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Capacity and Achievable Rate Regions for Linear
Network Coding Over Ring Alphabets
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Abstract— The rate of a network code is the ratio of the block
size of the network’s messages to that of its edge codewords.
We compare the linear capacities and achievable rate regions of
networks using finite field alphabets to the more general cases of
arbitrary ring and module alphabets. For non-commutative rings,
two-sided linearity is allowed. Specifically, we prove the following
for directed acyclic networks. First, the linear rate region and the
linear capacity of any network over a finite field depend only on
the characteristic of the field. Furthermore, any two fields with
different characteristics yield different linear capacities for at
least one network. Second, whenever the characteristic of a given
finite field divides the size of a given finite ring, each network’s
linear rate region over the ring is contained in its linear rate
region over the field. Thus, any network’s linear capacity over a
field is at least its linear capacity over any other ring of the same
size. An analogous result also holds for linear network codes over
module alphabets. Third, whenever the characteristic of a given
finite field does not divide the size of a given finite ring, there
is some network whose linear capacity over the ring is strictly
greater than its linear capacity over the field. Thus, for any
finite field, there always exist rings over which some networks
have higher linear capacities than over the field.

Index Terms— Linear coding, capacity, network coding,
modules (abstract algebra).

I. INTRODUCTION

IN NETWORK coding, solvability determines whether or
not a network’s receivers can adequately deduce from their

inputs a specified subset of the network’s message values. The
solvability of directed acyclic networks follows a hierarchy
of different types of network coding. For example, scalar
linear coding over finite fields is known to be inferior to
vector linear coding over finite fields [34], which in turn is
known to be inferior to non-linear coding [11]. On the other
hand, the capacity of a network reveals how much transmitted
information per channel use (i.e., source messages per edge
use) can be sent to the network’s receiver nodes in the limit
of large block sizes for transmission. It is also known that
linear codes over finite fields cannot achieve the full capacity
of some networks [11]. Thus, linear coding over finite fields is
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inferior to more general types of network coding in terms of
both solvability and capacity. Nevertheless, linear codes over
finite fields are attractive for both theoretical and practical
reasons [30].

In certain cases, linear coding over finite ring alphabets can
offer solvability advantages over finite field alphabets [8], [9].
An open question has been whether the linear capacity of a
network over a finite field can be improved by using some
other ring of the same size as the field. In other words, does the
improvement in network solvability, from using more general
rings than fields, also carry over to network capacity? In the
present paper, we answer this question in the negative. That
is, we prove that the linear capacity of a network cannot be
improved by changing the network coding alphabet from a
field to any other ring of the same size.

Another open question has been whether the linear capacity
of a network over a finite field can depend on any aspect
of the field other than its characteristic. Indeed it has been
previously observed that the linear capacity of a network can
vary as a function of the field (e.g., [7], [14], [15]), but all
known examples had linear capacities that only depended on
the fields’ characteristics. We also answer this question in
the negative. That is, we prove that any two fields with the
same characteristic will result in the same linear capacity for
any given network. Furthermore, any two fields with different
characteristics will result in different linear capacities for at
least one network. We prove analogous (and more general)
results for linearly achievable rate regions of networks over
finite fields.

Unlike finite fields, finite rings need not have prime-power
size, which may be advantageous in certain applications. An
open question has been whether a network can increase its
linearly achievable rate region by allowing the alphabet to be
a ring of non-power-of-prime size. However, we again answer
this question in the negative by showing that a network’s
linear rate region over a ring is contained in its linear rate
region over any field whose characteristic divides the ring’s
size. This result follows from the fact that every finite ring
is isomorphic to some direct product of rings of prime-power
sizes. As a consequence of this result, any network’s linear
capacity over a particular ring is at most its linear capacity
over any field whose characteristic divides the ring’s size.
These results extend naturally to the more general case of
linear network codes in which the alphabet has the structure
of a finite module.
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A. Modules, Linear Functions, and Tensor Products

We focus on linear network codes over finite rings, but
we prove many of our intermediate results in the broader
context of linear network codes over modules. In this section,
we define linear functions over modules, which generalize
linear functions over rings. We then formally define linear
network codes over rings and modules in Section I-C.

Definition I.1. A left R-module is an Abelian group (G,⊕)
together with a ring (R,+, ∗) of scalars and an action · :
R × G → G such that for all r, s ∈ R and all g, h ∈ G the
following hold:

r · (g ⊕ h) = (r · g) ⊕ (r · h)

(r + s) · g = (r · g) ⊕ (s · g)

(r ∗ s) · g = r · (s · g)

1 · g = g.
From these properties, it also follows that 0·g = 0 and r ·0 = 0
for all g ∈ G and all r ∈ R. For brevity, we will sometimes
refer to such an R-module as R G or simply the R-module G.
Since network coding alphabets are presumed to be finite, a
module will always refer to a module in which G is finite.
However, in principle, the ring need not be finite, so we make
no assumptions about the cardinality of the ring in a module.
Some important examples of modules include:

• The ring of integers Z acts on any Abelian group G by
repeated addition in G.

• Any ring R acts on its own additive group (R,+)
by multiplication in R. We denote this module
by R R.

• Any ring R acts on the set of all t-vectors over R, denoted
by Rt , by scalar multiplication. When R is a field, this
module is a vector space.

• If R G is a module, then the ring of all t × t matrices
with entries in R, denoted Mt (R), acts on the group, Gt ,
of all t-vectors over G via matrix-vector multiplication
where multiplication of elements of R with elements of
G is given by the action of R G. A special case of this
module, Mt (R)Gt , occurs when G = (R,+), in which
case matrices over R act on vectors over R via matrix-
vector multiplication over R.

If R is a ring, a function f : Rm → R of the form

f (x1, . . . , xm) = a1 x1 + · · · + am xm

where a1, . . . , am ∈ R, is a (left) one-sided linear function
with respect to both the ring R and the left module R R. 1 A
function f � : Rm → R of the form

f �(x1, . . . , xm) =
m�

i=1

ni�

j=1

ai, j xi bi, j (1)

where ai, j , bi, j ∈ R, is a two-sided linear function with respect
to R. When R is commutative, every two-sided linear function

1Every right one-sided linear function with respect to a ring or a right
module can be described as a corresponding left one-sided linear function
with respect to a left module with the same Abelian group. Hence, in this
paper, it suffices for us to exclusively use left one-sided linear functions.

is also a one-sided linear function, since in a commutative
ring,

m�

i=1

ni�

j=1

ai, j xi bi, j =
m�

i=1

⎛

⎝
ni�

j=1

ai, j bi, j

⎞

⎠ xi .

However, left and right multiplication are not necessarily the
same in a non-commutative ring, so the class of two-sided
linear functions is broader than the class of one-sided linear
functions.

Example I.2. Let R be the (non-commutative) ring of all
2 × 2 matrices over a field. The function f : R → R given by

f

��
x1,1 x1,2

x2,1 x2,2

	

=

�
x1,1 0

0 x2,2

	

=
�

1 0

0 0

	 �
x1,1 x1,2

x2,1 x2,2

	 �
1 0

0 0

	

+
�

0 0
0 1

	 �
x1,1 x1,2

x2,1 x2,2

	 �
0 0

0 1

	

is a two-sided linear function over R. It can be verified that,
for all A, B ∈ R, the function f (X) is not the function AX B.
By allowing for sums of X terms multiplied by coefficients on
both the left and the right, a broader class of functions can be
attained than with a single X term multiplied by coefficients
on the left and the right. This also implies f (X) cannot be
written as a (left or right) one-sided linear function.

In the remainder of this section, we will show that two-sided
linear functions over rings can be written as one-sided linear
functions with respect to some module, i.e., f � in (1) can be
written as

f �(x1, . . . , xm) = c1 · x1 + · · · + cm · xm

where c1, . . . , cm are elements of some other ring that acts on
R. In order to do so, we exploit module tensor products. If R G
and R H are each R-modules, then the tensor product of R G
and R H is a third R-module that satisfies properties similar
to the constructed vector space in the following example.

Example I.3. Suppose F is a field and U ⊆ F
m and V ⊆

F
n are vector spaces. For each u ∈ U and v ∈ V , define the

mn vector (u, v) by

(u, v) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1v1

...

u1vn

...

umv1

...

umvn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is easily verified that for all u, u� ∈ U, all v, v � ∈ V , and
all α ∈ F,

(u, v) + (u�, v) = (u + u�, v)

(u, v) + (u, v �) = (u, v + v �)
α (u, v) = (αu, v)

α (u, v) = (u, αv).
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The subspace of F
mn generated by all vectors of the form

(u, v) for some u ∈ U and some v ∈ V is isomorphic
to the tensor product of U and V . In general, this tensor
product space differs from the direct product space U × V ⊆
F

m+n obtained by concatenating vectors from U with vectors
from V . In fact, when U = F

m and V = F
n, the tensor product

space is F
mn, whereas the direct product space is F

m+n.
If R is a ring and E is a set, the free R-module generated

by E is denoted R(E). In this module, the group is the
subset of the Cartesian product

�

e∈E

R consisting only of

the elements that have finitely many non-zero components
together with component-wise addition, and the ring R acts
on R(E) component-wise. By mapping the element e ∈ E to
the vector in R(E) whose eth component is 1 and all other
components are 0, we can view R(E) as the set of all finite
R-linear combinations of elements of E . In other words, every
element of R(E) can be uniquely written as

�

e∈E

ae e, where

only finitely many ae ∈ R are non-zero, so the set E is a
basis for R(E).

If R G is a module and N is a subgroup of G that is
closed under the action of R, then R N is a submodule of RG.
The quotient group G/N also forms an R-module (e.g., see
[16, p. 348]). If E is a subset of G, then the submodule
generated by E is

⎧
⎨

⎩r1 e1 + · · · + rmem :
m ∈ N,
r1, . . . , rm ∈ R,
e1, . . . , em ∈ E

⎫
⎬

⎭.

Now let R be a commutative ring, let R G and R H be
modules, and let R N be the submodule of R(G×H) generated
by the set

⎧
⎪⎪⎨

⎪⎪⎩

(g, h) + (g�, h) − (g + g�, h),
(g, h�) + (g, h) − (g, h + h�),
r (g, h) − (rg, h),
r (g, h) − (g, r h)

:
g, g� ∈ G,
h, h� ∈ H,
r ∈ R

⎫
⎪⎪⎬

⎪⎪⎭
.

The tensor product module of R G and R H , denoted G ⊗R H ,
is the quotient R-module R(G×H)/N . In other words, G ⊗R H
is the set of equivalence classes of the congruence generated
by the following relations on R(G×H):

(g, h) + (g�, h) = (g + g�, h)

(g, h) + (g, h�) = (g, h + h�)
r (g, h) = (r g, h)

r (g, h) = (g, r h).

Module tensor products exhibit similar properties to tensor
products of vector spaces (for more information on mod-
ules and tensor products, see [16, Sections 10.1–10.4]). The
elements of G ⊗R H are called tensors and can be written
(non-uniquely, in general) as sums of equivalence class repre-
sentatives: (g1, h1)+· · ·+ (gm, hm), for some positive integer
m and (g1, h1), . . . , (gm, hm) ∈ G × H .

Definition I.4. Let R and S be finite rings, and let Z denote
the ring of integers. The tensor product ring R ⊗ S is the

Abelian group R ⊗Z S together with multiplication given by
�

m�

i=1

(ri , si )

�
∗
⎛

⎝
n�

j=1

(r �
j , s�

j )

⎞

⎠ =
m�

i=1

n�

j=1

(rir
�
j , si s

�
j )

for all
��m

i=1(ri , si )
�
,
��n

j=1(r
�
j , s�

j )
� ∈ R ⊗Z S.

This tensor product ring is well defined and unique up to
isomorphism (e.g., see [16, Chapter 10.4, Proposition 21]). As
an example, if Zm and Zn denote the rings of integers modulo
m and n, respectively, then we have Zm ⊗ Zn ∼= Zgcd(m,n)

(e.g., see [16, p. 369]). Specifically, if m = 4 and n = 2, then
the tensors in Z4 ⊗ Z2 are such that

(0, 0) = (0, 1) = (2, 1) = (1, 0) = (2, 0) = (3, 0)

and (1, 1) = (3, 1)

and addition and multiplication are analogous to addition and
multiplication in Z2.

We also comment that the direct product ring R × S with
component-wise addition and multiplication is generally not
isomorphic to the tensor product ring R ⊗ S. As an example,
if m and n are relatively prime, then by the Chinese remainder
theorem, Zm × Zn ∼= Zmn (e.g., see [16, p. 267]), whereas
Zm ⊗ Zn ∼= Z1 is the trivial ring.

For a finite ring R, the opposite ring, denoted Rop , is the
additive group of R with multiplication taken in the opposite
order, i.e., a ∗op b = ba, for all a, b ∈ R. The tensor product
ring R ⊗ Rop acts on (R,+) via

�
n�

i=1

(ai , bi )

�
· r =

n�

i=1

ai r bi

for all a1, . . . , an, b1, . . . , bn, r ∈ R. In other words, R ⊗ Rop

acts on (R,+) by computing two-sided linear combinations of
elements of (R,+). We denote this module by R⊗Rop R. The
properties of tensor addition and multiplication are natural in
the context of this module. In particular, for all a, a�, b, b�,
x ∈ R, and n ∈ Z, we have

�
(a, b) + (a�, b)

� · x = a x b + a� x b

= (a + a�) x b = (a + a�, b) · x�
(a, b) + (a, b�)

� · x = a x b + a x b�

= a x (b + b�) = (a, b + b�) · x

n (a, b) · x = n (a x b)

= (n a) x b = (na, b) · x

n (a, b) · x = n (a x b)

= a x (n b) = (a, nb) · x .

The two-sided linear function f � in (1) can now be writ-
ten as

f �(x1, . . . , xm) =
m�

i=1

⎛

⎝
ni�

j=1

(ai, j , bi, j )

⎞

⎠ · xi

which is a one-sided linear function with respect to the module
R⊗Rop R. This shows that any two-sided linear function over a
ring is a special case of a one-sided linear function over a left
module. It then follows that two-sided linear codes over rings
are a special case of one-sided linear codes over left modules.
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Example I.5. Let R be the (non-commutative) ring of all
2 × 2 matrices over a field. The two-sided linear function f :
R → R from Example I.2 can be written as a one-sided linear
function over the module R⊗Rop R as

f

��
x1,1 x1,2
x2,1 x2,2

	

= A ·

�
x1,1 x1,2
x2,1 x2,2

	

where A is the tensor in R ⊗ Rop given by
��

1 0
0 0

	
,

�
1 0
0 0

	

+

��
0 0
0 1

	
,

�
0 0
0 1

	

.

B. Network Coding Model

A network will refer to a finite, directed, acyclic multigraph,
some of whose nodes are sources or receivers. Source nodes
generate one or more message vectors whose components are
arbitrary elements of a fixed, finite set of size at least 2, called
an alphabet. The elements of an alphabet are called symbols.
We will denote the cardinality of an alphabet A by |A|. The
inputs to a node are the message vectors, if any, originating at
the node and the symbols on the incoming edges of the node.
Each outgoing edge of a network node has associated with
it an edge function that maps the node’s inputs to the vector
of symbols carried by the edge, called the edge vector. Each
receiver node has demands, which are a specified subset of
the network’s message vectors the receiver wishes to obtain.
Each receiver node also has decoding functions that map the
receiver’s inputs to a vector of alphabet symbols in an attempt
to recover the receiver’s demands.

In a network with m message vectors, a (k1, . . . , km , n)
code over an alphabet A (also called a fractional code) is
an assignment of edge functions to the edges in the network
and an assignment of decoding functions to the receivers in
the network such that the i th message vector is an element of
Aki and the edge vectors are elements of An . In other words,
the alphabet and the lengths of the message and edge vectors
are specified by the parameters of the code, not the network
itself. The rate vector of a (k1, . . . , km , n) network code is
r = (k1/n, . . . , km/n). A fractional code is a solution if each
receiver recovers its demanded message vector from its inputs,
and a rate vector r is achievable for a network if the network
has a fractional solution with rate vector r over some alphabet.

C. Linearity Over Finite Rings and Modules

A function f : Gs → Gt is linear with respect to the
module R G if it can be written as a matrix-vector product,
f (x) = Ax, where

• A is a t × s matrix with elements from R,
• multiplication of elements of R by elements of G is the

action of the module.

A fractional code is linear over the module RG if the
message vectors and edge vectors have components from G
and all edge functions and decoding functions are linear over
the module. For each network node, the vector x ∈ Gs

is a concatenation of all the input vectors of the node. In
other words, the network alphabet is G, and the outgoing
edge vectors and decoded symbol vectors at a node are

linear combinations of the node’s vector inputs, where the
coefficients describing the linear combination are from R.
We use modules as a tool to prove results related to linear
coding over rings, since linear network coding over modules
generalizes linear network coding over rings and fields. The
module approach is especially useful for non-commutative
rings with two-sided linear codes.

If R is a finite ring, then a fractional linear code over the
module R⊗Rop R is said to be a fractional two-sided linear
code over R. In particular, the network alphabet is R, and
the outgoing edge vectors carry linear combinations of the
node’s input components, where each input component in the
combination is multiplied on the left and right by constants
from R. If R is commutative, then then a fractional two-
sided linear code over R is also a fractional linear code over
the module R R, since left-sided and two-sided linearity are
equivalent in this case. In other words, any two-sided linear
code over a commutative ring can be written as a left-sided
linear code over the ring. A rate vector r is linearly achievable
for a network over a finite ring R if the network has a
fractional two-sided linear solution over R with rate vector r.

D. Rate Regions, Capacity, and Solvability

The rate region of a network N is

R(N ) = {r ∈ Q
m : r is achievable for N },2

the capacity (also known as the “uniform capacity” or the
“symmetric capacity”) is

C(N ) = sup {r ∈ Q : (r, . . . , r) is achievable for N },
the linear rate region with respect to a ring alphabet R is

Rlin (N , R) =
�

r ∈ Q
m : r is linearly achievable

for N over R

�
,

and the linear capacity with respect to a ring alphabet R is

Clin(N , R) = sup

�
r ∈ Q : (r, . . . , r) is linearly

achievable for N over R

�
.

While the emphasis of this paper is on rate regions and
capacities of networks, we define several solvability prop-
erties, as they will be useful in proving our main results.
A (k1, . . . , km, n) code, for which k1 = · · · = km = n = t , is
also called a t-dimensional vector code, i.e., the block size of
every message and edge is t , and a 1-dimensional vector code
is called a scalar code. A network is said to be

• solvable if it has a scalar solution over some alphabet,
• scalar linearly solvable over R G if it has a scalar linear

solution over the module RG, and
• vector linearly solvable over R G if it has a t-dimensional

vector linear solution over the module R G, for some
positive integer t .

Special cases of scalar and vector linear solvability over
modules include scalar and vector linear solvability over rings,
in which case the module is R⊗R R (or equivalently, R R,

2Some authors refer to the rate regions and linear rate regions of networks
as “capacity regions” or “achievable rate regions” and sometimes define them
as the convex hull or the topological closure of the set. We compare a
network’s linear rate regions over finite rings to its linear rate regions over
finite fields, and our results immediately extend to these alternate definitions
of rate regions.
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if R is commutative). The all-one’s vector is an achievable
rate vector for any solvable network. We also comment that
if a network has a t-dimensional vector solution over some
alphabet A, then it has a (possibly non-linear) scalar solution
over the alphabet At , so the network is solvable.

E. Related Work

In 2000, Ahlswede et al. [1] showed that some networks
can attain higher capacities by using linear coding at network
nodes, rather than just using routing operations. Since then,
many results on linear network coding over finite fields have
been achieved. On the other hand, the theoretical potential and
limitations of linear network coding over non-field alphabets
has been much less understood.

Li et al. [29] showed that when each of a network’s receivers
demands all of the messages (i.e., a multicast network), the
linear capacity over any finite field is equal to the (nonlinear)
capacity. Ho et al. [22] showed that for multicast networks,
random fractional linear codes over finite fields achieve the
network’s capacity with probability approaching one as the
block sizes increase. Jaggi et al. [25] developed polynomial-
time algorithms for constructing capacity-achieving fractional
linear codes over finite fields for multicast networks. Algo-
rithms for constructing fractional linear solutions over finite
fields for other classes of networks have also been a subject
of considerable interest (e.g., [17], [24], [40], and [45]).

It is known (e.g., [11]) that for general networks, fractional
linear codes over finite fields do not necessarily attain the
network’s capacity. In fact, it was shown by Lovett [31]
that, in general, fractional linear network codes over finite
fields cannot even approximate the capacity to any constant
factor. Blasiak et al. [2] demonstrated a class of networks
whose capacities are larger than their linear capacities over
any finite field, by a factor that grows polynomially with the
number of messages. Langberg and Sprintson [28] showed
that, for general networks, constructing fractional solutions
whose rates even approximate the capacity to any constant
factor is NP-hard.

It was shown in [4] that the capacity of a network is inde-
pendent of the coding alphabet. However, there are multiple
examples in the literature (e.g., [7], [11], [15]) of networks
whose linear capacity over a finite field can depend on the
field alphabet, specifically by way of the characteristic of
the field. Muralidharan and Rajan [35] demonstrated that a
fractional linear solution over a finite field F exists for a
network if and only if the network is associated with a discrete
polymatroid representable over F. Linear rank inequalities of
vector subspaces and linear information inequalities (e.g., [44])
are known to be closely related and have been shown to be
useful in determining or bounding networks’ linear capacities
over finite fields (e.g., [14], [15], and [18]).

Chan and Grant [5] demonstrated a duality between entropy
functions and rate regions of networks and provided an alter-
nate proof that fractional linear codes over finite fields do
not necessarily attain the capacity. The relationship between
network rate regions and entropy functions has been further
studied, for example, in [6], [21], [36], and [43]. It has

also been shown (e.g., [13]) that non-Shannon information
inequalities may be needed to determine the capacity of a
network.

It was shown in [5] that fractional linear network codes
over finite rings (and modules) are special cases of codes
generated by Abelian groups. However, most other studies of
linear capacity have generally been restricted to finite field
alphabets. We will consider the case where the coding alphabet
is viewed, more generally, as a finite ring.

We recently showed in [8] and [9] that scalar linear network
codes over finite rings can offer solvability advantages over
scalar linear network codes over finite fields in certain cases.
Some of the results from these papers will be used in proofs
in the present paper.

F. Main Results

The remainder of the paper is outlined as follows.
In Section II, we explore a connection between fractional

linear codes and vector linear codes, which allows us to exploit
network solvability results over modules [8], [9] in order to
achieve capacity results over rings. For a given network N and
rate vector r, we show (in Lemma II.2) there exists a network
N � that is vector linearly solvable over a given module if
and only if the rate vector r is linearly achievable for N
over the module. In Section II-B, we order finite modules
based on fractional solvability and show that under certain
conditions, fractional linear solutions over a given module
imply the existence of fractional linear solutions over other
modules. The results in Sections II-B and II-C are used to show
(in Lemma II.14) that fractional linear solutions over modules
imply the existence of fractional linear solutions over modules
in which the ring of matrices over a field acts on vectors over
the field.

In Section III, we use the results relating solvability and
fractional codes from Section II to show our main results on
linear rate regions over fields. We prove (in Theorem III.3)
that for any two finite fields with different characteristics,
there exists a network whose linear rate regions over the
fields are not contained in one another. This indicates that
some rate vectors may only be linearly achievable over certain
fields, while other rate vectors may only be linearly achievable
over other fields. Additionally, for any two finite fields with
different characteristics, there exists a network whose linear
capacities over the two fields are different (Corollary III.2).

We also show (in Theorem III.4) that for any two finite
fields with the same characteristic, every network’s linear rate
region over the first field is the same as its linear rate region
over the second field. In other words, the linear rate region of
any network over a field depends only on the characteristic of
the field. Consequently, the linear capacity of any network over
a field depends only on the characteristic of the field as well
(Corollary III.5). This contrasts with linear solvability over
fields, since scalar linear solvability can depend not only on
the field’s characteristic, but more specifically, on the precise
cardinality of the field (e.g., see [8, Lemma III.2], [37], [39]).

In Section IV, we prove our main results on linear rate
regions and linear capacities over finite rings. We show
(in Theorem IV.2) that for any network, any finite field,
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and any finite ring whose size is divisible by the field’s
characteristic, the network’s linear rate region over the ring is
contained within the network’s linear rate region over the field,
and consequently the network’s linear capacity over the ring
is at most its linear capacity over the field (Corollary IV.3). In
this sense, it suffices to restrict attention to finite fields when
choosing a coding alphabet from among all rings. In other
words, the general class of rings does not provide any benefit
over the restricted class of finite fields, in terms of achieving
linear rate regions with network coding. In order to prove
Theorem IV.2, we show (in Theorem IV.1) that whenever a
network has a fractional linear solution over some module with
a given rate vector, the network has a fractional linear solution
over some field with the same rate vector and potentially larger
block sizes.

Even though Theorem IV.2 asserts non-field rings cannot
provide an increase in linear capacity over fields for all
networks, we show (in Corollary IV.4) that generally certain
rings, smaller than a given field, can increase the linear
capacity over at least some (but not all) networks. In fact,
we show (in Theorem IV.5) that for any finite field and any
finite ring, there exists a network with higher linear capacity
over the ring than over the field if and only if the field’s
size and the ring’s size are relatively prime. Finally, we show
(in Corollary IV.6) that whenever a network has a fractional
linear solution over some ring (or module) with a uniform rate
arbitrarily close to 1, the network must also have a fractional
linear solution over some field with the same uniform rate.
This strengthens results in [7] and [11] by showing that
the non-linearly solvable networks presented in these papers
additionally are not asymptotically linearly solvable over rings
and modules.

II. FRACTIONAL AND VECTOR CODES OVER MODULES

Many techniques for upper bounding network linear capac-
ities over finite fields (e.g., [7], [11], [14]) exploit linear
algebra results that sometimes do not extend to matrices over
arbitrary rings. For example, it is known (e.g., see [20]) that
the transpose of an invertible matrix over a non-commutative
ring is not necessarily invertible. 3 This suggests that directly
computing network linear rate regions and linear capacities
over finite rings and modules may be somewhat difficult.

One method for determining whether a network satisfies
some solvability or capacity property is to transform the
question into whether a certain related network satisfies a
corresponding property (e.g., [26], [41], and [42]). Namely,
in [41] and [42], the authors show that determining the rate
region and linear rate region of a general network can be
reduced to determining the rate region and linear rate region
of a corresponding network where each message vector is
demanded by exactly one receiver (i.e., a multiple unicast
network). In [26], it is shown that determining whether a
multiple unicast network has a solution with a given rate vector
can be reduced to determining whether a corresponding unicast
network with two message-receiver pairs has a solution with
a corresponding rate vector.

3See [3] and [33] for more information on linear algebra over rings.

Fig. 1. The Butterfly network has a single source node S, which generates
message vectors x and y. Each of the receiver nodes R1 and R2 demands
both x and y. The linear rate region of the Butterfly network is {(rx , ry) ∈
Q

2 : rx , ry ≥ 0 and rx + ry ≤ 2} over any ring.

We use a similar approach to relate the existence of frac-
tional linear solutions over modules to scalar and vector linear
solvability over modules (which was studied in [8] and [9]).
The results in this section allow us to more easily relate a
network’s linear rate region over a ring to the network’s linear
rate region over some field.

A. Fractional Equivalent Network

For any network N with m message vectors and integers
k1, . . . , km ≥ 0 and n ≥ 1, the following defines a new
network which is vector linearly solvable over a module R G
if and only if N has a fractional linear solution over R G
whose rate vector is (k1/n, . . . , km/n). We prove this fact in
Lemma II.2. This network construction can be used to show
many linear solvability properties extend to the existence of
fractional linear solutions.

Definition II.1. For any network N with m message vec-
tors and any integers k1, . . . , km ≥ 0 and n ≥ 1, let
N (k1,...,km ,n) denote the network N but with

(i) each edge replaced with n parallel edges, and
(ii) the i th message vector replaced with ki message vectors.

The Butterfly network is defined in Figure 1, and, for each
kx , ky ≥ 0 and n ≥ 1, the (kx , ky, n)-Butterfly network
is defined in Figure 2. These networks are consistent with
Definition II.1, if they are denoted by N and N (kx ,ky ,n),
respectively.

Lemma II.2. Let N be a network with m message vectors,
let k1, . . . , km ≥ 0 and n, t ≥ 1 be integers, let R G
be a module, and let N (k1,...,km ,n) denote the network in
Definition II.1 corresponding to N and k1, . . . , km and n. The
network N has a (tk1, . . . , tkm, tn) linear solution over R G
if and only if N (k1,...,km ,n) has a t-dimensional vector linear
solution over R G.

Proof: In a (tk1, . . . , tkm , tn) linear code over module R G
for network N , suppose a node generates the l1th,. . . , lu th
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Fig. 2. The (kx , ky, n)-Butterfly network has a single source node,
which generates message vectors x1, . . . , xkx and y1, . . . , yky . Each receiver
demands all of the message vectors. The (kx , ky , n)-Butterfly network is
vector linearly solvable over a given ring if and only if kx + ky ≤ 2n.

message vectors and has v incoming edges, where the i th
message vector is an element of Gtki and the edge vectors
are elements of Gtn . Then an edge function

f : Gtkl1 × · · · × Gtklu !" #
u message vectors

× Gtn × · · · × Gtn
 !" #

v edge vectors

−→ Gtn

of an outgoing edge of the node is of the form f (x) = Ax
where A is a tn×(tk1l1+· · ·+tklu +vtn) matrix with entries in
R and x is a vector over G formed by concatenating the input
vectors of the node. Let A1, . . . , An denote the t × (tk1l1 +
· · · + tklu + vtn) matrices such that A can be written in block
form as

A =
⎡

⎢⎣
A1
...

An

⎤

⎥⎦.

The corresponding node in N (k1,...,km ,n) generates kl1 +· · ·+klu
message vectors and has vn incoming edge vectors. Define the
t-dimensional vector code for N (k1,...,km ,n) over R G by letting
the edge function of the i th parallel corresponding outgoing
edge be the linear mapping

fi : Gt × · · · × Gt
 !" #

kl1 +···+klu message vectors

× Gt × · · · × Gt
 !" #

vn edge vectors

−→ Gt

given by fi (x) = Ai x, where i = 1, . . . , n. The edge in the
code for N carries the same linear combination of its inputs
as the n parallel edges in the code for N (k1,...,km ,n).

Similarly, in a (tk1, . . . , tkm , tn) code for N , suppose a
receiver generates the l1th,. . . , lu th message vectors, has v

incoming edges, and demands x j . Then the decoding function

d : Gtkl1 × · · · × Gtklu !" #
u message vectors

× Gtn × · · · × Gtn
 !" #

v edge vectors

−→ Gtk j

corresponding to x j is of the form f (x) = Dx where D is a
tk j × (tk1l1 + · · · + tklu + vtn) matrix and x is a vector over
G formed by concatenating the input vectors of the node. Let
D1, . . . , Dk j denote the t × (tk1l1 + · · ·+ tklu + vtn) matrices
such that D can be written in block form as

D =
⎡

⎢⎣
D1
...

Dk j

⎤

⎥⎦.

The corresponding node in N (k1,...,km ,n) generates kl1 +· · ·+klu
message vectors, has vn incoming edge vectors, and demands
the k j message vectors corresponding to x j . Define the
t-dimensional vector code for N (k1,...,km ,n) over R G by letting
the decoding function, corresponding to the i th such message
vector, be the linear mapping

di : Gt × · · · × Gt
 !" #

kl1 +···+klu message vectors

× Gt × · · · × Gt
 !" #

vn edge vectors

−→ Gt

given by di (x) = Di x, where i = 1, . . . , k j . If the
function d correctly reproduces its demanded message vec-
tors in the (tk1, . . . , tkm, tn) code for N , then each of
d1, . . . , dk j correctly reproduces its demanded message vec-
tor in the t-dimensional code for N (k1,...,km ,n). Hence, any
(tk1, . . . , tkm , tn) linear solution over a module RG for N can
be translated to a t-dimensional vector linear solution over R G
for N (k1,...,km ,n).

A t-dimensional vector linear solution over the mod-
ule R G for N (k1,...,km ,n) can similarly be translated to a
(tk1, . . . , tkm , tn) linear solution over R G for N . In particular,
if f1, . . . , fn are the edge functions of the n parallel edges at a
node in a t-dimensional vector linear solution for N (k1,...,km ,n),
then in the (tk1, . . . , tkm , tn) linear code over R G for N ,
define the corresponding edge function to be

f (x) =
⎡

⎢⎣
f1(x)

...
fn(x)

⎤

⎥⎦.

Similarly, if d1, . . . , dk j are the decoding functions at a node
in a t-dimensional vector linear solution for N (k1,...,km ,n),
then in the (tk1, . . . , tkm , tn) linear code over R G for
N , define the corresponding decoding function d(x) to be
the vector obtained by concatenating d1(x), . . . , dk j (x). This
(tk1, . . . , tkm , tn) linear code for N over R G is a solution,
since the t-dimensional vector linear code for N (k1,...,km ,n) is
a solution.

When R G is a module and t is a positive integer, Mt (R)Gt

denotes the module in which the ring of all t × t matrices with
entries in R acts on the set of all t-vectors over G with matrix-
vector multiplication, where multiplication of elements of R
with elements of G is given by the action of R G. The following
lemma shows an equivalence between fractional linear codes
over modules and fractional linear codes over these vector
modules.
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Lemma II.3. Let R G be a module, let N be a network,
and let k1, . . . , km ≥ 0 and n, t ≥ 1 be integers. Network N
has a (k1, . . . , km , n) linear solution over Mt (R)Gt if and only
if N has a (tk1, . . . , tkm, tn) linear solution over R G.

Proof: This lemma follows from the fact that a scalar
linear solution over Mt (R)Gt is equivalent to a t-dimensional
vector linear solution over R G. In particular, in both a scalar
linear code over Mt (R)Gt and a t-dimensional vector linear
code over R G, inputs to a node are t-vectors over G and
outputs carry linear combinations of the inputs, where the
coefficients that describe the linear combination are t × t
matrices over R. Any scalar linear solution over Mt (R)Gt can
be translated to a t-dimensional vector linear solution over
R G and vice versa. This idea generalizes to fractional linear
solutions:

N has a (k1, . . . , km, n) linear solution over Mt (R)G
t

⇐⇒ N (k1,...,km ,n) has a scalar linear solution over Mt (R)G
t

⇐⇒ N (k1,...,km ,n) has a t-dim linear solution over R G

⇐⇒ N has a (tk1, . . . , tkm, tn) linear solution over R G

where the first and third implications follow from
Lemma II.2.

B. Fractional Dominance

Definition II.4. Let R G and S H be modules. We say that

(a) S H scalarly dominates R G if every network with a scalar
linear solution over R G also has a scalar linear solution
over S H ,

(b) S H fractionally dominates RG if for each k1, . . . , km ≥
0 and n ≥ 1, every network with a (k1, . . . , km , n)
linear solution over RG also has a (k1, . . . , km , n) linear
solution over S H .

We are ultimately concerned with comparing capacities
and rate regions using one-sided and two-sided linear codes
over rings, and module dominance provides a useful tool for
comparing these classes of codes. In the following remark, we
discuss one-sided and two-sided linear codes over rings in the
context of fractional dominance of modules.

Remark II.5. Any left-sided fractional linear code over a
ring is a special case of a two-sided fractional linear code
over the ring in which the inputs are multiplied on the right
by the identity element. In the language of modules, this means
that any fractional linear solution over R R is also a fractional
linear solution over R⊗Rop R. Hence R⊗Rop R fractionally dom-
inates R R for every finite ring R. Furthermore, if the ring R is
commutative, then any two-sided fractional linear code over
R can equivalently be written as a left-sided fractional linear
code over R. This implies R R fractionally dominates R⊗Rop R
when R is commutative.

We also comment that if R and S are finite rings such that
S⊗Sop S fractionally dominates R⊗Rop R, then for each network
N , we have

Rlin (N , S) ⊇ Rlin (N , R) and Clin(N , S) ≥ Clin(N , R).

The following lemma shows that scalar dominance and
fractional dominance of modules are, in fact, equivalent.

However, it is cleaner to prove results on scalar dominance,
as the block sizes of the message vectors and edge vectors are
all one, and we can use results from [9].

Lemma II.6. Let R G and S H be modules. S H scalarly
dominates R G if and only if S H fractionally dominates R G.

Proof: It follows immediately from the definition that S H
fractionally dominates R G implies S H scalarly dominates R G.
To prove the converse, suppose S H scalarly dominates R G. Let
N be a network with m message vectors, let k1, . . . , km ≥ 0
and n ≥ 1 be integers, and let N (k1,...,km ,n) be the network in
Definition II.1 corresponding to N , k1, . . . , km , and n. Then

N has a (k1, . . . , km , n) linear solution over R G

�⇒ N (k1,...,km ,n) has a scalar linear solution over R G

[from Lemma II.2]

�⇒ N (k1,...,km ,n) has a scalar linear solution over S H$
from S scalarly dominates R

%

�⇒ N has a (k1, . . . , km, n) linear solution over S H

[from Lemma II.2] .

Hence, for any network, any fractional linear solution over R G
implies the existence of a fractional linear solution over S H
with the same block sizes.

Definition II.7. A module R G is faithful if for each r ∈
R\{0}, there exists g ∈ G such that r · g �= 0.

Lemmas II.8, II.9, and II.10 follow immedately from
Lemma II.6 and results from [9], and we include their proofs in
the appendix for reference. Lemma II.8 shows that, for a fixed
ring R, fractional linear solutions over faithful R-modules
induce fractional linear solutions over every other R-module.
Lemma II.9 shows that fractional linear solutions over non-
faithful modules induce fractional linear solutions over some
faithful module. Lemma II.10 shows that ring homomorphisms
also induce fractional dominance.

Lemma II.8. Let R be a fixed ring, let RG and R H
be modules, and let R G be faithful. Then R H fractionally
dominates R G.

In [9], an example was given in which a network has a
scalar linear solution over a non-faithful R-module but does
not have any scalar linear solutions over another R-module.
This shows the importance of the faithfulness of the module
in Lemma II.8.

Lemma II.9. Let R G be a module. There exists a finite
ring S and an action such that S G is a faithful module, and
S G fractionally dominates R G.

A ring homomorphism is a mapping φ from a ring R to a
ring S such that for all a, b ∈ R

φ(a + b) = φ(a) + φ(b)

φ(ab) = φ(a)φ(b)

φ(1R) = 1S

where 1R and 1S are the multiplicative identities of R and S,
respectively. It follows from this definition that φ(0R) = 0S ,
where 0R and 0S are the additive identities of R and S,
respectively.
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Lemma II.10. Let R and S be rings, let φ : R → S be a
ring homomorphism, let R G be a faithful module, and let S H
be a module. Then S H fractionally dominates R G.

By the fundamental theorem of finite Abelian groups, every
finite Abelian group is isomorphic to a direct product of cyclic
groups whose sizes are prime powers (with component-wise
addition) [16, p. 161]. As an example, Z12 ∼= Z4 × Z3. The
following lemma shows that if a finite Abelian group can
be written as a direct product of Abelian groups G and H
whose sizes are relatively prime, then whenever R(G× H ) is a
module for some ring R, the ring R acts on G×H component-
wise. This implies that G and H are also R-modules. Since
fractional linear solutions over faithful R-modules induce
fractional linear solutions over every other R-module, this is
a useful tool for showing fractional dominance.

Lemma II.11. Let G and H be finite groups such that |G|
and |H | are relatively prime, and let R(G × H ) be a module.
Then there exist modules R G and R H .

Proof: Let g ∈ G and r ∈ R, and suppose r · (g, 0) =
(gr , hr ) ∈ G×H . It follows from Lagrange’s theorem of finite
groups (e.g., [16, p. 45]) that |G|g = g ⊕ · · · ⊕ g !" #

|G| times

= 0, so

(0, 0) = r · (0, 0) = r · (|G| g, 0) = |G| r · (g, 0)

= |G| (gr , hr ) = (|G|gr , |G|hr ) = (0, |G|hr ).

Since |G| and |H | are relatively prime, it follows from
Cauchy’s theorem of finite groups (e.g., [16, p. 93]) that H
contains no non-identity elements whose order divides |G|, so
it must be the case that hr = 0. Similarly, for each h ∈ H and
each r ∈ R, there exists hr ∈ H such that r · (0, h) = (0, hr ).
This implies R acts on G × H component-wise. In other
words, if r · (g, h) = (gr , hr ), then r · (g, 0) = (gr , 0) and
r · (0, h) = (0, hr ). Thus the mapping � : R × G → G given
by r � g = gr satisfies the properties of an action, so G is an
R-module with action �. It can similarly be shown that R H
is a module.

We comment that Lemma II.11 does not extend to finite
groups whose sizes are not relatively prime. As an example,
the field GF(4) acts on its own additive group (GF(4) ,+)
by multiplication in the field. If the elements of GF(4) are
represented as {0, 1, α, α + 1} where α2 = α + 1, then for all
(a0 + αa1), (b0 + αb1) ∈ GF(4)

(a0 + αa1) (b0 + αb1)

= a0 b0 + a1 b1 + α(a0 b1 + a1 b0 + a1 b1).

The additive group of GF(4) is isomorphic to the set GF(2)×
GF(2) with component-wise addition in GF(2), so GF(4) acts
on GF(2) × GF(2) by

(a0 + α a1) · (b0, b1)

= (a0 b0 + a1 b1, a0 b1 + a1 b0 + a1 b1).

This action is not component-wise, since (1 + α) · (1, 0) =
(1, 1) and α · (0, 1) = (1, 1).

If GF(4) acts on GF(2), then the action must be such that
1 · a = a and 0 · a = 0 for all a ∈ GF(2) and x · 0 = 0 for all
x ∈ GF(4). If α · 1 = 1, then

0 = 1 + 1 = (α · 1) + (1 · 1) = (α + 1) · 1

= (α2) · 1 = α · (α · 1) = α · 1 = 1

which is a contradiction. If α · 1 = 0, then

1 = 0 + 1 = (α · 1) + (1 · 1) = (α + 1) · 1

= (α2) · 1 = α · (α · 1) = α · 0 = 0

which is a contradiction. Thus GF(2) cannot form a
GF(4)-module, but GF(2) × GF(2) together with the action
described above is a GF(4)-module.

C. Matrix Rings Over Fields

If a ring R has a proper two-sided ideal I , then there is a
surjective homomorphism from R to R/I . It is known (e.g.,
[32, p. 20]) that every finite ring with no proper two-sided
ideals is isomorphic to some ring of matrices over a finite field.
In fact, every finite ring R has a two-sided ideal I such that
R/I is a matrix ring over a field. This implies the following
lemma, which was more formally shown in [9].

Lemma II.12. [9, Lemmas II.1 and II.3]: Let R be a finite
ring. There exists a positive integer t, a finite field F, and a
surjective homomorphism from R to Mt (F).

Lemmas II.10 and II.12 together imply that fractional linear
solutions over modules induce fractional linear solutions over
modules in which the ring is a matrix ring over a field. The
following lemma proves a result on the cardinality of such
modules.

Lemma II.13. Let F be a finite field and t a positive integer.
If Mt (F)G is a finite non-zero module, then |F|t divides |G|.

Proof: Since G is finite and non-zero, there exists a
submodule of Mt (F)G with no proper submodules (possibly
Mt (F)G itself). It is known (e.g., [27, Theorem 3.3 (2), p. 31])
that F

t is the only Mt (F)-module with no proper submodules,
so F

t is a submodule of G. Hence by Lagrange’s theorem of
finite groups, |F|t divides |G|.

Lemma II.14 shows that every module is fractionally dom-
inated by a module whose group is the set of t vectors over
some field and whose ring is the set of all t × t matrices over
the field. In network coding, arbitrarily large block sizes may
be needed to achieve a solution with a particular rate. Das and
Rai [10] showed that for each k, n ≥ 1 and each t ≥ 2, there
exists a network that has a (tk, . . . , tk, tn) linear solution over
any finite field, yet the network has no (sk, . . . , sk, sn) linear
solution over any finite field when s < t . It was also shown
in [9] that for each t ≥ 2, there exist networks with scalar
linear solutions over certain rings but with no s-dimensional
vector linear solutions over any field whenever s < t . This
suggests that the quantity t in Lemma II.14 may need to be
arbitrarily large.

Lemma II.14. Let R G be a module. For each prime p
that divides |G|, there exists a finite field F of characteristic
p and a positive integer t such that Mt (F)F

t fractionally
dominates R G.

Proof: By Lemma II.9 there exists a finite ring S such
that the faithful module S G fractionally dominates R G. By the
fundamental theorem of finite Abelian groups, the group G is
isomorphic to a direct product of Abelian groups whose sizes
are prime powers, and since p

&& |G|, the size of at least one
of these groups is a power of p. Let H be the direct product
of all such groups whose sizes are powers of p. Then there
exists a finite group G� such that G ∼= G� × H and |G�| and
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|H | are relatively prime. Hence by Lemma II.11, H is also an
S-module, and since G is a faithful S-module, by Lemma II.8,
the module S H fractionally dominates S G.

By Lemma II.9, there exists a finite ring S� such that H
is a faithful S�-module and S � H fractionally dominates S H .
By Lemma II.12, there exists a positive integer t , a finite
field F, and a surjective homomorphism from S� to Mt (F).
By Lemma II.10, the module S � H is fractionally dominated
by every Mt (F)-module, and the ring Mt (F) acts on the set of
all t-vectors over F by matrix-vector multiplication over F, so
Mt (F)F

t fractionally dominates S � H . The proof of Lemma II.10
also implies H is an Mt (F)-module, so Lemma II.13 implies
|F|t && |H |. Since |H | is a power of p, this implies F is a field
of characteristic p. Finally, by the transitivity of fractional
dominance, Mt (F)F

t fractionally dominates R G.
Lemma II.15 uses ideas similar to those in

[38, Proposition 1] and [17], and we include a proof
for completeness. This lemma, along with Lemma II.3,
implies that a fractional linear solution over any non-prime
finite field induces a fractional linear solution over the
corresponding prime field with the same rate vector. A
fractional linear solution over a field F is equivalent to a
fractional linear solution over the faithful module FF, since
F is commutative.

Lemma II.15. Let q be a prime power and t a pos-
itive integer. Then Mt (GF(q))GF(q)t fractionally dominates

GF(qt)GF
�
qt

�
.

Proof: It is known (e.g., see [16, p. 531]) that every
extension field GF

�
qt

�
is isomorphic to a set of t × t matrices

over GF(q). This implies there exists an injective homomor-
phism from GF

�
qt

�
to Mt (GF(q)). By Lemma II.10, any

network with a fractional linear solution over GF(qt)GF
�
qt

�

also has a fractional linear solution over any Mt (GF(q))-
module. In particular, Mt (GF(q))GF(q)t fractionally dominates

GF(qt)GF
�
qt

�
.

III. LINEAR RATE REGIONS OVER FIELDS

We define, for each integer m ≥ 2, the Char-m network
in Figure 3. The Char-m network is denoted by N2(m, 1)
in [7], with a slight relabeling of sources, and the Char-
m network is known to be vector linearly solvable over a field
if and only if the characteristic of the field divides m. When
m = 2, this network exhibits solvability properties similar to
those of the Fano network [13].

Let R be a finite ring whose characteristic divides m. Then
m = 0 in R, and the following scalar linear code:

e =
m+1�

j=0

x j and ei =
m+1�

j=0
j �=i

x j

over R is a solution for the Char-m network, where i =
0, 1, . . . , m + 1, and the receivers linearly recover their
demands as follows

Ri : e − ei = xi

R :
m+1�

i=1

ei = x0 + m
m+1�

i=0

xi

= x0
$
from char(R)

&& m
%
.

Fig. 3. The Char-m network has source nodes S0, S1, . . . , Sm+1 which
generate message vectors x0, x1, . . . , xm+1, respectively. Node u has a single
incoming edge from each source node, and the edge connecting nodes u and
v carries the edge vector e. For each i = 0, 1, . . . , m + 1, node ui has a
single incoming edge from each source node, except Si . The edge connecting
nodes ui and vi carries edge vector ei . The receiver Ri demands xi and has
an incoming edge from node vi and an incoming edge from v . The receiver
R demands x0 and has an incoming edge from each of nodes v1, . . . , vm+1.

This code relies on the fact that m = 0 in R, and it turns out the
Char-m network has no scalar linear solutions over any ring
whose characteristic does not divide m (see [7, Lemma IV.6]).

Lemma III.1. [7, Lemma IV.7]: For each m ≥ 2 and each
finite field F, the linear capacity of the Char-m network is

• equal to 1, whenever char(F)
&& m, and

• upper bounded by 1 − 1
2m+3 , whenever char(F) � m.

A. Comparing Linear Rate Regions Over Different Fields

It follows from Lemma III.1 that certain fields may yield
strictly larger linear capacities for some networks than other
fields. In particular, whenever the characteristics of two finite
fields are different, there exists some network whose linear
capacities over the fields differ.

Corollary III.2. If F and K are finite fields with different
characteristics, then there exist networks N1 and N2, such that
Clin(N1, F) > Clin(N1, K) and Clin(N2, K) > Clin(N2, F).

Proof: Suppose char(F) = p �= q =char(K) and let
N1 and N2 be the Char-p network and the Char-q network,
respectively. Then by Lemma III.1, Clin(N1, F) = 1 and
Clin(N1, K) ≤ 1 − 1

2p+3 . Similarly, Clin(N2, K) = 1 and

Clin(N2, F) ≤ 1 − 1
2q+3 .

In [14], it was shown that for any finite fields F and K

of even and odd characteristic, respectively: (i) the linear rate
region of the non-Fano network over F is a proper subset of
its linear rate region over K, and (ii) the linear rate region of
the Fano network over K is a proper subset of its linear rate



230 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 1, JANUARY 2019

region over F. In these instances, it is strictly “better” to use an
even (respectively, odd) characteristic field instead of an odd
(respectively, even) characteristic field. However, the following
theorem demonstrates that it may not always be the case that
one field is necessarily “better” than the other for a particular
network. In particular, for some networks, some rate vectors
may only be linearly achievable over certain fields while
other rate vectors may only be linearly achievable over other
fields.

Theorem III.3. For any two finite fields with different char-
acteristics, there exists a network whose linear rate regions
over the fields do not contain one another.

Proof: A disjoint union of networks refers to a new
network whose nodes/edges/sources/receivers are the disjoint
union of the nodes/edges/sources/receivers in the smaller
networks. Let F and K be finite fields of characteristic p
and q , for some distinct primes p and q . Let N be the
disjoint union of the Char-p network and the Char-q network.
Whenever node (respectively, edge and message) labels are
repeated, add an arbitrary additional level of labeling each
node (respectively, edge and message) to avoid repeated labels.
Then, by Lemma III.1, the rate vector, in which the rates
for the Char- p network are all one and the rates for the
Char-q network are all zero, is linearly achievable over F

but not over K. Similarly, the rate vector in which the rates
for the Char-q network are all one and the rates for the
Char-p network are all zero is linearly achievable over K but
not over F. Thus the linear rate regions of N over F and K

do not contain one another.
We can use a similar network construction to show that

there is not necessarily a particular finite field that can linearly
achieve all linearly achievable rate vectors. In other words,
there may not be a “best” field for a particular network.
Let p and q be distinct primes, and let N be the disjoint
union of the Char-p network and the Char-q network. Then,
by a similar argument to the proof of Theorem III.3, there
exists a rate vector that is only linearly achievable over fields
of characteristic p, and there exists another rate vector that
is only linearly achievable over fields of characteristic q .
Thus there is no finite field which can linearly achieve
both of these rate vectors. A similar result can be obtained
by taking the disjoint union of the Fano and non-Fano
networks.

Theorem III.3 demonstrates that for any two finite fields
of distinct characteristics, there always exists some network
whose linear rate regions differ over the two fields. In the
following theorem, we show that the linear rate region of
a network over a field depends only on the characteristic
of the field. This contrasts with the scalar linear solvabil-
ity of networks over fields, since some networks can be
scalar linearly solvable only over certain fields of a given
characteristic.

Theorem III.4. Let F and K be finite fields. Then
char(F) =char(K) if and only if for each network N , we have
Rlin (N , F) = Rlin (N , K).

Proof: Let r and s be positive integers, p a prime, and
N a network with m messages. Then GF(p) is a subfield
GF(ps), which implies the identity mapping is an injective

homomorphism from GF(p) to GF(ps). So

N has a (k1, . . . , km, n) linear solution over GF
�

pr �

�⇒ N has (rk1, . . . , rkm, rn) linear solution over GF(p)

[from Lemma II.15]

�⇒ N has (rk1, . . . , rkm, rn) linear solution over GF
�

ps�

[from Lemma II.10] .

Both a

(k1, . . . , km , n)

linear solution and an

(rk1, . . . , rkm, rn)

linear solution have the rate vector (k1/n, . . . , km/n). Hence
any rate vector that is linearly attainable over GF(pr ) is also
linearly attainable over GF(ps) (with possibly larger vector
sizes). Similarly, any rate vector that is linearly attainable over
GF(ps) is also linearly attainable over GF(pr ) (with possibly
larger vector sizes). Hence if char(F) =char(K), then the
linear rate regions of any network over F and K are equal.
The reverse direction follows from Theorem III.3.

Immediately following Definition II.4, we showed that for
any finite rings S and R,

S⊗Sop S fractionally dominates R⊗Rop R

�⇒ Rlin (N , S) ⊇ Rlin (N , R) for every network N .

Theorem III.4 can be used to show the converse is not
necessarily true. There are numerous examples in the literature
(e.g., see [8, Lemma III.2], [37], [39]) of networks that are
scalar linearly solvable over GF(pr ) but not over GF(ps),
for some prime p and some distinct positive integers r and
s. In such cases, GF(ps) does not fractionally dominate
GF(pr ); however, by Theorem III.4, any network’s linear rate
region over either field is the same, since both fields have
characteristic p.

Corollary III.5. Let F and K be finite fields. Then
char(F) =char(K) if and only if for each network N , we have
Clin(N , F) = Clin(N , K).

Proof: This corollary is an immediate consequence of
Theorem III.4 and Corollary III.2.

IV. LINEAR RATE REGIONS OVER RINGS

The following theorem demonstrates that if a network has a
fractional linear solution over some module and if p is a prime
that divides the alphabet size (i.e., the size of the group), then
the network must also have a fractional linear solution over
every field of characteristic p with the same rate vector and
possibly larger vector sizes.

Theorem IV.1. Let R G be a module and let F be a finite
field whose characteristic divides |G|. For each network
N and each k1, . . . , km ≥ 0 and n ≥ 1 such that N has
a (k1, . . . , km, n) linear solution over R G, there exists a
positive integer t such that N has a (tk1, . . . , tkm , tn) linear
solution over F.

Proof: Let p =char(F). By Lemma II.14, there exists a
finite field K of characteristic p and a positive integer s such
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that Ms(K)K
s fractionally dominates RG. Lemma II.3 implies a

network N with a (k1, . . . , km , n) linear solution over Ms(K)K
s

must also have an (sk1, . . . , skm, sn) linear solution over K.
Since F and K both have characteristic p, and since the rate
vector (k1/n, . . . , km/n) is linearly achievable for N over K,
by Theorem III.4, the rate vector (k1/n, . . . , km/n) is also
linearly achievable for N over F. Hence there exists a positive
integer t such that N has a (tk1, . . . , tkm , tn) linear solution
over F.

We now prove one of our main results regarding linear rate
regions over rings.

Theorem IV.2. If R is a finite ring and F is a finite field
whose characteristic divides |R|, then the linear rate region of
any network over R is contained in the network’s linear rate
region over F.

Proof: Let R be a finite ring, let N be a network, and
let F finite field whose characteristic divides |R|. A fractional
two-sided linear solution over R is a fractional linear solution
over the module R⊗Rop R, so by Theorem IV.1, whenever N
has a fractional linear solution over R with a given rate vector,
N also has a fractional linear solution over F with the same
rate vector and possibly larger vector sizes. Hence,

{r ∈ Q
m : r is linearly achievable for N over R}
⊆ {r ∈ Q

m : r is linearly achievable for N over F}.

Corollary IV.3. If R is a finite ring and F is a finite field
whose characteristic divides |R|, then the linear capacity of
any network over R is less than or equal to its linear capacity
over F.

In some cases, the containment in Theorem IV.2 (and the
inequality in Corollary IV.3) is strict for some networks, while
in other cases, there may be equality for all networks. As an
example, by taking F = GF(2) and R = Z6 in Theorem IV.2,
any network’s linear rate region over GF(2) contains its
linear rate region over Z6. However, the linear capacity of
the Char-2 network is 1 over the field GF(2) and is upper
bounded by 6/7 over the field GF(3) (see Lemma III.1). Since
3 =char(GF(3)), which divides 6 = |Z6|, by Corollary IV.3,
the Char-2 network’s linear capacity over Z6 is upper bounded
by 6/7. This demonstrates that the linear rate regions of R and
F are not necessarily equal for all networks.

As another example, by taking F = GF(4) and R =
Z2[X]/�X2� in Theorem IV.2, any network’s linear rate region
over GF(4) contains its linear rate region over Z2[X]/�X2�.
The field GF(2) is isomorphic to a subring of Z2[X]/�X2�
(namely Z2), so there is an injective homomorphism from
GF(2) to Z2[X]/�X2�, which by Lemma II.10, implies any
network’s linear rate region over Z2[X]/�X2� contains its
linear rate region over GF(2). However, by Theorem III.4, any
network’s linear rate regions over GF(4) and GF(2) must be
equal. Thus the linear rate regions of GF(4) and Z2[X]/�X2�
are equal for all networks. Precisely characterizing for which
rings and fields the linear rate regions are equal for all
networks remains an open problem.

A. Comparing Linear Capacities Over Different Rings
Determining the exact linear capacity and the linear rate

region of the Char-m network over each finite ring (or even

each finite field) are also presently open problems. Another
related open question is for which finite rings R and S does
there exist a network N such that Clin(N , R) > Clin(N , S).
We have answered this second question in some select special
cases:

• In Theorem III.4, we showed that when R and S are
finite fields, such a network exists if and only if the
characteristics of R and S differ.

• In Theorem IV.2, we showed that when S is a field whose
characteristic divides |R|, no such network exists. This
includes the special case where |S| = |R|.

Corollary IV.4. Let R and S be finite rings. If some prime
factor of |S| is not a factor of |R|, then there exists a network
N such that Clin (N , R) > Clin(N , S).

Proof: Let p divide |S| but not |R|, and let N denote the
Char-|R| network. Then,

Clin (N , S)
≤ Clin(N , GF(p)) [from Theorem IV.2]

≤ 1 − 1

2|R| + 3
[from p � |R| and Lemma III.1]

< 1
≤ Clin(N , R)

$
from char(R)

&& |R|%

where the last inequality uses the fact that N must be scalar
linearly solvable over R, since the characteristic of R divides
the size of R.

Corollary IV.4 implies that if the sizes of two rings do not
share the same set of prime factors, then at least one of the
rings induces a higher linear capacity than the other on some
network. As an example, the Char-6 network has a strictly
larger linear capacity over the ring Z6 than over the field
GF(25) of larger size.

Corollary IV.4, in particular, implies that for every finite
field and every ring, whose sizes are relatively prime, there
is some network for which the linear capacity of the network
over the ring is strictly larger than the linear capacity over the
field. In contrast, Theorem IV.2 shows that for every ring and
every network, there is some field for which the linear capacity
of the network over the ring is less than or equal to the linear
capacity over the field. These facts are succinctly summarized
in the following theorem.

Theorem IV.5. Let F be a finite field and R be a finite ring.
Then |F| and |R| are relatively prime if and only if there exists
a network N such that Clin(N , R) > Clin(N , F).

Proof: Let p =char(F). Then |F| and |R| are relatively
prime if and only if p � |R|.

If p � |R|, then by Corollary IV.4, there exists a network
N such that Clin(N , R) > Clin(N , F). The converse is a
restatement of Corollary IV.3.

B. Asymptotic Solvability

We say that a network N is asymptotically solvable over A
if for all � ∈ (0, 1), the rate vector

(1 − �, . . . , 1 − �)

is contained in the network’s rate region. In other words,
a uniform rate arbitrarily close to, or above, 1 is attainable.
A network which is asymptotically solvable but is not solvable
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was demonstrated in [12], and non-linearly solvable networks
were demonstrated in [7] and [11] that are not asymptotically
linearly solvable over any finite field. The following corollary
demonstrates that such networks are additionally not asymp-
totically linearly solvable over any module (or ring).

Corollary IV.6. If a network is asymptotically linearly
solvable over some module or ring, then it must be asymp-
totically linearly solvable over some finite field.

Proof: Suppose a network N is asymptotically linearly
solvable over some module RG. By Theorem IV.1, there exists
a finite field F such that any rate vector that is linearly achiev-
able over R G must also be linearly achievable over F. Hence
N is also asymptotically linearly solvable over F. This also
implies any network that is asymptotically linearly solvable
over some ring must also be asymptotically linearly solvable
over some field, since a fractional linear code over a ring is a
special case of a fractional linear code over a module.

V. CONCLUDING REMARKS

Linear network codes over finite rings (and modules) con-
stitute a much broader class of codes than linear network
codes over finite fields. Linear codes over rings have many
of the attractive properties of linear codes over fields, includ-
ing implementation complexity and possibly mathematical
tractability. We have demonstrated, however, that with respect
to linear capacity and linear rate regions, this broader class of
codes does not offer an improvement over linear codes over
fields. This particularly contrasts with the network solvability
problem where we demonstrated certain cases where a ring
alphabet can offer scalar linear solutions when a field alphabet
cannot.

APPENDIX A
PROOFS OF LEMMAS IN SECTION II

The proofs in this appendix are results from [9] that we
include for completeness.

A. Proof of Lemma II.8 [9, Lemma I.3]

Proof of Lemma II.8: Let N be a network that is scalar
linearly solvable over the faithful R-module (G,⊕) with
action ·. Any scalar linear solution for N over RG is a scalar
linear solution for N over any other R-module.

To see this, let z1, . . . , zm ∈ G denote the messages of N ,
and suppose a node in N has inputs x1, . . . , xn ∈ G in a scalar
linear solution over R G, where, for each i = 1, . . . , n,

xi =
m'

j=1

(Bi, j · z j )

for some Bi,1, . . . , Bi,m ∈ R. Then for each output y ∈ G of
this node, there exist constants C1, . . . , Cn ∈ R such that

y =
n'

i=1

(Ci · xi )

=
n'

i=1

m'

j=1

((Ci Bi, j ) · z j )

=
m'

j=1

��
n�

i=1

Ci Bi, j

�
· z j

�
.

Now let R H be a module with action �, and suppose the
corresponding inputs to the node in the scalar linear code over
R H are x �

1, . . . , x �
n ∈ H and can be written in terms of the

messages z�
1, . . . , z�

m ∈ H in the following way

x �
i =

m'

j=1

(Bi, j � z�
j ).

Then the corresponding output y � ∈ R of the node is of the
form

y � =
n'

i=1

(Ci � x �
i )

=
n'

i=1

m'

j=1

((Ci Bi, j ) � z�
j )

=
m'

j=1

��
n�

i=1

Ci Bi, j

�
� z�

j

�

so by induction, every edge and decoding function in the
scalar linear code over R H is the same linear combination
of the messages as in the scalar linear solution over RG. In
other words, if an edge/decoding function in the scalar linear
solution over RG produces the linear combination

n'

j=1

(A j · z j )

where A1, . . . , An ∈ R, then the corresponding edge/decoding
function in the scalar linear code over R H produces the linear
combination

n'

j=1

(A j � z�
j ).

R G is faithful, so 1 and 0, respectively, are the only elements
of R such that 1 · g = g and 0 · g = 0, respectively, for all
g ∈ G. Hence a decoding function in the scalar linear solution
over R G that produces zi must be of the form

(1 · zi ) ⊕
n'

j=1
j �=i

(0 · z j ) = zi .

In other words, since R G is faithful, it must be the case that
Ai = 1 and A j = 0 for all j �= i . As shown above, every
edge and decoding function in the scalar linear code over R H
produces the same linear combination of the messages (i.e. the
ring coefficients are the same), so the corresponding decoding
function in the scalar linear code over R H is

(1 � z�
i ) ⊕

n'

j=1
j �=i

(0 � z�
j ) = z�

i .

Thus, each receiver can linearly recover its demands, so the
scalar linear code over R H is, in fact, a solution. This implies
that R H scalarly dominates R G, which along with Lemma II.6,
shows that R H fractionally dominates R G. �
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B. Proof of Lemma II.9 [9, Lemma II.6]

Proof of Lemma II.9: We use ideas from [11, p. 2750] here.
Let

J = {r ∈ R : r · g = 0, ∀g ∈ G}
which is easily verified to be a two-sided ideal of R. Let S =
R/J . It can also be verified that G is an S-module with action
� : S × G → G given by

(r + J ) � g = r · g.

If (r + J ), (s + J ) ∈ S are such that

(r + J ) � g = (s + J ) � g

for all g ∈ G, then (r − s) · g = 0, which implies (r − s) ∈ J .
Hence (r + J ) = (s + J ), so the ring S acts faithfully on
G. A faithful module requires different elements of the ring
to yield different functions when acting on elements of the
group. Since G is finite, the number of such functions must
be finite, which implies the ring S must also be finite.

Suppose a network N is scalar linearly solvable over RG.
Every output y � in the solution over R G is of the form

y � = (C1 · x1) ⊕ · · · ⊕ (Cm · xm) (2)

where the xi ’s are the parent node’s inputs and the Ci ’s are
constants from R. Form a linear code over S G replacing each
coefficient Ci in (2) by (Ci + J ). Let y be the edge symbol
in the code over S G corresponding to y � in the code over RG.
Then

y = ((C1 + J ) � x1) ⊕ · · · ⊕ ((Cm + J ) � xm)

= (C1 · x1) ⊕ · · · ⊕ (Cm · xm) = y �.

Thus, whenever an edge function in the solution over R G
outputs the symbol y �, the corresponding edge function in
the code over SG will output the same symbol y �. Likewise,
whenever x is an input to an edge function in the solution
over R G, the corresponding input of the corresponding edge
function in the code over S G will be the same symbol x .
The same argument holds for the decoding functions in the
code over S G, so each receiver will correctly obtain its
corresponding demands in the code over S G. Hence, the code
over S G is a linear solution for N .

This implies S G scalarly dominates R G, which along with
Lemma II.6, implies SG fractionally dominates R G �

C. Proof of Lemma II.10 [9, Lemma I.6]

Proof of Lemma II.10: Let S H be a module, and define a
mapping

� : R × H → H

by r �h = φ(r)·h, where · is the action of S H . One can verify
that R H is a module under �. Now, let R G be a module, and
suppose N has a linear solution over R G. By Lemma II.8, N
is scalar linearly solvable over R H , so every output y � ∈ H
in the solution over R H is of the form

y � = (C1 � x1) ⊕ · · · ⊕ (Cm � xm) (3)

where x1, . . . , xm ∈ H are the parent node’s inputs and
C1, . . . , Cm ∈ R are constants.

Form a linear code for N over S H by replacing each
coefficient Ci in (3) by φ(Ci ). Let y ∈ H be the output in the
code over S H corresponding to y � in the code over R H . Then

y = (φ(C1) · x1) ⊕ · · · ⊕ (φ(Cm) · xm)

= (C1 � x1) ⊕ · · · ⊕ (Cm � xm) = y �.

By induction, whenever an edge function in the solution over
R H outputs the symbol y �, the corresponding edge function in
the code over S H will output the same symbol y �. Likewise,
whenever x is an input to an edge function in the solution
over R H , the corresponding input of the corresponding edge
function in the code over S H will be the same symbol x .
The same argument holds for the decoding functions in the
code over S H , so each receiver will correctly obtain its
corresponding demands in the code over S H . Hence, the code
over S H is a linear solution for N .

This implies that R H scalarly dominates R G, which along
with Lemma II.6, shows that R H fractionally dominates R G.�
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