely in lines 2–7
and lines 9–14 of the proof. The square diagram between
lines 11-14 shows the labeled bits based on the original two
assumed 1s.

An additional 1 is assumed in line 15 position (3, 2) and
its forced 0s follow it in the proof. This assumed 1, however,
leads to a horizontal string 05 in row 1, as shown in line 22 of
the proof. This string violates the fact that k = 3, and the
violation is illustrated in the square diagram ending at line 22
with the string 05 shown in red.

Forced bits are then continually popped off the top of the
stack from line 23 through line 28 in the proof, until an
assumed 1 is reached. Since this assumed 1 (at location (3, 2))
had just led to a contradiction, it is flipped to a forced 0 in

Fig. 13. Proof automatically generated by the forbidden string algorithm.
The proof shows that 1031 is a forbidden string for the hexagonal (1, 3)
constraint, and thus Chex(1, 3) = Chex(1, 2) = 0. The level of indentation
indicates the number of assigned binary labels in the plane. Snapshots of the
assumed and forced bit values are shown at various points in the proof.

line 29, and the resulting bit labelings are shown in the square
diagram ending at line 29.

A new 1 is assumed in line 30 at location (2, 2), and its
forced 0s follow it in lines 31–35. As a result, a violation of the
k constraint occurs due to the string 04 occuring diagonally,
and this violation is illustrated in the square diagram ending at
line 36. Thus the stack pops off forced bits in lines 37–41 until
the assumed 1 at (2, 2) is reached. That assumed 1 is converted
to a forced 0 in line 42, as illustrated in the diagram ending
at line 42.

At this point a 1 is forced at (3, 1) to avoid 04 from occuring
vertically in column 3. But this 1 forces 0s at (2, 1) and (4, 2),
as shown in lines 43–45, thus causing the string 04 to occur
diagonally, violating the k constraint. This violation is listed
in line 46 and shown in the diagram ending at line 46.
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Finally, the stack is popped again until the original
assumed 1 at (4, 0) is reached, in lines 47–57, and this
assumed 1 is converted to a 0 in line 58, as shown in the
diagram ending at line 58. This line, however, finishes the
proof, since one concludes that the original two assumed 1s
lead to a contradiction.

E. Algorithmic Zero Capacity Results

In searching for forbidden strings of the form 10d1 or 10k1,
we need not consider cases when d is even or when k is even
(by Theorem III.1). The following theorem is thus limited to
strings 10d1 with odd d, or strings 10k1 with odd k. Each
of the strings in the theorem was automatically proven to be
forbidden by the Forbidden String Algorithm.

Theorem III.3: The following are forbidden strings for the
indicated hexagonal (d, k) constraints:

d k forbidden string
3 6 10d1
4 7 10k1
6 9 10k1
7 10 10d1
8 11 10k1
9 12 10d1

10 13 10k1
11 14 10d1

Corollary III.4: The hexagonal (d, k) capacity is zero when
k = d+ 3 and d ∈ {3, 4, 6, 7, 8, 9, 10, 11}.

Proof: It was stated in [13] and proven in our Part I
that Chex(d, d + 2) = 0 for all d > 0. Thus, Theorem III.3
implies that Chex(d, d + 3) = Chex(d + 1, d + 3) = 0 when
d ∈ {3, 7, 9, 11} and Chex(d, d + 3) = Chex(d, d + 2) = 0
when d ∈ {4, 6, 8, 10}.

We note that in Corollary III.4, the proofs of Chex(3, 6) = 0
and Chex(4, 7) = 0 each relied on the fact that Chex(4, 6) =
0 (which was proven in our Part I), since 1031 and 1071
were forbidden strings, respectively. This gives an alternate
derivation of Chex(3, 5) = Chex(5, 7) = 0, from that given in
Part I.

The Constant Position Algorithm found each of the first six
cases of zero capacity that were found by the Forbidden String
Algorithm in Corollary III.4, but it also found more cases that
failed for the Forbidden String Algorithm. Thus, the Constant
Position Algorithm gives an improvement over the Forbidden
String Algorithm in many cases. On the other hand, the Forbid-
den String Algorithm is simpler to describe, tends to run much
faster, and verifies the interesting property of forbidden strings.
Also, the Constant Position Algorithm was unable to prove
Chex(11, 14) = 0 with the available supercomputer resources,
due to an overflow of memory, whereas the Forbidden String
Algorithm was able to prove it.

The Forbidden String Algorithm was implemented in C++
on an Apple MacBook Air laptop computer and took at most
a couple of seconds to run, up to the third largest case
(i.e., d = 9, k = 12), and took about 30 minutes for the case
(d, k) = (10, 13). The largest case (i.e., d = 11, k = 14)
required more memory and took 42 minutes to run on a

TABLE III

COMPLEXITY STATISTICS FOR THE FORBIDDEN STRING ALGORITHM

supercomputer, pushing assumptions on its stack almost ten
billion times before finding the proof. Table III shows some
statistics for the Forbidden String Algorithm.

The “stack pushes” column shows the total number of times
a push was made on the stack. This quantity reflects the
number of times a particular position in the array A was set
to either 0 or 1. The “assumed 1s” column shows the total
number of times a position in the array A was set to 1 by
assumption (i.e., the 1 was not forced). The “maximum stack
depth” column shows the largest number of assumed 1s that
were ever on the stack at a single time.

IV. RECTANGLE TILING ALGORITHM FOR PROVING

POSITIVE HEXAGONAL (d, k) CAPACITY

The following algorithm attempts to automatically discover
distinct labelings of M×N rectangular arrays A and B which
are valid no matter how they (jointly) tile the plane, if such
rectangle labelings exist. For any i and j, let A(i, j) and
B(i, j) denote the value of the binary labeling of position
(i, j) in these two arrays, respectively. 4

The main idea is to randomly label some of the unlabled
positions in the rectangles with a 1s, and then fill in all
the resulting forced 0s, always checking that the d and k
constraints are met. If a constraint is violated, then such
assumed labeled positions can be reversed with backtracking.

A. Algorithm Description

Rectangle Tiling Algorithm
• Step 1: Set A(i, j) = B(i, j) = Unused, for all i, j.
• Step 2: Choose A(1, 1) = 1 and B(1, 1) = 0.
• Step 3: Force 0s for the d constraint in A and B for all

tiling configurations.
• Step 4: If there does not exist 0k+1 horizontally, verti-

cally, or diagonally, for any tiling configurations, then go
to Step 5.

Else repeatedly pop the stack until the top of the
stack is a chosen 1.

If the top of the stack is the original choice
A(1, 1) = 1, then failure, so exit.

Else convert the top of the stack to a forced 0
and repeat Step 4.

4Matrix notation is used here, where i is the row (increasing downward
from 1 to M ) and j is the column (increasing rightward from 1 to N ).
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• Step 5: If there are no unused positions in A and B, then
the algorithm succeeded, so exit.

• Step 6: Select an unused position (x, y) in A or B and
set it to 1.

• Step 7: Go to Step 3.

B. Algorithm Details

The two arrays A and B are implemented as two-
dimensional char arrays in C++, each of size M×N , where M
and N are fixed positive integers. Step 1 initializes all MN
positions in each of A and B. Step 2 chooses one position
where A and B are forced to differ, in order to ensure the two
rectangles are different. The upper-left corner of the arrays
is one possible choice, but other locations are also feasible,
and possibly advantageous. Step 3 enforces the d constraint
by forcing nearby 0s. Step 4 enforces the k constraint. If it
is violated, then chosen 1s are continually removed from the
stack (and converted to forced 0s), until there is no longer a
violation. Step 6 tries to find a new position to label 1. Various
strategies can be used for this choice, or just a simple random
selection.

While the Rectangle Tiling Algorithm shares some features
with the Forbidden String Algorithm, they have fundamentally
different objectives. The former tries to find two different valid
rectangles, whereas the latter tries to find a contradiction to
the assumption of a string of the form 10z1 existing in some
valid labeling.

There are nuances to how the two algorithms enforce con-
straints as well. In the Forbidden String Algorithm, enforcing
the d constraint is rather straightforward, but in the Rectangle
Tiling Algorithm, many different possible configurations of the
rectangles A and B must be considered, since any chosen 1
in one of the two arrays can cause forced 0s in itself or the
other array in multiple ways, depending on how they tile the
plane. Similarly, checking for violations of the k constraint in
the Forbidden String Algorithm is straightforward, although
somewhat laborious, whereas in the Rectangle Tiling Algo-
rithm, many different tiling configurations must be examined.

The Rectangle Tiling Algorithm is not guaranteed to ter-
minate. This can happen if there do not exist two rectangular
labelings that tile the plane according to the desired constraint,
or possibly due to failure to find such rectangular labelings
even if they exist.

If the Rectangle Tiling Algorithm does terminate, one can
check the two rectangles produced to verify that they do not
violate the constraints for arbitrary tilings of the plane. For
example, if M = N > k, then it suffices to check the
following configurations for violations of constraints:

X X
X
X

X X
X X

where the first configuration is checked for horizontal viola-
tions, the second configuration for vertical violations, and the
third configuration for diagonal violations.

In each configuration, all possible assignments of the
squares A and B to the locations denoted by “X”
are constructed (i.e., 4 arrangements for each of the

first two configurations and 24 = 16 for the third
configuration).

The two algorithms also present different space complexity
concerns. While both algorithms use a stack to perform
backtracking so that bad choices of labelings can be corrected,
the stack can grow without bound in the Forbidden String
Algorithm (or at least up to the area of the bounding array
used, which can be very large), whereas in the Rectangle
Tiling Algorithm, the stack can never be larger than 2MN ,
and if it fills to that value, then the algorithm has successfully
completed its task.

A recursive implementation of the Rectangle Tiling Algo-
rithm is given in Appendix B, which may be useful for
alternate implementations or a formal correctness proof.

C. Enforcing the d and k Constraints

In Step 3 of the Rectangle Tiling Algorithm, the d constraint
is enforced by labeling positions in the arrays A and B zero if
they are within distance d of a chosen 1, for any configuration
of A and B in a tiling. In Step 4 of the Rectangle Tiling
Algorithm, the k constraint is enforced by hunting for violating
strings of the form 0k+1 in arbitrary configurations of A and
B in a tiling. Enforcing the k constraint is considerably more
time-consuming that the d constraint, but both processes share
the common feature of examining arbitrary tilings by labelings
of A and B.

In order to efficiently be able to enforce these two con-
straints, we use the graphical representation of arbitrary tilings
described above. Each of the three graphs Ghori, Gvert, Gdiag is
used to check all directed paths of length d from the position
of the chosen 1, in the horizontal, vertical, and diagonal
directions. For any nodes on such paths that are marked as
“Unused”, a 0 is forced for the corresponding position and
array. Then the whole process is repeated for the reverse-
direction-edge versions of the three graphs.

For example, if A and B are 5 × 5 squares and (d, k) =
(1, 5), Figure 14 shows in the far left all the forced 0s in
both A and B due to the assumptions that A(1, 1) = 1 and
B(1, 1) = 0.

Let us denote certain data structures by Ai,j and Bi,j ,
corresponding to each position (i, j) of M ×N arrays A and
B, respectively. These data structures contain the binary value
labeling the position, or else an indication that it is “unused”.
We define the following three directed graphs to enable a
reduced complexity search for potential violations of the k
constraint when the arrays A and B are partially labeled:

Ghori = (V,Ehori)
Gvert = (V,Evert)
Gdiag = (V,Ediag).

The vertex set V and directed edge sets Ehori, Evert, Ediag

are given by:

V =
M⋃
i=1

N⋃
j=1

{Ai,j , Bi,j}
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Ehori =
M⋃
i=1

⎛
⎝N−1⋃
j=1

{(Ai,j , Ai,j+1), (Bi,j , Bi,j+1)}

∪ {(Ai,N , Ai,1), (Ai,N , Bi,1),

(Bi,N , Bi,1), (Bi,N , Ai,1)}
⎞
⎠

Evert =
N⋃
j=1

(
M−1⋃
i=1

{(Ai,j , Ai+1,j), (Bi,j , Bi+1,j)}

∪ {(AM,j , A1,j), (AM,j , B1,j),

(BM,j , B1,j), (BM,j , A1,j)}
⎞
⎠

Ediag =
M⋃
i=2

N−1⋃
j=1

{(Ai,j , Ai−1,j+1), (Bi,j , Bi−1,j+1)}

∪
M⋃
i=2

{(Ai,N , Ai−1,1), (Ai,N , Bi−1,1),

(Bi,N , Bi−1,1), (Bi,N , Ai−1,1)}

∪
N−1⋃
j=1

{(A1,j , AM,j+1), (A1,j , BM,j+1),

(B1,j , BM,j+1), (B1,j , AM,j+1)}
∪ {(A1,N , AM,1), (A1,N , BM,1),

(B1,N , AM,1), (B1,N , BM,1)}.
For the horizontal graph Ghori, all of the nodes correspond-

ing to positions of A and B, except for positions in the far
right column, have exactly one out-edge, namely to the next
position to the right in the same array. Each of the positions
in the far right column has two out-edges, pointing to the
positions in A and B of the same row, but in the far left
column.

For the vertical graph Gvert, all of the nodes corresponding
to positions of A and B, except for positions in the bottom
row, have exactly one out-edge, namely to the next position
down in the same array. Each of the positions in the bottom
row has two out-edges, pointing to the positions in A and B
of the same column, but in the top row.

For the diagonal graph Gdiag, all of the nodes corresponding
to positions of A and B, except for positions in the top row
and right column, have exactly one out-edge, namely to the
next position to the right and up in the same array. The top row
and right column positions have two out-edges each, directed
to the similarly diagonally-adjacent positions in A and B.

These three graphs facilitate searching for the string 0k+1

horizontally, vertically, or northeast diagonally. Any horizontal
(respectively, vertical or diagonal) run of 0s of length z
corresponds to a path5 of length z through the graph Ghori

(respectively, Gvert or Gdiag).
One way to search for any possible occurrence of 0k+1 is

to assume such a run starts at a particular location (x, y) in
either A or B, and then search for a path of length k + 1,

5We assume the vertices in any path are distinct.

labeled by 0s, in either Ghori, Gvert, or Gdiag. This, however,
repeats work unnecessarily, since adjacent starting positions
may share substantial portions of runs.

A more efficient technique, which we use, is to first find,
starting at each position (x, y) of A, the longest path in Ghori

labeled entirely by 0s and the longest path in the reversed-
edge-direction version of Ghori labeled entirely by 0s. This
will yield the longest horizontal run of 0s in A that passes
through the position (x, y). This process is then repeated for
each position of B. With such a technique, duplicated work
is avoided and the longest runs of 0s passing through each
position of A and B are determined. If any of these runs
have length greater than k, then the process can be terminated
immediately and a horizontal violation of the k constraint can
be declared. If no such violation is discovered, this process is
repeated for the graph Gvert, and then again for Gdiag. If no run
of k zeros is found in any of the three graphs, then the current
labeling is declared to not (yet) violate the k constraint.

D. Example for d = 1 and k = 5

We illustrate in Figure 14 the Rectangle Tiling Algorithm
with the hexagonal (1, 5) constraint, by constructing two 5×5
distinct labelings that satisfy the constraint no matter how they
tile the plane. Thus Chex(1, 5) > 1/25. The stack is shown at
6 different stages, after choosing 1s and after popping due to
violations of the k constraint. Below each stack is the current
labeling of two squares A and B, with unlabeled portions left
blank.

In the first stack snapshot shown in Figure 14, the original
two chosen values are shown (a 1 and a 0), and the resulting
forced 0s from the chosen 1. The stack grows upward, and
each line stores the coordinates of the labeled point, the value
of the label, which of the two arrays (A or B) it lies in, and
whether the value was chosen or forced. It can be seen that in
the fifth snapshot of the stack, a violation of the k constraint
is discovered (in red) as the string 05 on the main diagonal of
array B. The reason this is a violation is that no row, column,
or main northeast diagonal can be all 0s, for otherwise, a tiling
in the plane of two such squares in a diagonal configuration
will result in a diagonal string 010. Also, note that in the fourth
stack snapshot, it is possible to discover that B(2, 4) = 1 is
forced, in order to prevent the k-violation described in the
fifth stack snapshot. However, not all such forced values are
found in practice, and implementing such procedures leads to a
tradeoff between the time spent hunting for such forced values
and the benefit of finding them sooner, rather than later.

E. Algorithmic Positive Capacity Results

We include here a proof of five positive hexagonal (d, k)
capacities. The first one, Chex(0, 1) > 0, is rather trivial but is
included for completeness since the only other known proof,
due to Baxter and Joyce in more general form as discussed
earlier, is extremely complicated. The other four cases have
been stated previously but never proven in the literature.

In each case we demonstrate positive capacity by exhibiting
a pair of distinct square labelings which can arbitrarily tile
the plane without violating the corresponding constraint. Thus
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Fig. 14. Snapshots of the stack during the Rectangle Tiling Algorithm. The stack grows upward, and each line in the stack shows which square (A or B)
is modified, the location (x, y) of modification, the binary value v, and the type of change t (“C” for Chosen, or “F” for Forced). The coordinates are given
in matrix notation, namely (row, column), where the upper-left corner is position (1, 1).

each square labeling carries with it one bit of information
content.

To find these tileable square labelings, we wrote a back-
tracking algorithm that starts with two blank squares and
attempts to fill in 1s in randomly chosen unoccupied positions,
along with any 0s that are then forced due to the d constraint.
If a contradiction results from trying to place a 0 where a 1
already exists, or vice versa, then the previous action is popped
off of a stack, and new moves are attempted. Successive
pushing and popping of the stack eventually led to the results
shown. Computer run times were typically on the order of
several minutes.

We note that it is an open question whether pairs of labelings
exist that tile the plane validly whenever a capacity is positive.
Alternatively, it is conceivable that only aperiodic tilings of
the plane can demonstrate positive capacity. In fact, Durand,
Gamard, Grandjean [8] demonstrated the existence of a certain
Wang tile set that can only tile the plane aperiodically, and yet
achieves a positive capacity, although their results do not apply
directly to the hexagonal (d, k) constraint situation.

Theorem IV.1: If (d, k) ∈ {(0, 1), (1, 4), (2, 5), (3, 7),
(4, 9)}, then the hexagonal (d, k) capacity is positive.

Proof: For each constraint, a square is given that can take
on two distinct labelings by choosing the value of the indicated
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Fig. 15. Two distinct labelings of a 2 × 2 square for the hexagonal (0, 1)
constraint where x ∈ {0, 1}. Thus, Chex(0, 1) ≥ 1/4.

Fig. 16. Two distinct labelings of an 8 × 8 square for the hexagonal (1, 4)
constraint where x ∈ {0, 1}. Thus, Chex(1, 4) ≥ 1/64.

Fig. 17. Two distinct labelings of a 6 × 6 square for the hexagonal (2, 5)
constraint where x ∈ {0, 1}. Thus, Chex(2, 5) ≥ 1/36.

Fig. 18. Two distinct labelings of an 8 × 8 square for the hexagonal (3, 7)
constraint where x ∈ {0, 1}. Thus, Chex(3, 7) ≥ 1/64.

x to be either 0 or 1, where x = 1− x (see Figures 15 – 19).
One can verify by inspection that the resulting two labelings
for each constraint can be arbitrarily assigned to squares in a
tiling of the plane by the squares, without violating the relevant
hexagonal (d, k) constraint. Thus the area occupied by one
such square can have any one of at least two possible labelings,
so the capacity is lower bounded by the reciprocal of the area
of the square, which in particular is positive.

APPENDIX A
RECURSIVE IMPLEMENTATION OF THE FORBIDDEN

STRING ALGORITHM

int A[N][N];
int Origin = N/2;

for(i,j=1 to N) A[i][j] = Unused;

Stack<Cell> S;

struct Cell {

Fig. 19. Two distinct labelings of a 10×10 squares for the hexagonal (4, 9)
constraint where x ∈ {0, 1}. Thus, Chex(4, 9) ≥ 1/100.

int X, Y, value;
string type;

}

bool Assign( X, Y ) {
A[X][Y] = 1;

Cell c;
c.X = X; c.Y = Y;
c.type = "assumed";
c.value = 1;
S.push( c );

ForceZeros();

if( No_k_Violation() )
if( NoUnusedLocations() )

return false; // Ran out of memory.

else {
do{ A[S.top.X][S.top.Y]=Unused; S.pop()}
while( !(S.top.type = "assumed"

&& S.top.value == 1 ));

if(S.top.X == Origin
&& S.top.Y == Origin)

return true; // Found proof 10ˆz1 forbidden.
else {

A[S.top.X][S.top.Y] = 0;
S.top.value = 0;
S.top.type = "forced";

}
}

(X,Y) = NewUnusedLocation();
return Assign( X, Y ); // Assume another 1.

}

A( Origin + z + 1, Origin ) = 1;

if( Assign( Origin, Origin ) ) print "Success";
else print "Failure";

APPENDIX B
RECURSIVE IMPLEMENTATION OF THE

RECTANGLE TILING ALGORITHM

int A[N][M], B[N][M];
for(i=1 to N, j=1 to M) A[i][j] = B[i][j] = Unused;

Stack<Cell> S;

struct Cell {
int X, Y, value;
string type;
int** Rect;

}

bool Tile( WhichRectangle, X, Y ) {
WhichRectangle[X][Y] = 1;

Cell c;
c.X = X; c.Y = Y;
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c.Rect = WhichRectangle;
c.type = "chosen";
c.value = 1;
S.push( c );

ForceZeros();

if( No_k_Violation() )
if( RectanglesFull() )

return true; // Found rectangles.

else {
do{S.top.Rect[S.top.X][S.top.Y]=Unused; S.pop()}
while( !(S.top.type == "chosen"

&& S.top.value == 1 ));

if(S.top.X == 1 && S.top.Y == 1
&& S.top.Rect == A )

return false;
// Original assumptions led to contradiction.

else {
S.top.Rect[S.top.X][S.top.Y]=0;
S.top.value = 0;
S.top.type = "forced";

}
}

Rect = NewUnfilledRectangle;
(X,Y) = NewUnusedLocation( Rect );
// Try another˜1˜in one rectangle\ldots
return Tile( Rect, X, Y );

}

B(1,1) = 0;

if( Tile( A, 1, 1) ) then print "Success";
else print "Failure";
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