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Hexagonal Run-Length Zero Capacity
Region—Part I: Analytical Proofs
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Abstract— The zero capacity region for hexagonal (d, k) run-
length constraints is known for many, but not all, d and k.
The pairs (d, k) for which it has been unproven whether the
capacity is zero or positive consist of: (i) k = d + 2 when
d ≥ 2; (ii) k = d + 3 when d ≥ 1; (iii) k = d + 4 when
either d = 4 or d is odd and d ≥ 3; and (iv) k = d + 5
when d = 4. Here, we prove that the capacity is zero for all of
case (i), and for case (ii) whenever d ≥ 7. The method used in
this paper is to reduce an infinite search space of valid labelings
to a finite set of configurations that we exhaustively examine
using backtracking. In Part II of this two-part series, we use
automated procedures to prove that the capacity is zero in case
(i) when 2 ≤ d ≤ 9, in case (ii) when 3 ≤ d ≤ 11, and in
case (iii) when d ∈ {4, 5, 7, 9}, and that the capacity is positive
in case (ii) when d ∈ {1, 2}, in case (iii) when d = 3, and in
case (iv). Thus, the only remaining unknown cases are now when
k = d + 4, for any odd d ≥ 11.

Index Terms— Channel capacity, run length coding, hexagonal
constraint.

I. INTRODUCTION

A ONE-DIMENSIONAL run-length constraint imposes
both lower and upper bounds on the number of zeros that

occur between consecutive ones in a binary string. Specifically,
if d and k are nonnegative integers, or ∞, then a binary string
is said to satisfy a (d, k) constraint if every consecutive pair
of ones in the string has at least d zeros between them and the
string never has more than k zeros in a row. It is known that
if k > d, then the number of (one-dimensional) N -bit binary
strings that satisfy the (d, k) constraint grows exponentially in
N (e.g., [14]) and that the logarithm (base two) of that number,
divided by N , approaches a positive limit as N grows to
infinity. This limit is known as the “capacity” of the constraint.

The concepts of (d, k) constraints and capacities have been
generalized to two dimensions, where the one-dimensional
(d, k) constraint is imposed both vertically and horizontally.
Sometimes these two-dimensional constraints are referred to
as “rectangular constraints.” To determine the capacity of a
rectangular constraint, one counts the number of binary label-
ings of an N × N square that satisfy the constraint, takes its
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logarithm, and then divides by the area N2 of the square. It is
known that this quantity approaches a limit Crect(d, k) (called
the “capacity” again) as N grows to infinity (e.g., [18]).1

The zero capacity region for a particular type of constraint
is the set of all pairs (d, k) for which the (d, k) capacity
equals zero. If a particular constraint has zero capacity, then
the number of valid labelings of a region does not grow
exponentially fast in terms of the volume (e.g., length for 1
dimension, area for 2 dimensions, etc.) of the region.

During 1998-2013, various studies of the two-dimensional
rectangular capacity were performed for the particular case
Crect(1,∞) ≈ 0.587891162 by Calkin and Wilf [5], Weeks and
Blahut [34], Baxter [3], Marcus and Pavlov [23], [24], [28],
and in [26]. This rectangular (1,∞) constraint is sometimes
referred to as the “hard square model” by physicists [2], and its
capacity is known to equal the rectangular capacity Crect(0, 1).

For two-dimensional rectangular (d, k) constraints, the zero
capacity region was completely characterized in 1999 in [18],
where it was shown that the capacity satisfies Crect(d, k) > 0
if and only if k ≥ d + 2, when d ≥ 1 (i.e., Crect(d, k) = 0
when k = d + 1). It is also known that Crect(0, k) > 0 and
Crect(k,∞) > 0 for all k ≥ 1. Bounds on the two-dimensional
rectangular (d, k) capacity were given in [18], by Sharov and
Roth in [31], and were later improved and generalized to
higher dimensions by Schwartz and Vardy in [30]. Schwartz
and Bruck [29] introduced an interesting rigorous method for
obtaining the capacity of general two-dimensional constrained
systems, although it is not presently known how to effectively
apply it to the hexagonal (d, k) case.

In 2016, Elishco et al. [10] introduced the notion of “semi-
constrained systems,” in which certain prescribed patterns are
forbidden to appear more often than particular designated fre-
quencies. These systems generalize (d, k) constrained systems,
since (d, k) constraints require that the forbidden patterns (i.e.,
patterns violating the d or k constraints) must never occur.2

Bounds and asymptotics for the capacity of semiconstrained
systems were obtained in [10], and also, in 2018, by the same
authors in [11], and for the multidimensional case in [12].

Other two-dimensional constraints have been studied in
the literature as well. In 1961, Kasteleyn [17] counted the
asymptotic number of arrangements of 1 × 2 tiles that cover

1Or, equivalently, one may count the number of N × M rectangles
satisfying the constraint, take its logarithm, divide by the area NM , and
then let both N and M tend to infinity in any manner.

2The (d, k) constrained systems were called “fully constrained” systems
in [10].
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Fig. 1. Converting a hexagonal lattice into a square lattice using northeast diagonals.

a square lattice. In 2006, Forchhammer and Laursen [13]
estimated the capacity of a two-dimensional binary code
forbidding “isolated bits,” i.e., a code where each 0 and
1 cannot be surrounded entirely by bits of the opposite parity.
In 2010, Louidor and Marcus [21] determined the capacity
of two different two-dimensional constrained systems, namely
“charge constrained” and “odd constrained” systems.

Also, in 1961, Wang [32] considered finite sets of certain
equal-sized squares, each of whose sides are labeled by one
of a given set of colors. These squares later became known as
“Wang tiles.” Such Wang tiles are used to tile the plane under
the constraint that adjacent tiles (horizontally and vertically)
share a common color where they meet. Durand et al. [9]
in 2014, and Chen et al. [7] in 2016, counted the number
of such Wang tilings and computed a quantity they called
the “entropy,” or alternatively the “spatial entropy,” which is
analogous to the capacity calculation described above. The
authors in [7] used the phrase “spatial chaos” to describe when
the spatial entropy is positive, and gave conditions on when the
spatial entropy is zero. In [9], a specific aperiodic tile set (i.e.,
a tile set such that every tiling of the plane by tiles from this
set is aperiodic) was shown to have positive spatial entropy.
However, there is no known direct connection between two-
dimensional (d, k) constraints and Wang tilings.

We now focus on the family of two-dimensional constraints
studied in this paper. A “hexagonal” (d, k) constraint is a
different type of two-dimensional run-length constraint, that
imposes one-dimensional (d, k) constraints on a hexagonal
lattice. Each hexagon in such a lattice has six neighbors,
and thus three axes run through it. The one-dimensional
constraint must be satisfied along each of the three axes for
each hexagon in the lattice. An equivalent way to view the
hexagonal constraint on a rectangular lattice is to impose
the (d, k) constraint both horizontally and vertically, and also
along one of the two diagonal directions (we will use the
northeast-southwest direction, but refer to it as the “northeast
diagonal”) [2, p. 409] (see Figure 1). The same diagonal
constraint direction is chosen for all squares in the lattice.

The hexagonal (d, k) capacity Chex(d, k) is known to be
positive for certain pairs (d, k). In fact, if Chex(d, k) > 0, then
it immediately follows that Chex(d′, k′) > 0 whenever either
d′ < d or k′ > k (or both), since the constraints weaken in
either instance. Positive lower bounds on the hexagonal (d, k)

capacity were previously proven for d = 0, and for all values
of d ≥ 5 for sufficiently large k (for example, k = d + 5
suffices), and now also for 1 ≤ d ≤ 4 with our results in
Part II. In what follows, we will summarize, for each d > 0,
the smallest known k such that Chex(d, k) > 0.

The only exactly known non-zero capacity of a hexagonal
(d, k) constraint is for the case (1,∞), which is known in the
physics literature as the “hard hexagon model.” As with the
rectangular constraint, it is easy to show that the hexagonal
(0, 1) and (1,∞) capacities are the same, by reversing the
roles of 0s and 1s. The problem of counting the number of
patterns in a bounded area that satisfy the hexagonal (1,∞)
constraint was considered in the context of Ising models in
physics, as early as in 1944 by Onsager [27], and in 1950 by
Wannier [33]. An equivalent problem is to find the number
of configurations of non-attacking kings on a chessboard with
regular hexagonal cells.

In 1978, Metcalf and Yang [25] conjectured that the capacity
of the hexagonal (1,∞) constraint was log2 e1/3 ≈ 0.48090,
but this was disproven in 1980 by Baxter and Tsang [4], who
obtained a slightly more accurate estimate.

Baxter [1], [2], later in 1980, and then Joyce [15], [16]
in 1988, performed numerous intricate calculations, which
when combined determine the exact capacity3 of the hexagonal
(1,∞) constraint (the approximate value is Chex(1,∞) =
Chex(0, 1) ≈ 0.4807676, which is fairly close to the incorrect
conjecture of Metcalf and Yang). As a result, one deduces that
Chex(0, k) > 0 for all k ≥ 1.

In 2001, using the technique of finding two distinct tileable
squares, Censor and Etzion [6] proved that Chex(d, d + 4) > 0

3The exact value is remarkably given by Baxter and Joyce as the logarithm,
base two, of the product
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for all even d ≥ 6. An immediate consequence is that
Chex(d, d + 5) > 0 for all odd d ≥ 5, since the hexagonal
(d, d + 5) constraint is weaker than the (d + 1, d + 5)
constraint. In Part II of our papers, we present a tiling
algorithm that automatically generates distinct tileable square
labelings that demonstrate positive hexagonal (d, k) capacities
for certain pairs (d, k). In particular, we prove that the capac-
ities Chex(1, 4), Chex(2, 5), Chex(3, 7), and Chex(4, 9) are all
positive.

Also, we note that the positive hexagonal (d, k) capacities
obtained in [6] were for the case of k = d + 4 when d is
even and d ≥ 6, but the proof technique does not apply to
odd d ≥ 5. In Part II, in contrast to even d ≥ 6, we show that
some of the open cases with k = d + 4 when d is odd have
zero capacity.

We next summarize the pairs (d, k) for which it was
previously known that Chex(d, k) = 0. It suffices, for each
d, to give the largest k that makes Chex(d, k) = 0. Since each
rectangular (d, k) constraint is weaker than the correspond-
ing hexagonal (d, k) constraint, it immediately follows that
Chex(d, k) ≤ Crect(d, k) for all d and k. Thus, in particular,
Chex(d, k) = 0 at least whenever Crect(d, k) = 0, namely when
k = d + 1 ≥ 2. A stronger result was stated in [19], namely
that Chex(d, d + 2) = 0 for all d ≥ 1, but no proof has been
published. We prove this result in Section IV in Theorem 4.1
for d ≥ 3, and in Theorem 4.3 for d ∈ {1, 2}. In our Part II, it
is also implied by the Forbidden String Algorithm for the cases
d = 3 and d = 5, and by the Constant Position Algorithm
when 1 ≤ d ≤ 9. Even though for d ≥ 7 the k = d+2 case is
implied by the stronger result we prove for the k = d+3 case,
the proof of Theorem 4.1 provides a relatively less complex
introduction to the technique used in the stronger case. We note
that the proofs we provide here of Chex(d, d + 2) = 0 when
2 ≤ d ≤ 6 were neither in the previous literature, nor implied
by our k = d + 3 results in this paper.

In [20], it was stated that Chex(d, d + 3) = 0 when
d ∈ {3, 4, 5, 7, 9, 11}. In [6], Censor and Etzion considered
an octagonal (d, k) constraint, which assumes the hexagonal
(d, k) constraint plus an additional constraint along the
northwest diagonal, and proved that the octagonal (d, k)
capacity is zero whenever k = d + 3 and d > 0. However,
they did not give any results about whether the hexagonal
(d, k) capacity is zero when k = d + 3, but did pose it as an
open question, which partially motivated our present paper.
In summary, there have been an infinite number of cases for
k = d+3, prior to our present paper, where it was unknown if
the hexagonal capacity is zero. We answer this open question
in completion here.

Specifically, whether Chex(d, k) is positive or zero has been
unproven4 for the following cases:

(i) k = d + 2 when d ≥ 2
(ii) k = d + 3 when d ≥ 1

(iii) k = d + 4 when either d = 4 or d is odd and d ≥ 3
(iv) k = d + 5 when d = 4.

4Some of these cases were stated in [19] and [20] and are included in Part II
for archival purposes.

Among these cases, we prove here (in Theorem 4.1 and
Theorem 4.3) that the hexagonal capacity equals zero in all
of case (i), and (in Theorem 2.1) in case (ii) for all d ≥ 7.
In Part II, we prove that the capacity is zero in case (i) when
2 ≤ d ≤ 9, in case (ii) when 3 ≤ d ≤ 11, and in case (iii) when
d ∈ {4, 5, 7, 9}, and that the capacity is positive in case (ii)
when d ∈ {1, 2}, in case (iii) when d = 3, and in case (iv).

Table I summarizes the present knowledge of the zero
capacity region when d is less than 19 and k is less than
25, including the results we present in Parts I and II of these
papers. The results from Part I are shown surrounded by
squares and the results from Part II are shown surrounded by
circles. We note that four of the results turn out to be produced
by both the methods in Part I and Part II, and we denote them
in the table being surrounded by both a circle and a square.
Proofs of the results in Part I or Part II have not previously
appeared in the literature. We note that although we provide
here the first published proofs of the cases where k = d + 2,
those satisfying d ≥ 7 are not listed as new results in the
table, since they directly follow from our stronger (but more
complex) k = d + 3 proof,

The four cases shown in our Part II are denoted by “+”
signs inside circles. For any fixed d, the leftmost “+” in row
d of Table I represents the smallest k for which it is known
that the hexagonal (d, k) capacity is positive. Every “+” in
the table represents a positive lower bound, rather than an
exact capacity, except for the (0, 1) case. Exact values appear
difficult to obtain.

In contrast to proving that a capacity is positive, demon-
strating that a capacity is zero requires new techniques, which
can be very complex. One technique was used in [18] to prove
that the rectangular (d, d + 1) capacity is zero for all d ≥ 1.
The technique showed that, asymptotically, the values of the
bits stored in a linear amount of space of an N × N square
determine the values of the bits in the remaining quadratic
amount space in the square. In other words, the number of
different valid labelings of such squares is 2O(N), which
implies the constraint has zero capacity. In contrast, for a
constraint to have positive capacity, there would need to be
2Ω(N2) different valid labelings of an N × N square. The
same general goal, although with a significantly different
approach, will be used in the present paper to show that certain
hexagonal constraints have zero capacity.

Specifically, our approach in Part I to proving a particular
hexagonal (d, k) capacity is zero is to show that for large
enough squares of side length N , with a fixed labeling of a
thin outer “frame” of width k + 1, at most one valid labeling
of the square’s interior is possible. This is accomplished by
means of assuming, to the contrary, that there exist at least
two valid square labelings for a given frame labeling, and
then drawing (rather laborious) logical inferences which lead
to a contradiction. A series of assumptions is made using a
manual backtracking method, which ultimately leads to the
desired contradiction. This approach becomes very complex,
depending on the level of pushing and popping on the stack of
assumptions. Then, since an N × N square’s frame contains
O(N) bit locations, the total number of distinct labelings of
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TABLE I

SUMMARY OF THE KNOWN HEXAGONAL (d, k) ZERO CAPACITY REGION FOR SMALL d AND k. ZERO AND POSITIVE CAPACITIES ARE DENOTED BY
“0” AND “+,” RESPECTIVELY. THE ZEROS IN SQUARES DENOTE OUR CONTRIBUTIONS IN THE PRESENT PAPER (PART I), WHILE THE CIRCLED

SYMBOLS ARE FROM OUR PART II [8], AND THOSE WITH BOTH SQUARES AND CIRCLES OCCURRED IN BOTH PARTS I AND II. THE

QUESTION MARKS DENOTE REMAINING UNSOLVED CASES

the square is 2O(N), instead of the required 2Ω(N2) for positive
capacity, which proves the capacity is zero.

II. PRELIMINARIES

A square is an N × N two-dimensional array, for some
positive integer N . A labeling of a subset of a square assigns
a 0 or 1 to each element of the subset. We will refer to
horizontal, vertical, and northeast diagonal lines in a square as
rows, columns, and diagonals, respectively, or more generally
as files. In an N × N square, all rows and columns have
length N , whereas diagonals can have lengths ranging from
1 (at two of the corners) to N . For any positive integer δ,
the frame of width δ of a square S is the union of the first δ
and last δ rows and the first δ and last δ columns of S (see
Figure 2).

A labeling l on a square S is said to satisfy the hexagonal
(d, k) constraint (or is valid) if in every file there are at least
d zeros between any two ones, and any run of 0s has length
at most k.

The capacity of the hexagonal (d, k) constraint is defined
as

Chex(d, k) = lim
N→∞

log2 |L|
N2

,

where L is the set of all labelings of an N × N square that
satisfy the hexagonal (d, k) constraint. The capacity is known

Fig. 2. Frame of width δ in an N × N square.

to exist for all d, k (e.g., [18]). If Chex(d, k) > 0, then the
number of valid labelings is lower bounded as |L| = 2Ω(N2).

The main result (proven in Section V) of this paper is that
Chex(d, d +3) = 0 whenever d ≥ 3, as stated in the following
theorem.

Theorem 2.1: The capacity of the hexagonal (d, k) con-
straint is zero whenever d ≥ 3 and k = d + 3.
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It has been known [20] that Chex(3, 6) = Chex(4, 7) =
Chex(5, 8) = 0, and it is shown in our Part II that Chex(6, 9) =
0. We therefore restrict attention to d ≥ 7 in the proof of
Theorem 2.1.

An overview of the proof of this result is given in
Section III-A, and the actual proof is given in Section V.
In Section IV, as a preview to Section V, an illustration of the
proof technique is given for the simpler case of the (d, d + 2)
constraint.

Lemma 2.2: For any nonnegative integers d, k, and δ, if the
capacity of the hexagonal (d, k) constraint is positive, then
there exists a sufficiently large square on which some pair
of distinct labelings satisfying the hexagonal (d, k) constraint
agree on the square’s frame of width δ.

Proof: Let L be the set of valid labelings of an N × N
square and suppose the capacity is positive; then |L| = 2Ω(N2).
Since the frame’s area is 4δ(N − δ), the number of valid
labelings of the frame is at most 24δ(N−δ), which grows more
slowly than the number of valid labelings of the entire N × N
square. Thus for large enough N , there must exist two distinct
labelings of an N × N square that agree on the frame.

Let r and b be labelings of a square S. The disagreement
set of r and b is

D0 = {(i, j) ∈ S : r(i, j) �= b(i, j)}.
For each point (i, j) in the disagreement set of labelings r

and b, we say that (i, j) is colored red if r(i, j) = 1 and is
colored black if b(i, j) = 1.

For any subset D of a square and any file f , if X ∈ f ∩
D, then we say X is a point of f in D. If X and Y are
points of a file f , then X is said to be before Y if X is
to the left (respectively, below, or southwest) of Y , if f is a
row (respectively, a column, or diagonal). If D is a subset of
the disagreement set, then the first element of f in D is the
minimum element for this ordering among points in f ∩ D.

For any subset of the disagreement set, we define a coor-
dinate system whose origin (0, 0) is the first element in the
bottommost row, and assume, without loss of generality, that
the origin is colored black. A disagreement diagram is an
illustration showing the color of each point in a subset of
the disagreement set. The files in a disagreement diagram are
numbered as shown in Figure 3. The leftmost point in the
bottommost nonempty row of a disagreement subset will be
referred to as the lowest-left point of the subset.

III. DESCRIPTION OF PROOF TECHNIQUE

A. Overview

For the remainder of the paper, we set k = d+3. Our goal is
to prove that the hexagonal (d, k) capacity equals zero. We will
assume, to the contrary, that Chex(d, k) > 0, and attempt to
derive a contradiction.

Let N be a positive integer and let r and b be any two
distinct valid labelings of an N × N square, such that the
labelings agree on the square’s frame of width (k + 1). Such
labelings are guaranteed to exist for sufficiently large N by
Lemma 2.2. The value of N could conceivably be arbitrarily
large, and we know of no analytical upper bound on the size
of the square being labeled.

Fig. 3. Illustration of file indexing in disagreement diagrams. The first
disagreement point in the bottommost row is colored black and defined to
be located at the origin (0, 0), and each file is indexed relative to this
origin point. In particular, rows and columns increase in the north and east
directions, respectively, and diagonals increase in the southeast direction (i.e.,
the diagonal containing a point (i, j) is indexed as i−j). For example, the red
square in the figure is in row 0, column 3, and diagonal 3.

Our goal will be to show that, in fact, r and b cannot
be distinct valid labelings, due to conflicts that would arise
if they were. Once established, this fact implies that a valid
labeling of an N × N square is completely determined by the
values of the labeling on the square’s frame of width (k + 1).
Thus, the number of possible valid labelings of an N × N
square is limited to the number of possible valid labelings of
the square’s frame, which is of order 2O(N). This quantity is
too small to induce a positive capacity, since 2Ω(N2) is needed.

In order to achieve our goal, we analyze the disagreement
set of the two hypothetically different valid labelings of the
square, and deduce that no such disagreement set can actually
exist. As a first step toward this result, we examine the leftmost
point in the bottommost row of the disagreement set, arbitrarily
color it black, place it at the origin in a coordinate system, and
proceed to make a series of additional assumptions about the
location of a different point in the disagreement set colored
red. We establish (Lemmas 2.2 and 2.3) that such a red
point indeed exists, and, furthermore, that any such red point
must lie within at most three neighboring positions of the
origin in either direction along some row, column, or diagonal.
We choose one of these three files and consider each of the six
possible positions for the red point in that file, and determine
whether the (d, d + 3) constraint can be preserved when this
point is added to the disagreement set. In other words, six
“assumptions” are made for the chosen file.

B. A Search Tree for Invalidating Hypothetical Labelings

We construct a search tree to enable us to prove that any
two distinct labelings that agree on a frame of a square cannot
both be valid under the hexagonal constraint. The search tree
is constructed as follows.

Each node in the tree is a collection of points in a grid,
which represents a potential disagreement subset of some
disagreement set D0 (depending on the particular hypothet-
ical labelings r and b). If this potential disagreement subset
equals an actual disagreement subset of a particular D0 when
the lowest-left points of the two sets are aligned, then the
potential disagreement subset will be identified with the actual
disagreement subset.

The root of T is constrained to contain exactly one point.
For the disagreement set D0 of r and b on the N × N square,
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the root is, by default, the origin of D0, i.e., the root represents
the first point of row 0 in D0. On the other hand, we may
choose the root’s single point to be a point in D0 other than
the origin of D0. In either case, the lowest-left point of every
node in the search tree T is aligned with and identified as the
single point in the root node. (It will turn out that any non-
origin point at the root will always be chosen as a “pseudo-
origin.”) When the root’s single point is not the origin, it will
be explicitly noted for clarity.

Each node in the tree is a potential disagreement subset,
which represents a possible sequence of assumptions. For
a given disagreement subset, each of the six assumptions
described in Section III-A will be an edge in the search tree.
Such an edge is given by a starting disagreement subset,
together with another disagreement subset that is obtained
from the starting one by making the described assumption.

The tree provides a mechanism for invalidating any possible
pair of hypothetical labelings r and b, by traversing a particular
path for each such r and b. Such a path originates at the tree’s
root, and the root node itself is calibrated to a specific location
within the disagreement set D0 of the given r and b.

For any given D0 and choice of the root of T , some of
the nodes of T are disagreement subsets, and other are not.
We will refer to the nodes of T as disagreement subsets, even
though only some of them may be actual disagreement subsets,
depending on which particular D0 is used to search the tree.
Note that the topology of the tree T is fixed, and does not
vary with the choice of D0. However, any particular choice
of D0 and the root of T induces a specific path through the
tree T .

Each node in the tree T represents the assumptions made on
the edges in the unique path from the root of the tree to that
node. In particular, each non-root node of the tree corresponds
to the set of assumptions of its parent node, together with
the one added assumption corresponding to the edge from its
parent node to itself.

In some cases, a particular assumption leads to a contradic-
tion, and so that assumption can be eliminated. This elimina-
tion corresponds to a node in the tree having no out-edges,
i.e., it is a leaf node. On the other hand, if no contradiction to
the (d, k) constraint is observed, then the process is repeated
at that node by choosing a particular file and then examining
the six possible assumptions that can be made as out-edges of
that node. This process is repeated at all non-leaf nodes until
hopefully all paths terminate, which would result in a finite
rooted tree, thus establishing the overall contradiction desired.
Fortunately, this occurred and we present the discovered tree
in this paper as our main result.

In this way, we build a search tree to represent the various
sequences of assumptions made about the contents of the
disagreement set, and use this tree to establish that the original
positive capacity assumption was false. In other words, for
any particular hypothetical pair of distinct labelings that agree
on the frame of a square, we can show that at least one of
the labelings is not valid under the hexagonal constraint by
following a unique path (determined by the disagreement set
induced by the pair of labelings) through the search tree and
arriving at a contradiction at a leaf node.

Fig. 4. Search tree T0.

Specifically, the discovered tree contains 50 internal nodes
and 151 leaf nodes. Of the 151 leaf nodes, 110 of them can
be eliminated quickly by immediate conflicts, i.e., the set
of assumptions associated with each node contradicts the
hexagonal (d, k) constraint, under the original positive capac-
ity assumption. This leaves only 41 for more careful analysis.
All but 9 of these 41 can be readily classified according
to three types of relatively easy disagreement patterns. The
remaining 9 are particular non-standard, more complicated,
“special conflicts” that must be handled separately, but do
indeed cause contradictions as well. We note that this method
was implemented by hand, not with a computer.

In order to speed up the general tree building technique
described above, we observed that at eight leaf nodes and
one internal node, it was possible to reduce the complexity of
the tree growing process using a concept of “pseudo-origins,”
which is described in Section V.

We also note that the detailed construction of the tree used
in the proof does not depend on any particular choice of the
square size N , but does depend in many places on the fact
that k = d + 3.

C. Constructing the Search Tree

The search tree is denoted by T , and its nodes are disagree-
ment subsets. The set of disagreement points corresponding
to any node in the tree is a proper subset of the set of
disagreement points corresponding to each of its children in
the tree. We depict the disagreement subsets using red and
black squares, where a red square in a certain position means
that position is labeled 1 by r, and a black square in a certain
position means that position is labeled 1 by b. Note that no
position in a node of T can contain both a red and black
square, since these positions are in the disagreement set of r
and b by assumption.

By Lemma 2.3, there are at most six possible locations for
the first red disagreement point of row 0, but by symmetry
we need only consider the three locations to the right of
(0, 0). Therefore, the root node has branches leading to these
three possible positions of the first red disagreement point
of row 0 (see Figure 4). We use these three disagreement
subsets as root nodes for three subtrees, labeled T1, T2, and T3

(see Figures 5–7).
Let D be a subset of the disagreement set D0 of the two

distinct labelings r and b, and let f be a file. We say f is
D-minimal if f intersects D and the first point x of f in D is
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Fig. 5. Search tree T1. Internal nodes are labeled as either R (rows), C (columns), or D (diagonals) to indicate the disagreement subset files used to make
further assumptions regarding the possible (d, k) validity of the labelings r and b.

also the first point of f in the disagreement set D0 with the
same color as x (see Figure 8).

If a conflict cannot immediately be found in a node, then
children are added by an exhaustive procedure. First, we find
a file (if it exists) that is minimal with respect to the current
disagreement subset, and that contains only one point of the
disagreement subset. Then, we add children corresponding to
each possible location in that file for the first disagreement
point of the other color, which is guaranteed to exist by
Lemma 2.2. We denote these different positions by their
distance offset Δ from the first disagreement point in the given
file. By Lemma 2.3, we have −3 ≤ Δ ≤ 3. If such a file does
not exist (which happens just once in the search tree), then
the node is treated as a special conflict (see Special Conflict 1
in Lemma 2.6).

If a conflict can indeed be found in a node (either by
commonly occurring configurations or by a special argument),
then this node is made a leaf node of the search tree.

This process is continued until each branch terminates in a
leaf node. If all leaves of a search tree violate the constraint,
then the disagreement subset shown in the root node of the tree
cannot occur, where the lowest-left point of the disagreement
subset is the lowest-left point (or, possibly, another type of

disagreement point we will call a “pseudo-origin”) of the full
disagreement set of the two valid labelings.

Frequently, certain Δ values can be immediately eliminated
due to a conflict with other points in the disagreement subset,
such as when two positions labeled 1 are positioned closer
than distance d apart. Such invalid disagreement subsets are
not shown as explicit nodes in the search tree, but are instead
displayed as a collection of eliminated delta values grouped
in a box branching from a node.

An illustration of how internal tree nodes are handled is
given in Section IV. We also provide a guide to reading the
tree diagrams in Figure 9.

In Subsection A of Appendix B, conflicts in the leaf nodes
are discussed in detail, along with various useful lemmas.

IV. CHEX(d, d + 2) = 0 WHENEVER d ≥ 1

We illustrate our general proof technique with a relatively
simple and already-known (but unpublished) case of zero
hexagonal (d, k) capacity (e.g., see [19]), namely when k =
d + 2. Traversing the steps of this simplified proof facilitates
comprehension of the more complex general result, since they
share many common ideas.
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Fig. 6. Search tree T2. Internal nodes are labeled as either R (rows), C (columns), or D (diagonals) to indicate the disagreement subset files used to make
further assumptions regarding the possible (d, k) validity of the labelings r and b.

The following theorem covers all d ≥ 3. The remaining
cases of d = 1 and d = 2 are proven later in this section
in Theorem 4.3. We note that Theorem 4.1 also follows
from the stronger, but more complex, result that we prove
in Theorem 2.1, for the cases when d ≥ 7.

A. Chex(d, d + 2) = 0 Whenever d ≥ 3

Theorem 4.1: The capacity of the hexagonal (d, k) con-
straint is zero whenever d ≥ 3 and k = d + 2.

Proof: Suppose, to the contrary, that Chex(d, d + 2) > 0.
Then, by Lemma 2.2, for sufficiently large N , there exist two
distinct labelings, r and b, of an N × N square that agree on
the square’s frame of width k+1. Let D0 be the disagreement
set of r and b. The points of the square are assigned integer
coordinates with the lowest-left point of D0 denoted by p and
located at the origin (0, 0). Without loss of generality, suppose
the disagreement point p is colored black, i.e., b(0, 0) = 1
and r(0, 0) = 0.

We make finite sequences of assumptions about the contents
of D0 that exhaust all possible scenarios, using a depth
first search on a tree (see Figure 10) that we build for this
purpose. We show that every path through this tree leads
to a contradiction, implying that the original assumption of
two different valid labelings was false. Thus, there cannot
exist any nonempty disagreement set D0, so, in fact, any
two labelings that agree on the frame also agree on the
rest of the square. This fact limits the number of pos-
sible valid labelings of squares to a growth rate which
is too small to sustain a positive hexagonal (d, d + 2)
capacity.

The same proof used in Lemma 2.3 also shows that for the
(d, d+2) constraint, since p is the first point of the lowest row
of D0, there must be a red point q ∈ D0 within ±2 positions of
p in row 0 (instead of ±3 as in the (d, d+3) constraint). How-
ever, since p is the lowest-left disagreement point, q cannot be
to the left of p, so q must be located either at (1, 0) or (2, 0).
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Fig. 7. Search tree T3. Internal nodes are labeled as either R (rows), C (columns), or D (diagonals) to indicate the disagreement subset files used to make
further assumptions regarding the possible (d, k) validity of the labelings r and b.

Fig. 8. Examples of files that either are, or are not, D-minimal. In both figures, the labelings agree at any points below or to the left of the solid black
border.

These two possible arrangements of the black point p and the
red point q are displayed in disagreement diagrams 1.1 and 2.1,
respectively.5

5All disagreement diagrams for Theorem 4.1 are found in Figure 11.

We next show that both arrangements of p and q shown in
disagreement diagrams 1.1 and 2.1 lead to at least one of the
labelings r or b violating the hexagonal (d, d + 2) constraint.
To this end, we consider every possible arrangement of the
points of D0 that can arise from the assumptions made in
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Fig. 9. Illustration explaining aspects of the search tree diagrams given
in Figures 4–7.

the cases shown in diagrams 1.1 and 2.1. A point of the
disagreement subset is selected that is the first point of a
D-minimal file, and for which there is not yet a point of the
other color within ±2 positions. Analogous to the (d, d + 3)
case, such a point of the other color is guaranteed to exist in
one of these locations by Lemma 2.3.

We then assume each of these four possibilities, one at a
time, and show that each leads to a contradiction. For some
of these assumptions a contradiction to r and b being different
valid labelings appears immediately, while other assumptions
are more complicated. In such cases, we add the assumption to
the disagreement subset and repeat the process for this new,
augmented disagreement subset. This corresponds to adding
a new node to the tree with an edge from the previous
disagreement subset node.

Each disagreement subset in the tree (in Figure 10) is listed
in what follows, with the first few being described in detail.
Specifically, the coordinates of the first disagreement point of
its file are given, as well as the name of the file (i.e., the row,
column, or diagonal), and the coordinates of all points within
±2 positions of the first point within that file. These points
are labeled −2, −1, 1, and 2 in Figure 12 for cases 1.1, 1.2,
and 1.3. For each of these points, an explanation is given
of the contradiction that arises from it being included in the
disagreement set, or else a new arrangement is considered for
further exploration.

• 1.1: point (0, 0); diagonal 0; Δ locations (−2,−2),
(−1,−1), (1, 1), (2, 2).
This case corresponds to disagreement diagram 1.1, and
we consider the four listed neighbors of (0, 0) along the
diagonal stemming from (0, 0) within ±2 of (0, 0) (see
Figure 12). Since (0, 0) is colored black, any disagree-
ment point at one of the listed Δ locations must be
red. However, there cannot be a disagreement point at
(−2,−2) or (−1,−1), since that would contradict the
point at (0, 0) being the lowest-left disagreement point.
Also, there cannot be a red disagreement point at (1, 1),
for then the red point at (1, 0) would vertically violate the
d constraint in r (since d ≥ 3). There is no immediate
contradiction to coloring a disagreement point at (2, 2)
red, so we address this possibility in case 1.2.

• 1.2: point (0, 0); column 0; Δ locations (0,−2),
(0,−1), (0, 1), (0, 2).
Since (0, 0) is colored black, any disagreement point
at one of the listed Δ locations is colored red.

However, there cannot be a disagreement point at
(0,−2) or (0,−1), since (0, 0) is the lowest-left disagree-
ment point. Also, there cannot be a red disagreement
point at (0, 2), for then the red point at (2, 2) would
horizontally violate the d constraint in r (since d ≥
3). There is no immediate contradiction to coloring a
disagreement point at (0, 1) red, so we address this
possibility in case 1.3.

• 1.3: point (1, 0); column 1; Δ locations (1,−2),
(1,−1), (1, 1), (1, 2).
The chosen file is the column immediately to the right
of the point (0, 0). Since (1, 0) is colored red, any
disagreement point at one of the listed Δ locations is
colored black. However, there cannot be a disagreement
point at (1,−2) or (1,−1), since (0, 0) is the lowest-
left disagreement point. Also, there cannot be a black
disagreement point at (1, 1), for then the black point at
(0, 0) would diagonally violate the d constraint in b (since
d ≥ 3). There is no immediate contradiction to coloring
a disagreement point at (1, 2) black, so we address this
possibility in case 1.4.

• 1.4: Conflict 2.
The four hollow circles indicate the squares of D0 that
are used to obtain a contradiction in this case. Whereas
these squares of D0 are under the hexagonal (d, d + 2)
constraint, their arrangement is analogous to an example
of a Conflict 2 arrangement shown in Figure 15(d) for
the hexagonal (d, d + 3) constraint.
A slight modification of Lemma 2.5 yields a conflict
in this case with the hexagonal (d, d + 2) constraint,
i.e., at least one of the labelings r and b must not be
valid. Since the arrangement of disagreement points in
1.4 does not allow both r and b to be valid labelings, the
arrangement of disagreement points in 1.1 also does not
allow both r and b to be valid labelings.

• 2.1: point (0, 0); diagonal 0; Δ locations (−2,−2),
(−1,−1), (1, 1), (2, 2).

• 2.2: point (0, 0); column 0; Δ locations (0,−2),
(0,−1), (0, 1), (0, 2).

• 2.3: point (2, 0); column 2; Δ locations (2,−2),
(2,−1), (2, 1), (2, 2).

• 2.4: point (0, 2); diagonal −2; Δ locations (−2, 0),
(−1, 1), (1, 3), (2, 4).

• 2.5: Conflict 1 (see Figure 14(a) for the analogous version
of this conflict for the k = d + 3 case).

Since the two arrangements of disagreement points shown
in 1.1 and 2.1 do not allow r and b to be valid labelings, the
proof is complete.

B. Chex(d, d + 2) = 0 When d ∈ {1, 2}
If m and b are real numbers and l is a labeling of Z2, then

the set {(x, y) ∈ Z2 : y = mx + b} is called a line of 1s of
slope m and intercept b if l(x, y) = 1 for all (x, y) in the set.

In the proof of the following lemma, we say that a line of 1s
intersects a string 10z1 on the left (respectively, right) if the
string is horizontal and its leftmost (respectively, rightmost) 1
is on the line of 1s.
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Fig. 10. Search tree for the proof of Theorem 4.1 with the hexagonal (d, d + 2) constraint. Each tree node corresponds to one of the diagrams, 1.1 – 1.4 or
2.1 – 2.5, in Figure 11, and the colored squares in those diagrams represent assumed values of the labelings r and b, under the assumption that the labelings
r and b disagree. The rectangles above and to the right of internal nodes list the Δ values corresponding to disagreement subsets that immediately result in
a contradiction (i.e., these subsets are leaves of the tree). Every path from the root to a leaf results in a contradiction, thus disproving the assumption that
Chex(d, d + 2) > 0.

Fig. 11. The figures show disagreement subsets corresponding to nodes of the search tree in Figure 10 for Theorem 4.1. The leftmost black point in the
lowest row of each diagram has coordinates (0, 0).

Fig. 12. Diagrams 1.1, 1.2, and 1.3 from Figure 11 with labeled Δ locations.

We thank Zsolt Kukorelly for some of the ideas in the
following lemma.

Lemma 4.2: If a labeling satisfies the hexagonal (2, 4)
constraint and has a line of 1s with slope −1, 1/2, or 2 that
intersects the string 1031 or 1041, then the labeling consists
entirely of parallel lines of 1s.

Proof: We consider each of the three slopes m separately.
In each case where a line of 1s is assumed to intersect a string
on the left or right, the 1 in the string that lies on the line of
1s will be assumed, without loss of generality, to lie at the
origin. Let l denote the binary labeling of points in Z2.

• Suppose m = −1.
A line of 1s cannot intersect 1031 on the left or right, for
otherwise 101 would occur diagonally.
If the line of 1s intersects 1041 on the left (respectively,
right), then a line of 1s is forced, with slope −1 and
intercept b = 5 (respectively, b = −5).
To see this, note that l(0, 0) = l(5, 0) = l(1,−1) = 1 and
l(2,−1) = l(3,−1) = l(4,−1) = l(5,−1) = 0, which

implies l(6,−1) = 1 to prevent 05 horizontally, so by
induction half of the line of 1s, {(x, y) ∈ Z2 : x+y = 5},
is forced downward (i.e. when y ≤ 0). Also, l(4, 0) =
l(4,−1) = l(4,−2) = l(4,−3) = 0, so l(4, 1) = 1 to
prevent 04 vertically. This implies that the half line of 1s
extends upward to give an entire line of 1s. A symmetric
argument gives the result when the line of 1s intersects
1041 on the right.

• Suppose m = 1/2.
A line of 1s cannot intersect 1031 on the left or right, for
otherwise 101 would occur vertically. To see this, note
that l(0, 0) = l(4, 0) = l(2,−2) = 1 implies that 101
occurs diagonally from (2,−2) to (4, 0). And similarly
on the other side of the line of 1s.
If the line of 1s intersects 1041 on the left (respectively,
right), then a line of 1s is forced, with slope 1/2 and
intercept b = −(5/2) (respectively, b = (5/2)).
To see this, note that l(3, 1) = l(4, 1) = l(5, 1) =
l(6, 1) = 0 implies that l(7, 1) = 0 to prevent 05
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Fig. 13. Special Conflicts. The lowest-left point of disagreement subset D is at position (0, 0) and colored black. By the assumption that all critical files for
D are D-minimal, both assumed-to-be-valid labelings agree in all colored circles. A square of side length d = 7 helps visualize the conflicts, but any larger
value of d results in the same conflicts for the same reasons given.

horizontally, so by induction half of the line of 1s,
{(x, y) ∈ Z2 : y = (x/2)−(5/2)}, is forced upward (i.e.
when y ≥ 0). Also, since l(3, 2) = l(3, 1) = l(3, 0) =
l(3,−2) = 0, we must have l(3,−1) = 1 to prevent 05

vertically. This implies that the half line of 1s extends
downward to give an entire line of 1s. A symmetric
argument gives the result when the line of 1s intersects
1041 on the right.

• Suppose m = 2.
If the line of 1s intersects 1031 on the left (respectively,
right), then two lines of 1s are forced, whose slopes are 2.
One of them has intercept b = −8 (respectively, b = 8),
and the other has intercept either b = −3 or b = −5
(respectively, b = 3 or b = 5).
To see this, note that l(2, 2) = l(3, 2) =
l(4, 2) = l(6, 2) = 0 implies l(5, 2) = 1, and
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Fig. 14. Examples of Conflicts 1 and 2 for the hexagonal (d, d+3) constraint.

l(0,−2) = l(1,−2) = l(2,−2) = l(4,−2) = 0 implies
l(3,−2) = 1, in both cases to prevent 05 horizontally.
This forces a line of 1s, namely, {(x, y) ∈ Z2 : y =
2x − 8}. If additionally l(2, 1) = 1, then it is easy to
see that the line of 1s, {(x, y) ∈ Z2 : y = 2x − 3}, is
forced, but alternatively if l(2, 1) = 0, then the line of
1s, {(x, y) ∈ Z2 : y = 2x − 5}, is forced. A symmetric
argument gives the result when the line of 1s intersects
1041 on the right.
If the line of 1s intersects 1041 on the left (respectively,
right), then two lines of 1s are forced, with slopes 2, and
intercepts b = −5 and b = −10 (respectively, b = 5 and
b = 10).
To see this, note that l(5, 3) = 0 to avoid 05 diagonally
from (1, 1) to (5, 5), so that l(6, 4) = 0 to avoid 05

horizontally from (2, 2) to (6, 2), and then l(4, 1) = 0 to
avoid 05 diagonally from (2, 0) to (6, 4). But l(1,−2) =
l(3, 0) = l(4, 1) = l(5, 2) = 0 implies l(2,−1) = 1
to prevent 05 diagonally. It then follows that l(1, 2) =
l(6, 2) = l(3, 1) = l(−1,−2) = l(4,−2) = 1, and by
induction we get the following two lines of 1s: {(x, y) ∈
Z2 : y = 2x − 5} and {(x, y) ∈ Z2 : y = 2x − 10}.

Each of these three cases shows that starting with a line
of 1s forces new lines of 1s of the same slope to its left
and to its right, provided the original line of 1s intersected
either 1031 or 1041. If, instead, the line of 1s intersected
1021 on the left (respectively, right), then it would force a
line of 1s through the rightmost (respectively, leftmost) 1 in
1021. This is because if any other 1 in the line of 1s was
the leftmost bit in 1031 or 1041, then as previously shown it
would force a line of 1s through the rightmost 1 in that string,
contradicting the assumed string 1021 that intersects the line
of 1s.

All of the locations between the original line of 1s and each
of these new lines is labeled by 0. By induction, if this process
is continued, one concludes that the labeling of the entire plane
consists only of parallel lines of 1s.

Theorem 4.3: The capacity of the hexagonal (d, k) con-
straint is zero when d ∈ {1, 2} and k = d + 2.

Proof: When d = 1 and k = 3, the string 101 is forbidden
horizontally, for otherwise the string 04 would occur horizon-
tally above it. Thus Chex(1, 3) = Chex(2, 3) ≤ Crect(2, 3) = 0.

Under the (2, 4) constraint, the only possible zero runs are
02, 03, and 04.

If a valid labeling does not have any runs 03 or 04, then all
zero runs are 02, and there are only three possibilities for the
labeling of each row, and each such labeling determines the
labeling everywhere else.

Next suppose there is at least one run 03 or 04 in any
hexagonal (2, 4) labeling. We will next show that every valid
(2, 4) labeling has at least one line of 1s with slope either −1,
1/2, or 2.

We will first consider the case when 1031 appears some-
where and then the case when 1041 appears somewhere.
Without loss of generality, we will assume such strings are
horizontal and start at the origin.

• Assume l(0, 0) = l(4, 0) = 1.
Then l(3, 2) = 0 to prevent 06 horizontally from (0, 1)
to (5, 1). Since l(0, 2) = l(2, 2) = l(3, 2) = l(4, 2) =
l(6, 2) = 0, we must have l(1, 2) = l(5, 2) = 1,
to prevent 05 horizontally. The original two assumptions
are thus still true if shifted by (1, 2), and, by symmetry
about row 0, if shifted by (−1,−2) as well. Then,
by induction, we deduce that the following line of 1s
is forced: {(x, y) ∈ Z2 : y = 2x}.

• Assume l(0, 0) = l(5, 0) = l(4, 2) = 1.
Then l(3, 1) = l(4, 1) = l(5, 1) = l(6, 1) = 0, so
l(2, 1) = l(7, 1) = 1, to prevent 05 horizontally. Also,
l(2,−1) = l(3, 0) = l(4, 1) = l(5, 2) = 0, so l(6, 3) =
l(1,−2) = 1 to prevent 05 diagonally. The original three
assumptions are thus still true if shifted by (2, 1), i.e.,
l(2, 1) = l(7, 1) = l(6, 3) = 1. Furthermore, since
l(0, 0) = l(5, 0) = l(1,−2) = 1, the original assumptions
are true if rotated about row 0. Then, by this symmetry
and induction, we deduce that the following line of 1s is
forced: {(x, y) ∈ Z2 : y = x/2}.

• Assume l(0, 0) = l(5, 0) = l(3, 2) = 1.
This implies l(0, 1) = l(1, 1) = l(2, 1) = l(3, 1) = 0
so l(−1, 1) = l(4, 1) = 1. Since l(2, 2) = l(2, 1) =
l(2, 0) = l(2,−1) = 0 we must have l(2, 3) = l(2,−2) =
1. The original three assumptions are thus still true if
shifted by (−1, 1), i.e., l(−1, 1) = l(4, 1) = l(2, 3) =
1. Furthermore, since l(0, 0) = l(5, 0) = l(2,−2) = 1,
the original assumptions are true if rotated about row 0.
Thus, by this symmetry and induction, we deduce that the
following line of 1s is forced: {(x, y) ∈ Z2 : y = −x}.

• Assume l(0, 0) = l(5, 0) = 1 and l(4, 2) = l(3, 2) = 0.
Then l(2, 2) = l(3, 2) = l(4, 2) = l(5, 2) = 0, which
implies l(1, 2) = l(6, 2) = 1. Also l(2, 1) = 0 to prevent
05 vertically from (4,−1) to (4, 3), and l(4, 1) = 0
to prevent 05 vertically from (2,−1) to (2, 3). Thus,
l(3, 1) = 1 to prevent 05 horizontally from (0, 1) to (4, 1).
This forces l(4, 3) = 1 to prevent 05 vertically from
(4,−1) to (4, 3), so l(5, 4) = l(4, 4) = 0. The original
four assumptions are thus still true if shifted by (1, 2).
Also, since l(2, 0) = l(2, 1) = l(2, 2) = l(2, 3) = 0, we
get l(2,−1) = 1, which implies l(1,−2) = l(2,−2) = 0.
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Therefore, since l(0, 0) = l(5, 0) = 1, the original
assumptions are true if rotated about row 0. Thus, by this
symmetry and induction, we deduce that the following
line of 1s is forced: {(x, y) ∈ Z2 : y = 2x}.

We have now shown that all possible strings 1031 and 1041
force a line of 1s with slope −1, 1/2, or 2. So, by Lemma 4.2
the entire labeling consists of parallel lines of 1s. This means
that the labeling of any row of a rectangle induces one
of at most three possible labelings of the entire rectangle,
corresponding to the three possible slopes of the parallel lines
of 1s. Then, since there are at most 3 ·2N valid N × N square
labelings that contain at least one of 1031 or 1041, and there
are only three valid N × N square labelings containing only

1021, we have Chex(2, 4) ≤ lim
N→∞

1
N2

log2(3 · 2N + 3) = 0.

V. MAIN RESULT: CHEX(d, d + 3) = 0 WHENEVER d ≥ 3
In this section we establish that Chex(d, d+3) = 0 whenever

d ≥ 3 (Theorem 2.1). Of these infinite cases, as noted in
Section I, it has been previously shown [20] that Chex(d, d +
3) = 0 when d ∈ {3, 4, 5, 7, 9, 11} and also when d = 6 in
our Part II. In what follows we prove the result for all d ≥ 7,
which suffices to complete the proof.

The proof of Theorem 2.1 relies directly on Lemmas 2.2,
2.8, and 2.11, the latter two of which are derived in this section
from Lemmas 2.6, 2.9, and 2.10.

Since the lowest-left point of the disagreement set D0 of
the two distinct labelings r and b is defined to lie at the origin
(0, 0), the labelings r and b agree at certain positions, such
as:
(i) at any point in row 0 to the left of (0, 0).

(ii) at any point (x, y) satisfying x ≤ 4 and y ≤ −1.
Similarly, we call a point p = (x, y) ∈ D0 a pseudo-origin

if the labelings r and b agree in the following positions:
(i) at any point in row y to the left of p.

(ii) at any point (x′, y′) satisfying x′ ≤ x+4 and y′ ≤ y−1.
In the construction of the search tree T , certain files of

disagreement subsets are particularly useful in the analysis.
For example, each edge of T corresponds to a specific file
used for expansion, and this file is marked above the node
in the tree diagrams illustrated in Figures 4–7. Such files
in this category are used to examine six possible assump-
tions for the position of a particular disagreement point,
corresponding to the six locations described in Lemma 2.3.
Another important category of files used in the construction
of T consists of those used to achieve conflicts at the leaf
nodes. These are enumerated in Table II. We call these
two categories of files critical, as described in the following
definition.

Definition 5.1: A file f is critical for a disagreement subset
D if f corresponds to an edge from the node D in the tree
T or is used to demonstrate a conflict in the leaf D of the
tree T .

It is noted that if a file is critical for disagreement subset
D, then D contains at least one point in that file.

In the exhaustive search of disagreement subsets using the
search tree T , we often find conflicts with the constraint

TABLE II

THE CRITICAL FILES USED TO DEMONSTRATE CONFLICTS AT LEAF
NODES IN THE SEARCH TREE T

relatively close to the lowest-left point of a disagreement
subset. Specifically, the indices of rows, columns, and diag-
onals that are critical for some disagreement subset in the
constructed search tree T are fortunately at most 2, 4, and 4,
respectively. This upper bound for the critical columns and
diagonals motivates our definition of pseudo-origin, and leads
to the following lemma.

Lemma 5.2: Let r and b be distinct labelings of a square
that satisfy the hexagonal (d, d+3) constraint with d ≥ 7 and
agree on the square’s frame of width k +1. If x is a pseudo-
origin and D is a potential disagreement set in the search
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Fig. 15. Diagrams (a)–(f) show Conflict 2 arrangements. The same arrangements with the colors red and black switched also cause conflicts Diagrams
(g)–(l) show arrangements that do not immediately cause conflicts. All arrangements apply to the hexagonal (d, d + 3) constraint.

tree T with root x, then row 0 and any critical columns and
diagonals for D are D-minimal.

Proof: First note that if the two distinct labelings r and
b agree in all positions of a file up to a point p, then any
disagreement point within the first 8 positions after p in the
file is the first disagreement point of its color in the file. This
is because two points of the same color must be separated by
at least d ≥ 7 positions, and so two such points cannot be
contained within 8 consecutive positions.

Since x is a pseudo-origin, the two labelings agree in the
region containing all points to the left of x, and all points
below the row containing x in columns or diagonals with index
at most 4. Then by inspecting every potential disagreement
subset D in the search tree T , it can be verified that for
row 0 or any column or diagonal with index at most 4 that
intersects D, the first disagreement points of both colors of
such a file f in D occur within the first 7 positions after the
last agreement point of f . Therefore, by the first paragraph,
these first disagreement points of each such file in D are the
first disagreement points of each such file in D0. Thus any
such file (including, in particular, row 0) is D-minimal, and
since any critical column or diagonal has index at most 4, the
lemma is proved.

In the proof of Lemma 2.6, use is made of various diagrams
in Figure 13. Before stating the lemma, we explain in detail
how these diagrams are used.

In each special conflict diagram in Figure 13, the red
and black squares indicate disagreement points as previously
discussed. In contrast, the circles represent certain important
agreement points of the labelings r and b. The circles in each
diagram are contained in some critical column or diagonal
of the disagreement subset in the same diagram, and these
critical files are listed in each diagram’s caption. Specifically,
the circles in a given column or diagonal denote the possible
locations of the last agreement point labeled 1 in that file
before any point in the disagreement subset. Additionally,
among the circles corresponding to critical columns, the values
of r and b do not change within a given color of circle, and
the same holds true for the circles corresponding to critical
diagonals.

Each critical file contains exactly two disagreement points,
one red and one black. The lowest-left black square is always
a pseudo-origin, so the two labelings r and b agree at all points
below its row (i.e., row 0) when the column index is 4 or less.
The colored circles in the diagrams lie in these agreement
regions and are associated with critical files.

In any critical file, to satisfy the k constraint, a point labeled
1 must occur within the (k + 1) positions before the second
of the two shown disagreement points in that file. But since
d ≥ 7 (by assumption) and the largest row index of any
disagreement point in a critical file is 6, the d constraint
implies this point labeled 1 must occur in the agreement region
of the two labelings. Then by the d constraint applied to the
first of the two shown disagreement points in the critical file,
this agreement point labeled 1 must occur at least d positions
away from this first disagreement point. Since k = d + 3, this
leaves a window of at most 3 positions for such an agreement
point labeled 1, and since d ≥ 7 by assumption, exactly one of
the positions in this window must be labeled 1. The circles in
each critical file occupy the positions in this window. However,
the various configurations of circles do not allow the unique
circle labeled 1 in each critical file to be arbitrarily chosen
while satisfying the hexagonal (d, k) constraint.

By logical deduction in each Special Conflict diagram, one
can verify that, of the possible labelings of all of the circles
in the critical columns, either 0, 1, or 2 labelings satisfy the
d constraint. If zero such labelings satisfy the d constraint,
we depict the circles as hollow with no coloring. If exactly
one labeling satisfies the d constraint, we color circles orange
to represent a label of 1, and green to represent a label of 0.
If two labelings satisfy the d constraint, which happens only
in Special Conflict 1, it suffices to color the circles labeled 1
orange in one labeling and blue in the other labeling. In both
cases, we color circles green when the point is labeled 0 in
every labeling. We then repeat this colorization process for the
circles in critical diagonals.

As a result, Special Conflict 1 contains two possible label-
ings for both critical columns and diagonals, and Special
Conflict 6 contains zero possible labelings of critical diagonals.
The other 7 Special Conflicts contain a unique labeling for the
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circles in critical columns, and a unique labeling for the circles
in critical diagonals.

Following this coloration, violations of the d constraint or k
constraint could occur due to the possible labelings of the cir-
cles in the critical columns and diagonals. We describe such a
violation in each Special Conflict, and deduce a contradiction.

To illustrate the coloration process, consider the diagram
corresponding to Special Conflict 2. The diagram’s caption
indicates that the four critical files are columns 0,1, and 4,
together with diagonal 1. Considering the columns first, the
single circle in column 4 must be labeled 1, which then implies
the bottom circle in column 1 must be labeled 1 to avoid
violating the d constraint along a diagonal, and this in turn
implies the top circle in column 0 must also be labeled 1. In the
only critical diagonal, the single circle must be labeled 1. This
fixes the coloring of the circles based on the labelings. Then,
a conflict can be seen in the row immediately below the black
d × d square outline, since the two orange circles in that row
have only (d − 1) positions labeled 0 between them.

The figures assume d = 7 for these special conflicts, as
seen in the 7 × 7 square outline, but, in fact, any value of
d ≥ 7 causes a conflict for the same reasons (to be given
in Subsection B of Appendix B) by considering a larger
square outline with side length d. Specifically, the d × d
square outline shown in each image can be used to apply the
arguments for any d ≥ 7 by examining the positions of the
circles relative to each other.

Some technical lemmas used in the proof of the main result
are given in Subsection B of Appendix B.

The main result then readily follows from Lemmas 2.2,
2.8, and 2.11.

Proof of Theorem 2.1: In Part II of this two-part series [8],
we prove that Chex(d, d + 3) = 0 when 3 ≤ d ≤ 11, which
overlaps with the cases 7 ≤ d ≤ 11 shown here.

Let d ≥ 7 and k = d + 3 and suppose to the contrary that
Chex(d, k) > 0. Then by Lemma 2.2, there exist two distinct
valid labelings r and b of a sufficiently large N × N square
that agree on the square’s frame of width k + 1.

By Lemma 2.11, there exists a pseudo-origin x in the dis-
agreement set of r and b with the row minimality property (see
Definition 2.7 in Appendix B). Then by Lemma 2.8, there is
a conflict with the constraint in either labeling r or b, so it
cannot be true that both labelings are valid, a contradiction.
Thus, Chex(d, d + 3) = 0 for all d ≥ 7.

APPENDIX A

The figures below (labeled 1.1–1.32, 2.1–2.34, 3.1–3.25)
show disagreement subsets corresponding to nodes of the
search tree for the main result in Section V.

APPENDIX B
A. Conflicts in Leaf Nodes

In this subsection we include lemmas that are used in
the proof of the main theorem. In particular, we focus on
establishing conflicts at leaf nodes that help complete our proof
by contradiction.

Lemma 2.1: Let r and b be distinct labelings of a square
that satisfy the hexagonal (d, k) constraint and agree on the

square’s frame of width δ ≥ k + 1. Then every file of length
at least 2(k + 1) has at least two positions where both r and
b are labeled 1. In particular, at least one of these positions
comes before every disagreement point in the file, and another
of these positions comes after every disagreement point in
the file.

Proof: Let f be a file of length at least 2(k + 1). In both
r and b, one of the first (k+1) positions of f must be labeled
1 or else the labelings would violate the k constraint. But since
r and b agree on the frame, which has width (k + 1), r and b
must agree at such a position labeled 1 within the first (k+1)
positions of f . Similarly for the last (k + 1) positions.

The following lemma shows that if a file contains a dis-
agreement point labeled 1 by one labeling, then the file also
contains a disagreement point labeled 1 by the other labeling.

Lemma 2.2: Let r and b be distinct labelings of a square
that satisfy the hexagonal (d, d+3) constraint with d ≥ 3 and
agree on the square’s frame of width k+1. For each file f of
the square, if f contains a disagreement point of a particular
color, then f also contains a disagreement point of the other
color.

Proof: Suppose f is a file that intersects the disagreement
set such that x is the first disagreement point of f . Without
loss of generality, suppose x is black. Suppose there does not
exist a red disagreement point in f . Then for any point z ∈ f ,
b(z) = 0 implies r(z) = 0.

Since b(x) = 1, the d constraint implies there are at least
d positions on both sides of x in f labeled 0 by b. Therefore,
there are also at least d positions on either side of x in f
labeled 0 by r. Then since r(x) = 0, r must have a run
of at least 2d + 1 consecutive 0s in f . But d ≥ 3 implies
2d + 1 > d + 3 = k, and so the run of 2d + 1 consecutive 0s
in r violates the k constraint, a contradiction.

As previously mentioned, the quantity Δ denotes the dis-
tance offset from the first disagreement point in a given file to
the point of the other color (guaranteed to exist by Lemma 2.2)
in the same file. The following lemma establishes that if the
file is D-minimal, then −3 ≤ Δ ≤ 3.

Lemma 2.3: Let r and b be distinct labelings of a square
that satisfy the hexagonal (d, d + 3) constraint with d ≥ 5
and agree on the square’s frame of width k + 1. Let D be a
subset of the disagreement set D0, and let f be a file that is D-
minimal. Let x ∈ D be the first point of f in D. Then the first
point of f in D0 of opposite color to x is located in one of six
possible locations, namely within ±3 positions from x in f .

Proof: Without loss of generality, let x be colored black.
Since f is D-minimal, x is the first black disagreement point of
f in D0. By Lemma 2.2, there exists a red disagreement point
in f ; let y be the first such point. Without loss of generality,
we can assume y is after x in f (if not, we can switch the
roles of red and black).

Consider the last position z before x where r(z) = 1
and b(z) = 1. There must exist at least one such z by
Lemma 2.1. By the d constraint in labeling b, there must be d
positions labeled 0 between z and x, and by the k constraint
in labeling r, there cannot be more than d + 3 zeros between
z and y. Therefore, x and y cannot be separated by more than
3 positions.
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Given a disagreement subset D ⊆ D0, the following lemma
shows that for a file f that is not D-minimal, there exist at
least two points (of different colors) of f in D0 before the
first point of f in D.

Lemma 2.4: Let r and b be distinct labelings of a square
that satisfy the hexagonal (d, d+3) constraint with d ≥ 7 and
agree on the square’s frame of width k + 1. Let D0 be the
disagreement set of r and b, and let D ⊆ D0. Suppose there

exists a file f intersecting D that is not D-minimal, and let
z be the first point of f in D. Then there exist at least two
points (of different colors) of f in D0 before z.

Proof: Without loss of generality, suppose z is colored
black. Since f is not D-minimal, z is not the first black point
of f in D0. Therefore, there exists another point x before z
that is the first black disagreement point of f . Furthermore,
since d ≥ 7, x is at least 7 positions before z.
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By Lemmas 2.2 and 2.3, there exists a red disagreement
point y that is at most 3 positions away from x, which
guarantees y occurs before z. Thus, x and y are two points of
different colors of f in D0 before z.

The proof of Lemma 2.4 in fact applies to the stronger case
where d ≥ 3, but we need only d ≥ 7 for our analysis.

A disagreement subset D may contain an arrangement of
points that causes at least one of r or b to violate the hexagonal
(d, k) constraint, provided that certain files containing these
points are D-minimal. We call such arrangements conflicts.
In particular, the following three types of conflicts arise often
in our proofs, and we will refer to them as Conflict 1,
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Conflict 2, and Conflict 3. Examples of these conflicts are
shown in Figure 14.

• Conflict 1.
In this arrangement, the first disagreement points of two
parallel files in a disagreement subset D are arranged as
shown, for example, in Figure 14a. In addition, these files
must be D-minimal and separated by fewer than d files.

• Conflict 2.
In this arrangement, the first disagreement points of
two adjacent D-minimal files in a disagreement subset
D are arranged as shown, for example, in Figure 14b.
Figure 15 provides a full catalog of possible Conflict
2 arrangements, as well as arrangements of disagreement
points that may resemble Conflict 2, but are not.

• Conflict 3.
In this arrangement, the first disagreement points of
opposite color of a D-minimal file in a disagreement
subset D are separated by 3 positions.

The following lemma shows that the arrangements of points
in Conflict 1, Conflict 2, and Conflict 3 all do indeed cause
at least one of the labelings r and b to violate the hexagonal
(d, k) constraint.

Lemma 2.5: Let D be a subset of the disagreement set of
two distinct valid labelings r and b of an N × N square
that agree on the square’s frame of width k + 1. Then the
arrangements of points in Conflict 1, Conflict 2, and Conflict 3
each cause at least one of r and b to violate the hexagonal
(d, k) constraint.

Proof: Each of the three types of conflicts previously
defined are examined to establish the lemma.

– Conflict 1.
In Figure 14a, let the bottom two points be in row 0 and
the upper two points be in row i, and suppose i ≤ d. By
Lemma 2.1, in each of rows 0 and i there exists a point
before the displayed points where both labelings equal 1.
Let the last positions where both labelings equal 1 before
the displayed points in rows 0 and i be denoted p0 and
pi, respectively.
Since rows 0 and i are D-minimal and the displayed
points are the first disagreements points of their rows
in D (as required by Conflict 1), the displayed points
are the first disagreement points of their rows in the
disagreement set of the two labelings. Therefore, the only
possible column that can contain p0 and pi is the column
that is separated by exactly d columns from the column
containing the leftmost disagreement point in each row.
However, since row 0 and row i are separated by i−1 < d
rows, p0 and pi are separated by fewer than d rows.
Therefore this arrangement causes a conflict with the d
constraint.
Similar arguments show the lemma in cases where the
disagreement points are in columns or diagonals instead
of rows.

– Conflict 2.
In Figure 14b, let the bottom two points be in row 0 and
the upper two points be in row 1. By Lemma 2.1, in each
of rows 0 and 1 there exists a point before the displayed

points where both labelings equal 1. Let the last positions
where both labelings equal 1 before the displayed points
in rows 0 and 1 be denoted p0 and p1, respectively.
Since rows 0 and i are D-minimal and the displayed
points are the first disagreements points of their rows in
D (as required by Conflict 2), the displayed points are the
first disagreement points of their rows in the disagreement
set of the two labelings. Therefore, the only possible
column that can contain p0 is the column that is separated
by exactly d columns from the column containing the
leftmost disagreement point in row 0. Also, the only
possible columns that can contain p1 are the columns that
are separated by exactly d or exactly (d + 1) columns
from the column containing the leftmost disagreement
point in row 1. However, both of these positions for p1

cause a conflict with the d constraint, since p0 would be
either vertically or diagonally adjacent to p1. Therefore
this arrangement causes a conflict with the d constraint.
Similar arguments show the lemma in cases displayed in
diagrams (a)–(f) in Figure 15.

– Conflict 3.
This arrangement of points causes a conflict since the first
disagreement points of opposite color of a D-minimal file
in a disagreement subset D can be separated by at most
2 positions, by Lemma 2.3.

Example 1: Configuration 3.10 in Appendix A.
The four points of r and b that are involved in the conflict

are labeled with white dots. They are arranged according to
Conflict 2 described in Lemma 2.5, so the arrangement shown
in this configuration causes at least one of r and b to violate
the hexagonal (d, k) constraint.

Example 2: Configuration 3.25 in Appendix A.
This configuration does not contain a commonly occurring

conflict, and so we treat it as a special conflict in Lemma 2.6.

B. Lemmas for Main Result in Section V

Lemma 2.6: Let r and b be distinct labelings of a square
that satisfy the hexagonal (d, d + 3) constraint with d ≥ 7
and agree on the square’s frame of width k + 1. Then all
disagreement subsets shown as Special Conflicts in Figure 13
cause at least one of r or b to violate the hexagonal (d, d+3)
constraint.

Proof: In each Special Conflict diagram in Figure 13,
let the row directly below the square outline be row i (rows
decrease moving downward).

Special Conflict 1: Under the given assumptions, there
are two possible valid labelings of the circles in the critical
columns, and also two possible valid labelings of the circles
in the critical diagonals. The green circles denote positions
labeled 0 in all possible labelings,

For the circles in critical columns, either orange circles
are labeled 0 and blue circles are labeled 1, or vice versa.
The same property holds for critical diagonals. However, the
labeling associated with orange column circles does not have
to agree with the labeling associated with orange diagonal
circles (similarly for blue).
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To demonstrate that there is a conflict caused by this
disagreement subset, we show that all four pairings of these
orange and blue arrangements of positions labeled by 1s
generate a conflict.

• (Diagonal Orange = 1, Column Orange = 1) The 1 in
row (i + 1) has a run of (d + 5) positions labeled 0 to
the right. This violates the k = d + 3 constraint.

• (Diagonal Orange = 1, Column Blue = 1) The two 1s
in row i are separated by (d − 1) positions. This causes
a conflict with the d constraint.

• (Diagonal Blue = 1, Column Orange = 1) The two 1s
in row (i− 1) are separated by (d + 4) positions labeled
0. This causes a conflict with the k = d + 3 constraint.

• (Diagonal Blue = 1, Column Blue = 1) The 1 in row
(i + 1) has a run of (d + 5) positions labeled 0 to the
left. This violates the k = d + 3 constraint.

Special Conflict 2: The two 1s in row i (i.e., the two orange
circles immediately below the square outline) are separated
by a distance of (d − 1). This causes a conflict with the d
constraint.

Special Conflict 3: The 1 in row (i+1) has a run of (d+5)
positions labeled 0 to the right. This violates the k = d + 3
constraint.

Special Conflict 4: The 1 in row (i−2) has a run of (d+4)
positions labeled 0 to the right. This violates the k = d + 3
constraint.

Special Conflict 5: The 1 in row (i+2) has a run of (d+4)
positions labeled 0 to the right. This violates the k = d + 3
constraint.

Special Conflict 6: Diagonals −1 and −3 each contain a
single position that must be labeled 1, denoted by hollow
circles. If one were to try labeling these positions with 1s, then
three of the hollow circles below (in diagonals 0 and 1) would
be labeled with 0s, by the d constraint. But then diagonals 0
and 1 would each contain a single remaining position that
must be labeled 1, and these positions are vertically adjacent.
Labeling both of these positions by a 1 would therefore cause
a conflict with the d constraint.

Special Conflict 7: The two 1s in row i are separated by a
distance of (d−1). This causes a conflict with the d constraint.

Special Conflict 8: The two 1s in row (i− 1) are separated
by a distance of (d − 1). This causes a conflict with the d
constraint.

Special Conflict 9: The two 1s in row i are separated by a
distance of (d−3). This causes a conflict with the d constraint.

Definition 2.7: We say that a pseudo-origin x ∈ D0 has the
row minimality property if for any D ⊆ D0 in the search tree
T with root x, every critical file for D is D-minimal.

Lemma 2.8: Let r and b be distinct labelings of a square
that satisfy the hexagonal (d, d+3) constraint with d ≥ 7 and
agree on the square’s frame of width k + 1. Suppose there
exists a pseudo-origin x in the disagreement set of r and b
with the row minimality property. Then at least one of r and
b conflicts with the constraint.

Proof: We traverse the unique path (determined by the
disagreement set) of the search tree T with root x. Since x
has the row minimality property, every critical file for each

disagreement subset in the search tree T with root x is minimal
for that disagreement subset.

At each non-leaf node, we choose one particular file and
consider the six possible cases (i.e., Δ = ±1,±2,±3) required
by Lemma 2.3. Note that the file chosen for each node is
displayed above the node in the tree diagrams in Figures 4–7,
and the disagreement subsets corresponding to the nodes are
shown in Appendix A. Certain values of Δ corresponding to
relatively easy conflicts are shown in boxes above the nodes,
but for the remaining values of Δ, out-edges are shown leading
to other nodes in the tree.

At six particular leaf nodes (namely, 1.21, 2.12, 2.30, 2.32,
3.7, 3.24), we choose a file and show that all six possible
values of Δ lead to conflicts. At the remaining leaf nodes,
we establish a conflict in the given disagreement subset by
using the disagreement points in more than one file. Thus,
in any case, all leaf nodes in the tree T lead to contradic-
tions with the hexagonal (d, d + 3) constraint, and therefore
the original assumption of positive capacity cannot be
true.

The conflicts established at the leaf nodes rely on the fact
that all files in Table II for a disagreement subset D are
D-minimal, since the pseudo-origin x has the row minimality
property. The examination of the six possible Δ values in a
given file at tree nodes also relies on pseudo-origin x having
the row minimality property, since D-minimality of the file is
required in Lemma 2.3.

Section III-C describes the steps used to exhaustively build
these search trees in more detail, and Subsection A of Appen-
dix B describes the verification of contradictions at the tree
leaves, as proven in Lemma 2.5 and Lemma 2.6. In particular,
Lemma 2.6 verifies the contradictions to the hexagonal (d, k)
constraint for the 7 special conflicts of tree T1, the one special
conflict of T2, and the one special conflict of T3.

The hypothesis of Lemma 2.8 assumes the existence of a
pseudo-origin x ∈ D0 with the row minimality property. The
following lemmas establish that such a point x indeed exists.
They rely on the previously stated fact that the values of the
indices of the rows, columns, and diagonals that are critical
for some disagreement subset in the search tree T are upper
bounded by 2, 4, and 4, respectively.

Lemma 2.9: Let r and b be distinct labelings of an N ×
N square with disagreement set D0 that satisfy the hexagonal
(d, d + 3) constraint, with d ≥ 7, and which agree on the
square’s frame of width k + 1. Let cm be the column index
of the leftmost point of D0 in row m. Let D ⊆ D0 be a
disagreement subset in the search tree T whose root is a
pseudo-origin. Suppose row j is critical for D, but is not
D-minimal, and let (i, j) be the leftmost point of row j in
D. Then the leftmost point of row j in D0 is a pseudo-origin
if i − 4 < cm whenever 0 ≤ m ≤ j − 1.

Proof: By Lemma 2.4 there exist both red and black points
in row j in D0 to the left of the point (i, j). Let y be the
leftmost point of row j in D0, and let z be the leftmost point of
the other color between y and (i, j). If y and (i, j) are colored
the same, then the column index of y satisfies cj ≤ i − d− 1
by the d constraint. If y and (i, j) are colored differently, then
the column index of z is less than or equal to i−d−1 by the
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d constraint. Therefore, in either case, since cj is less than the
column index of z, we have cj ≤ i − d − 1 ≤ i − 8.

Since y is the leftmost disagreement point of row j in D0,
the two labelings agree at all points to the left of y in row j.
Whenever 0 ≤ m ≤ j− 1, the integer cm is the column index
of the leftmost point of row m in D0, and so the two labelings
agree at all points in each row m to the left of column cm.
Therefore, since cj + 4 ≤ i − 4 < cm whenever 0 ≤ m ≤
j − 1, the two labelings agree at points with row index m,
for 0 ≤ m ≤ j − 1, and with column or diagonal index less
than or equal to cj + 4. The two labelings agree in these
columns and diagonals at all points below row 0 as well, since
the lowest-left point of D is a pseudo-origin. Therefore, y is
a pseudo-origin.

The following lemma shows that for any x ∈ D0 that is a
pseudo-origin without the row minimality property, there exists
another pseudo-origin that is above and to the left of x in D0.
This property will be exploited in an inductive argument in
Lemma 2.11.

Lemma 2.10: Let r and b be distinct labelings of an N ×
N square with disagreement set D0 that satisfy the hexagonal
(d, d + 3) constraint, with d ≥ 7, and which agree on the
square’s frame of width k + 1. Let x ∈ D0 be a pseudo-
origin without the row minimality property. Then there exists
a pseudo-origin in D0 that is above and to the left of x.

Proof: For any row m, let cm be the column index of the
leftmost point of row m in D0. By Lemma 5.2, since x is a
pseudo-origin, row 0 and any critical columns and diagonals in
any D ⊆ D0 in the search tree T with root x are D-minimal.
Therefore, since x does not have the row minimality property,
there exists D ⊆ D0 in the search tree T with root x but for
which there exists a critical row that is not D-minimal. The
nodes in the search tree where rows are critical (as opposed to
columns or diagonals) are cases 2.13, 2.22, 3.4, 3.6, 3.10, 3.11,
3.14, 3.21, and in the expansion from 2.28 (in Appendix A).

In each of the subsets D ⊆ D0 in the following itemized
cases, row 0 is D-minimal because the lowest-left point of D
is a pseudo-origin, and so the labelings r and b agree to the
left of that point. Therefore, by Lemma 2.9, to show a row
j > 0 has a pseudo-origin, it suffices to check that i−4 < cm,
whenever 0 ≤ m ≤ j − 1, where i is the column index of the
leftmost point of row j in D.

Figure 16 can be used for visualization in the following
cases.

• Configurations 2.13 and 2.22
Let D be the disagreement subset in one of configurations
2.13 or 2.22. The critical row for D is row 2, so suppose
row 2 is not D-minimal. There are two cases to consider:
row 1 is D-minimal, or row 1 is not D-minimal.

– Case 1
If row 1 is D-minimal, then the point in row 1 (i.e.,
at position (1,1)) in D is one of the leftmost two
points of row 1 in D0. So either this point is the
leftmost disagreement point of row 1, or the leftmost
disagreement point of row 1 is at most 3 positions to
the left of this point. In either situation (and in either
choice of configuration), c1 ≥ −2. The column index
i of the leftmost point of row 2 in D is 0, and c0 = 0.

So i − 4 = −4 < −2 ≤ c1 and i − 4 < c0, and so
the leftmost point of row 2 in D0 is a pseudo-origin
by Lemma 2.9.

– Case 2
Alternatively, suppose row 1 is not D-minimal. The
column index i of the leftmost point of row 1 in
D (in either choice of configuration) is at most 2,
and c0 = 0. So i − 4 ≤ −2 < 0 = c0, and so the
leftmost point of row 1 in D0 is a pseudo-origin by
Lemma 2.9.

• Expansion from configuration 2.28
When we add children to the search tree from 2.28 by
expanding on row 2, we are assuming that row 2 is
D-minimal. So suppose row 2 is not D-minimal. There
are two cases to consider: row 1 is D-minimal, or row 1
is not D-minimal.

– Case 1
If row 1 is D-minimal, then the shown points in
row 1 constitute the leftmost two points of row 1
in D0. Therefore, c1 = 1. The column index i of
the leftmost point of row 2 in D is 1, and c0 = 0.
So i− 4 = −3 < 1 = c1 and thus i− 4 < c0, and so
the leftmost point of row 2 in D0 is a pseudo-origin
by Lemma 2.9.

– Case 2
Alternatively, suppose row 1 is not D-minimal. The
column index i of the leftmost point of row 1 in D
is 1, and c0 = 0. So i − 4 = −3 < 0 = c0, and so
the leftmost point of row 1 in D0 is a pseudo-origin
by Lemma 2.9.

• Configurations 3.4, 3.10, and 3.14
Let D be the disagreement subset in one of configurations
3.4, 3.10, or 3.14. The critical rows for D are row 0 and
row 1. Row 0 is D-minimal, so suppose row 1 is not
D-minimal. The column index i of the leftmost point of
row 1 in D is at most 1 in any of the three configurations,
and c0 = 0. So i−4 ≤ −3 < 0 = c0, and so the leftmost
point of row 1 in D0 is a pseudo-origin by Lemma 2.9.

• Configuration 3.6
Let D be the disagreement subset in configuration 3.6.
The only critical row for D is row 1, so suppose row 1 is
not D-minimal. The column index i of the leftmost point
of row 1 in D is 0, and c0 = 0. So i−4 = −4 < 0 = c0,
and so the leftmost point of row 1 in D0 is a pseudo-
origin by Lemma 2.9.

• Configuration 3.11
Let D be the disagreement subset in configuration 3.11.
The critical rows for D are rows 0 and 2. Row 0 is
D-minimal, so suppose row 2 is not D-minimal. There
are two cases to consider: row 1 is D-minimal, or row 1
is not D-minimal.

– Case 1.
If row 1 is D-minimal, then the point in row 1 in D
is one of the leftmost two points in row 1 in D0. So
either this point is the leftmost disagreement point of
row 1, or the leftmost disagreement point of row 1 is
at most 3 positions to the left of this point in row 1.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on January 03,2022 at 15:23:27 UTC from IEEE Xplore.  Restrictions apply. 



CONGERO AND ZEGER: HEXAGONAL RUN-LENGTH ZERO CAPACITY REGION—PART I: ANALYTICAL PROOFS 151

Fig. 16. Images depicting the cases in Lemma 2.10. The point labeled Y is the rightmost point of its row that could be a pseudo-origin. The green area
indicates the region where the labelings agree, which shows that the point labeled Y satisfies the requirements of being a pseudo-origin (as long as the
labelings agree at any point to the left of the point labeled Y). The value of d used in the figures is 7, but any larger value of d would push the point labeled
Y even farther to the left.

In either situation, c1 ≥ −2. The column index i of
the leftmost point of row 2 in D is 0, and c0 = 0.
So i − 4 = −4 < −2 ≤ c1 and i − 4 < c0, and so
the leftmost point of row 2 in D0 is a pseudo-origin
by Lemma 2.9.

– Case 2.
Alternatively, suppose row 1 is not D-minimal. The
column index i of the leftmost point of row 1 in D
is 1, and c0 = 0. So i − 4 = −3 < 0 = c0, and so
the leftmost point of row 1 in D0 is a pseudo-origin
by Lemma 2.9.

• Configuration 3.21
Let D be the disagreement subset in configuration 3.21.
The critical rows for D are rows 0 and 2. Row 0 is
D-minimal, so suppose row 2 is not D-minimal. There

are two cases to consider: row 1 is D-minimal, or row 1
is not D-minimal.

– Case 1.
If row 1 is D-minimal, then the point in row 1 in D
is one of the leftmost two points in row 1 in D0. So
either this point is the leftmost disagreement point
of row 1, or the leftmost disagreement point of row
1 is at most 3 positions to the left of this point.
In either situation, c1 ≥ 0. The column index i of
the leftmost point of row 2 in D is 2, and c0 = 0.
So i − 4 = −2 < c0 ≤ c1, and so the leftmost point
of row 2 in D0 is a pseudo-origin by Lemma 2.9.

– Case 2.
Alternatively, suppose row 1 is not D-minimal. The
column index i of the leftmost point of row 1 in D
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is 3, and c0 = 0. So i − 4 = −1 < 0 = c0, and so
the leftmost point of row 1 in D0 is a pseudo-origin
by Lemma 2.9.

Lemma 2.11: Let r and b be distinct labelings of an N ×
N square with disagreement set D0 that satisfy the hexagonal
(d, d + 3) constraint, with d ≥ 7, and which agree on the
square’s frame of width k + 1. Then there exists a pseudo-
origin in D0 with the row minimality property.

Proof: Let x be the lowest-left point of D0, and without
loss of generality suppose its color is black and that it is
located at position (0, 0). Clearly x is a pseudo-origin since x
is the lowest-left point of D0.

Suppose x does not have the row minimality property. Then
by Lemma 2.10, there exists another pseudo-origin that is
above and to the left of x in D0. If this process is repeated,
then either a pseudo-origin with the row minimality property
will be found in a finite number of steps (since D0 has height
less than N ), or else the highest row containing a pseudo-
origin of D0 will be reached. The pseudo-origin with greatest
row index must have the row minimality property, or else
Lemma 2.10 would show the existence of another pseudo-
origin in a higher row, a contradiction.
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