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Linear Network Coding Over Rings – Part II:
Vector Codes and Non-Commutative Alphabets

Joseph Connelly, Student Member, IEEE, and Kenneth Zeger, Fellow, IEEE

Abstract— In Part I, we studied linear network coding
over finite commutative rings and made comparisons to the
well-studied case of linear network coding over finite fields.
Here, we consider the more general setting of linear network
coding over finite (possibly non-commutative) rings and modules.
We prove the following results regarding the linear solvabil-
ity of directed acyclic networks over various finite alphabets.
For any network, the following are equivalent: (i) vector linear
solvability over some field, (ii) scalar linear solvability over some
ring, and (iii) linear solvability over some module. Analogously,
the following are equivalent: (a) scalar linear solvability over
some field, (b) scalar linear solvability over some commutative
ring, and (c) linear solvability over some module whose ring is
commutative. Whenever any network is linearly solvable over
a module, a smallest such module arises in a vector linear
solution for that network over a field. If a network is scalar
linearly solvable over some non-commutative ring but not over
any commutative ring, then such a non-commutative ring must
have size at least 16, and for some networks, this bound is
achieved. An infinite family of networks is demonstrated, each of
which is scalar linearly solvable over some non-commutative ring
but not over any commutative ring. Whenever p is prime and
1 ≤ k ≤ 6, if a network is scalar linearly solvable over some ring
of size pk, then it is also k-dimensional vector linearly solvable
over the field GF( p), but the converse does not necessarily hold.
This result is extended to all k ≥ 1 when the ring is commutative.

Index Terms— Linear coding, network solvability, network
coding, modules (abstract algebra).

I. INTRODUCTION

IN THE companion paper (i.e. Part I) [2], we studied
scalar linear network codes over finite commutative rings.

Equivalently, these are linear codes over modules where a
finite commutative ring acts on its own additive group via
multiplication in the ring. In particular, we compared the scalar
linear solvability of directed acyclic networks over different
types of commutative rings of the same size. We proved that
networks that are scalar linearly solvable over some commu-
tative ring are also scalar linearly solvable over some field
of the same or smaller size. Additionally, we characterized
all commutative rings with the property that there exists a
network with a scalar linear solution over the ring but not
over any other commutative ring of the same size.

Linear network codes can be advantageous due to their
ease of implementation and mathematical tractability. These
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properties are due to the algebraic simplicity of linear maps
and also to the structured nature of the alphabets used. Fields
have the most algebraic constraints among alphabets used
for linear network coding, e.g. associativity, distributivity,
commutativity, invertibility. More generally, rings may lack
commutativity and/or invertibility, thus providing a broader
class of alphabets over which to achieve linear network
solvability. We demonstrated in Part I that relaxing only the
invertibility constraint (i.e. restricting to commutative rings)
can lead to linear network solvability that would not otherwise
be possible with fields of the same alphabet size.

In the present paper (Part II), we additionally relax the
commutativity constraint, and we study linear coding over
general ring alphabets and, even more generally, over modules.
Vector and scalar linear codes over rings and fields are
special cases of linear codes over modules. We focus on the
relationship between alphabet commutativity and the scalar
and vector linear solvability of networks, and we compare the
linear solvability of networks over different modules where
the alphabet size is the same.

A. Linear Codes Over Modules

A module is a generalization of a vector space, where the
scalars are from a ring, as opposed to a field, and the set of
vectors may be some other Abelian group. As an example, if R
is any ring and k is a positive integer, then the set of k-vectors
over R with component-wise addition forms an Abelian group,
and the ring R acts on this group by scalar multiplication in
a similar way to scalar multiplication in a vector space. In the
special case where R is a field, this module is, in fact, a vector
space.

Definition I.1: An R-module (specifically a left R-module)
is an Abelian group 1 (G,⊕) together with a ring 2 (R,+, ∗)
of scalars and an action

· : R × G → G

such that for all r, s ∈ R and all g, h ∈ G the following hold:

r · (g ⊕ h) = (r · g)⊕ (r · h)

(r + s) · g = (r · g)⊕ (s · g)

(r ∗ s) · g = r · (s · g)

1 · g = g.

1In this paper, we consider network codes over finite alphabets, so we
assume that all groups are finite, even when not explicitly stated.

2We also assume that all rings have a multiplicative identity, and in
Section IV-B, we briefly mention why we do not consider linear coding over
rings without identity.

0018-9448 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



CONNELLY AND ZEGER: LINEAR NETWORK CODING OVER RINGS – PART II: VECTOR CODES AND NON-COMMUTATIVE ALPHABETS 293

For brevity, we will sometimes refer to such an R-module as
R G or simply G. The size of a module will refer to |G|.

As an example, any Abelian group (G,⊕) is a Z-module
with action given by

n · g =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

g ⊕ · · · ⊕ g
︸ ︷︷ ︸

n adds

n > 0

(−n) · (−g) n < 0

0 n = 0.

In this case, the ring of the module is, in fact, infinite. Since
we study network codes over finite alphabets, we assume all
groups are finite, but in theory, the ring of a module need not
be finite.

For an R-module G and a positive integer k,

• Mk(R) will denote the ring of all k × k matrices with
entries in R, and

• Gk will denote the Abelian group of all k-dimensional
vectors with entries in G with vector addition.

Then Gk is an Mk(R)-module where the action is matrix-
vector multiplication with multiplication of elements of R
and elements of G given by the action of R G. The special
case where G is the additive group of R will be of particular
interest, since this corresponds to matrices over R acting on
vectors over R.

For basic network coding definitions, see Part I
[2, Sec. I-A]. We will use the same models as in Part I
for networks, alphabets, etc., except we now study the
generalized case of linear codes over modules, as opposed to
restricting to linear codes over rings. An edge function on
the out-edge of a network node is linear with respect to the
module R G if it can be written in the form

f (x1, . . . , xm) = (C1 · x1)⊕ · · · ⊕ (Cm · xm) (1)

where x1, . . . , xm ∈ G are the inputs of the node and
C1, . . . ,Cm ∈ R are constants. That is, the messages and edge
symbols are elements of the Abelian group G, and the linear
edge and decoding functions are determined by coefficients of
the ring R. A decoding function is linear with respect to R G
if it has a form analogous to (1), and a code is linear over
a module R G if all edge and decoding functions are linear
with respect to R G. The alphabet size in a linear code over a
module is the size of the module, i.e. |G|.

For any ring R, we denote its additive (Abelian) group by
(R,+). The special case of a module where the finite ring
R acts on its own additive group (R,+) by multiplication in
R is denoted by R R, and in this case, (1) is equivalent to
the definition of a scalar linear code over a ring that we used
in Part I.

A network is linearly solvable over a module RG if there
exists a linear solution over R G. We will focus on two special
types of linear codes:
(i) A scalar linear code over a ring R is a linear code over

the module R R. A network is scalar linearly solvable
over R if it has a linear solution over the module R R.

(ii) A k-dimensional vector linear code over a ring R is a
linear code over the module Mk (R)R

k . A network is vector

linearly solvable over R if it has a linear solution over
the module Mk(R)R

k , for some positive integer k.
When referring to a linear code or solution over a ring, we
will always specify (in this paper) scalar versus vector, or if
neither is specified, then we are referring to a linear code over
a module. Additionally, when referring to an R-module G, the
ring R is not assumed to be finite, unless otherwise specified.
However, when referring to a scalar or vector linear code over
a ring R, the ring R is assumed to be finite.

We can similarly define a right R-module and a linear code
over a right R-module. However, it can easily be shown that
any linear code over a right module is equivalent to a particular
linear code over a left module, so we restrict attention only to
left modules.

B. Our Contributions

Our main results are succinctly summarized in Section V,
where we also provide concluding remarks and list some
potentially interesting open questions. The remainder of the
paper is outlined as follows. In Section I-C, we prove lemmas
which are used in proofs later in the paper.

Section II analyzes the linear solvability of networks
over ring alphabets which are not necessarily commutative.
In Part I, we proved that whenever a network is scalar lin-
early solvable over some commutative ring, then the smallest
commutative ring over which the network is scalar linearly
solvable is a field (and thus the ring is unique) [2, Th. II.10].
Here, we prove (in Theorem II.5) that if a network is scalar
linearly solvable over some (not necessarily commutative)
ring, then a smallest such ring is a matrix ring over a field.
It remains unknown, however, whether there can be more than
one smallest (not necessarily commutative) ring over which a
network is linearly solvable, since in general, there can exist
multiple matrix rings over fields that are the same size. We
demonstrate (in Corollaries II.14 and III.8) that for two infinite
classes of networks studied in this paper, the smallest size ring
over which each network is linearly solvable is indeed unique.

We prove (in Theorem II.10) that if a network is linearly
solvable over some module, then a smallest such module (i.e.
with a smallest associated Abelian group) corresponds to a
vector linear solution over some finite field.3 We prove (in
Theorem II.13), in contrast to the commutative ring case, that
the minimum size module with respect to linear solvability is
not necessarily unique. Thus, for a fixed network, vector linear
codes over fields are “best” in a certain sense, as these codes
can minimize the alphabet size needed for a linear solution.

We also show (in Corollary II.15) that for all networks,
the following properties are equivalent: (i) vector linear solv-
ability over some field, (ii) scalar linear solvability over some
ring, and (iii) linear solvability over some module. Similarly,
we show (in Corollary II.16) that for all networks, the follow-
ing properties are equivalent: (a) scalar linear solvability over
some field, (b) scalar linear solvability over some commutative
ring, and (c) linear solvability over some module whose ring
is commutative.

3For example, in a k-dimensional vector linear code over a field F, the
alphabet size of the module is |F|k .
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In Section III, we present a family of networks that gen-
eralize the M Network of [8] and [16], and we enumerate
(in Theorem III.6) the particular vector dimensions over which
each of these networks has vector linear solutions. A similar
result was obtained by Das and Rai [5]. We prove (in Corol-
lary III.7) that these networks have scalar linear solutions
over certain non-commutative matrix rings yet do not have
scalar linear solutions over any commutative ring. We also
show (in Theorem III.10) that if a network is scalar linearly
solvable over a non-commutative ring R and is not scalar
linearly solvable over any commutative ring, then |R| ≥ 16.
This lower bound is shown to be achievable (in Corollary III.7
and Example III.9) by exhibiting a network which has a scalar
linear solution over a non-commutative ring of size 16 but not
over any commutative ring.

Section IV focuses on linear solvability of networks over
different modules with the same alphabet size, specifically,
k-dimensional vector codes over GF(p) and scalar codes over
rings of size pk . We prove (in Theorem IV.1) that for each
prime power pk , there exists a network with a linear solution
over a module of size pk but with no scalar linear solutions
over any ring of size pk . These particular networks have
k-dimensional vector linear solutions over GF(p). Using a
result of Sun et al. [18], we also show (in Corollary IV.3)
that there exists a class of multicast networks with similar
properties.

On the other hand, we show (in Theorem IV.6) that any net-
work with a scalar linear solution over a commutative ring of
size pk has a k-dimensional vector linear solution over GF(p).
We prove a similar result (in Theorem IV.17) for general
rings of size pk when k ≤ 6. In this sense, k-dimensional
vector linear codes over GF(p) are better than any scalar
linear code over a ring of size pk . Additionally, we show
(in Theorems IV.6 and IV.17) that these results generalize in
a natural way to rings of non-power-of-prime sizes.

C. Comparisons of Modules
If G is a Z-module, then as a consequence of Lagrange’s

theorem of finite groups,

(n|G|) · g = 0

for all g ∈ G and all n ∈ Z. In other words, there are multiple
elements of Z that act on G in the same way. Modules in
which every element of the ring acts on G in a different way
will be frequently discussed in this paper.

Definition I.2: An R-module G is faithful if for each r ∈
R\{0}, there exists g ∈ G such that r · g �= 0.
Equivalently, r · g = 0 for all g if and only if r = 0. For
any finite ring R and positive integer k, the Mk(R)-module
Rk is faithful, so vector and scalar linear codes over rings are
special cases of linear codes over faithful modules.

On the other hand, it can be verified that the ring Z6 of
integers mod 6, acts on the additive group (Z2,⊕) of integers
mod 2, where the action is multiplication modulo 2. For each
a = 0, 1, we have

0 = 2a = 4a mod 2

so the Z6-module (Z2,⊕) is not faithful.

For a fixed ring R, there are generally multiple modules
over R. For example, if R is a subring of S, then (S,+)
is an R-module where the action is multiplication in S, and
(R,+) is also an R-module where the action is multiplication
in R. The following lemma shows that the linear solvability
of a network over a faithful R-module is determined entirely
by the ring of scalars R and not by the module’s underlying
Abelian group.

However, we note that not every ring and group pair
can form a module. For example, the additive group of
GF(2) cannot be a GF(3)-module. If (GF(2),⊕) were a
GF(3)-module, then we would have

0 = 0 · 1 = (1 + 1 + 1) · 1

= (1 · 1)⊕ (1 · 1)⊕ (1 · 1) = 1 ⊕ 1 ⊕ 1 = 1

but 0 �= 1 in GF(2).
Lemma I.3: Let R be a fixed ring. If a network is linearly

solvable over some faithful R-module, then it is linearly
solvable over every R-module.

Proof: Let N be a network that is linearly solvable over
the faithful R-module (G,⊕). Any linear solution for N over
the R-module (G,⊕) is a linear solution for N over any other
R-module.

To see this, let z1, . . . , zm ∈ G denote the messages of N ,
and suppose a node in N has inputs x1, . . . , xn ∈ G in a
solution over RG, where, for each i = 1, . . . , n,

xi =
m⊕

j=1

(Bi, j · z j )

for some Bi,1, . . . , Bi,m ∈ R. Then for each output y ∈ G of
this node, there exist constants C1, . . . ,Cn ∈ R such that

y =
n⊕

i=1

(Ci · xi)

=
n⊕

i=1

m⊕

j=1

((Ci Bi, j ) · z j )

=
m⊕

j=1

((
n∑

i=1

Ci Bi, j

)

· z j

)

.

Now let H be any R-module with action 	, and suppose
the corresponding inputs to the node in the linear code over
R H are x ′

1, . . . , x ′
n ∈ H and can be written in terms of the

messages z′
1, . . . , z′

m ∈ H in the following way

x ′
i =

m⊕

j=1

(Bi, j 	 z′
j ).

Then the corresponding output y ′ ∈ R of the node is of the
form

y ′ =
n⊕

i=1

(Ci 	 x ′
i )

=
n⊕

i=1

m⊕

j=1

((Ci Bi, j )	 z′
j )

=
m⊕

j=1

((
n∑

i=1

Ci Bi, j

)

	 z′
j

)

.
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Fig. 1. The Fano Network is constructed from the Fano matroid [8].

so by induction, every edge and decoding function in the linear
code over R H is the same linear combination of the messages
as in the linear solution over R G.

G is a faithful R-module, so 1 and 0 are the only elements
of R such that 1 · g = g and 0 · g = 0 for all g ∈ G. Hence it
must be the case that decoding functions in the linear solution
over R G are of the form

(1 · zi )⊕
n⊕

j=1
j �=i

(0 · z j ) = zi .

so it must be the case that the corresponding decoding function
in the linear code over R H is

(1 	 z′
i )⊕

n⊕

j=1
j �=i

(0 	 z′
j ) = z′

i .

Hence, each receiver can linearly recover its demands, so the
linear code over R H is, in fact, a solution. �

In contrast to Lemma I.3, if G is both an R-module and
an S-module, then there may exist a network that is linearly
solvable over S G but not R G. For example, when

G = (GF(4),+), R = GF(2), and S = GF(4).

GF(2) is a subfield of GF(4), so G is both a faithful R-module
and a faithful S-module. We demonstrate (in Corollary II.14)
a network that is scalar linearly solvable over GF(4) but not
GF(2), and by Lemma I.3, this network is linearly solvable
over S G but not R G.

The Fano Network is given in Figure 1 and has been used to
show numerous interesting properties of network coding. The
following example illustrates the importance of the premise
in Lemma I.3 by demonstrating that the Fano Network has a

linear solution over an unfaithful Z6-module yet has no linear
solutions over another Z6-module.

Example I.4: The Fano Network has a linear solution
over the unfaithful Z6-module (Z2,⊕) but not the faithful
Z6-module (Z6,+).

Proof: It was shown in [7, Corollary 11] that the Fano
Network has solutions only over alphabets whose sizes are
powers of 2, so in particular, the Fano Network has no linear
solutions over the Z6-module (Z6,+), since the alphabet size
is 6 in this case.

Define a linear code for the Fano Network over the
Z6-module (Z2,⊕) as follows:

x = a ⊕ b

y = b ⊕ c

z = x ⊕ y

w = x ⊕ c.

Each of the scalars in Z6 is 1. Then, since g ⊕ g = 0 for all
g ∈ Z2, we have

z ⊕ a = c

z ⊕ w = b

w ⊕ y = a.

Thus each receiver is able to linearly recover its demands from
its inputs, so the code over the Z6-module (Z2,⊕) is a linear
solution. �

If we take the linear code given in Example I.4 to be over
the Z6-module (Z6,+), i.e., the same linear combinations of
inputs in a scalar linear code over Z6, then

x = a + b

y = b + c

z = x + y

and

z + a = 2a + 2b + c �= c

so clearly this code is not a solution when taken over the
Z6-module Z6, which agrees with the result from [7].

If R is any ring such that (Z2,⊕) is an R-module, then
the linear solution for the Fano Network in Example I.4 is a
linear solution over the R-module (Z2,⊕). For example, for
each positive integer n, (Z2,⊕) is a Z2n-module where the
action is multiplication modulo 2.

In fact, whenever n and m are positive integers, the ring
Znm acts on (Zm ,+) by multiplication modulo m. Such a
module is faithful when n = 1 and is unfaithful otherwise.
So if a network has a scalar linear solution over Znm ,
which is equivalent to a linear solution over the faithful
Znm -module (Znm ,+), then the network also has a linear
solution over the (possibly unfaithful) Znm -module (Zn,⊕).
Although, as demonstrated in Example I.4, the converse may
not be true.

While these trivial examples may not seem particularly
useful, Corollary I.5 demonstrates an important special case
of Lemma I.3 which will be used frequently in later proofs.
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It demonstrates an equivalence between scalar linear solutions
over matrix rings and vector linear solutions over rings.

Corollary I.5: Let R be a finite ring, k a positive integer,
and N a network. Then N is scalar linearly solvable over the
ring of k × k matrices whose elements are from R if and only
if N has a k-dimensional vector linear solution over R.

Proof: The “if” and the “only if” directions are each
obtained by separately applying Lemma I.3, since Mk(R) and
Rk are faithful Mk(R)-modules with matrix-matrix multipli-
cation and matrix-vector multiplication, respectively. �

Note that in a k-dimensional vector linear code over a ring
R, the alphabet size is |R|k , whereas in a scalar linear solution
over Mk(R), the alphabet size is |R|k2

. So any network that is
scalar linearly solvable over the matrix ring Mk(R) is also
linearly solvable over a smaller module alphabet. We will
generalize this idea in Theorem II.10.

As is common in mathematics literature, it will be assumed
throughout this paper that ring homomorphisms preserve both
additive and multiplicative identities.

Lemma I.6: If φ : R → S is a ring homomorphism and
network N is linearly solvable over some faithful R-module,
then N is linearly solvable over every S-module.

Proof: Let H be an S-module and define a mapping

	 : R × H → H

by r 	 h = φ(r) · h, where · is the action of S H . One can
verify that H is an R-module under 	. Now, let G be a faithful
R-module, and suppose N has a linear solution over R G. By
Lemma I.3, N is linearly solvable over R H , so every output
y ′ ∈ H in the solution over R H is of the form

y ′ = (C1 	 x1)⊕ · · · ⊕ (Cm 	 xm) (2)

where x1, . . . , xm ∈ H are the parent node’s inputs and
C1, . . . ,Cm ∈ R are constants.

Form a linear code for N over S H by replacing each
coefficient Ci in (2) by φ(Ci ). Let y ∈ H be the output in the
code over S H corresponding to y ′ in the code over R H . Then

y = (φ(C1) · x1)⊕ · · · ⊕ (φ(Cm) · xm)

= (C1 	 x1)⊕ · · · ⊕ (Cm 	 xm) = y ′.

By induction, whenever an edge function in the solution over
R H outputs the symbol y ′, the corresponding edge function in
the code over S H will output the same symbol y ′. Likewise,
whenever x is an input to an edge function in the solution
over R H , the corresponding input of the corresponding edge
function in the code over S H will be the same symbol x .
The same argument holds for the decoding functions in the
code over S H , so each receiver will correctly obtain its
corresponding demands in the code over S H . Hence, the code
over S H is a linear solution for N . �

Corollary I.7 was also shown in Part I as Lemma II.5.
However, Corollary I.7 can also be viewed as a special case
of Lemma I.6.

Corollary I.7: Let R and S be finite rings. If there exists a
ring homomorphism from R to S, then every network that is
scalar linearly solvable over R is also scalar linearly solvable
over S.

Proof: (R,+) is a faithful R-module for any finite ring
R, so this is a special case of Lemma I.6 where the modules
are R R and S S. �

For finite rings R and S, special cases of Corollary I.7
include:
(1) R is a subring of S:

The identity mapping is an injective homomorphism from
R to S, so any network that is scalar linearly solvable over
R is also scalar linearly solvable over S.

(2) R has a two-sided ideal I :
There is a surjective homomorphism from R to R/I
(see Lemma II.2), so any network that is scalar linearly
solvable over R is also scalar linearly solvable over R/I .

(3) φ : R × S → R is the projection mapping:
φ is a surjective homomorphism, so any network that is
scalar linearly solvable over R × S is also scalar linearly
solvable over R (and likewise over S).

Cases (1), (2), and (3) agree with Corollaries II.6 and II.9
and Lemma II.12, respectively, from Part I.

II. COMMUTATIVE AND NON-COMMUTATIVE RINGS

In this section, we will focus on linear codes over modules
whose ring acts on its own Abelian group, i.e. scalar linear
codes over rings. As noted after Corollary I.7, for any two-
sided ideal I of a finite ring R, every network that is scalar
linearly solvable over R is also scalar linearly solvable over
R/I , so in determining the smallest ring over which a network
is scalar linearly solvable, it is natural to focus attention on
rings without two-sided ideals.

A ring is simple if it has no proper two-sided ideals. That
is, its only two-sided ideals are the ring itself and the trivial
ideal {0}. The following lemmas give results related to simple
rings and network linear solvability.

Lemma II.1: A finite ring is simple if and only if it is
isomorphic to a matrix ring over a field.

Proof: This is a corollary of the Artin-
Wedderburn theorem (e.g. [14, p. 36, Th. 3.10 (4)] and
[15, p. 20, Th. II.9]). �

Lemma II.2 [9, Th. 7, p. 243]: If I is a two-sided ideal of
ring R, then the mapping φ : R → R/I given by φ(x) = x + I
is a surjective homomorphism.

Lemma II.3: For each finite ring R, there exists a simple
ring S such that the following hold:

(a) there exists a surjective homomorphism from R to S,
(b) every network that is scalar linearly solvable over R is

scalar linearly solvable over S, and
(c) |S| divides |R|.

Proof: If R is a simple ring, then each statement is trivially
true by taking S = R, so we may assume R is not a simple
ring. Thus, R has a proper maximal two-sided ideal I . Let
S = R/I , and note that since I is maximal, S is simple.
The mapping φ : R → R/I given by φ(x) = x + I is a
surjective homomorphism by Lemma II.2, which proves (a).
Hence by Corollary I.7, any network that is scalar linearly
solvable over R is also scalar linearly solvable over S, which
proves (b). Since R is finite, we know that |R/I | divides |R|,
which proves (c). �
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If R is a finite commutative ring and S is a simple
ring satisfying (a)-(c) in Lemma II.3, then S must also be
commutative, since there is a surjective homomorphism from
R to S. However, as we demonstrate in the following example,
if R is non-commutative, then such an S is not necessarily
non-commutative.

Example II.4: The following demonstrates: (i) a class
of non-commutative rings for which the simple ring in
Lemma II.3 is non-commutative, and (ii) a class of non-
commutative rings for which the simple ring in Lemma II.3
is commutative.
(i) For any positive integers k, n, and prime divisor p of n,

there exists a surjective homomorphism from the non-
commutative ring Mk(Zn) to the non-commutative simple
ring Mk(Zp), given by matrix-component-wise reduction
mod p.

(ii) For each field F and integer k ≥ 2, there exists a
surjective homomorphism from the non-commutative ring
of upper triangular k × k matrices with entries in F

to the commutative simple ring F (see the proof of
Lemma IV.10).

The following theorem demonstrates that any smallest ring
over which a network is scalar linearly solvable is simple.

Theorem II.5: If a network is scalar linearly solvable over
a ring R but not over any smaller ring, then R is a matrix
ring over a field.

Proof: Suppose a network N is scalar linearly solvable
over a ring R that is not simple. By Lemma II.3 (a) (b), there
exists a simple ring S and a surjective homomorphism φ :
R → S, such that N is scalar linearly solvable over S. Since
φ is surjective, |R| ≥ |S|, but since S is simple and R is
not, the two rings cannot be isomorphic, so |R| �= |S|, and
therefore |R| > |S|.

This proves that every smallest size ring over which N is
scalar linearly solvable must be simple, which implies that
such a ring is a matrix ring over a field by Lemma II.1. �

In Part I [2, Th. II.10], we showed that the smallest-size
commutative ring over which a network is scalar linearly
solvable is unique. However, there may exist multiple simple
rings of the same size. For example, GF(p4) and M2(GF(p))
are non-isomorphic simple rings of size p4. An interesting
open question is whether every network with a scalar linear
solution over multiple simple rings of the same size also must
have a scalar linear solution over some smaller simple ring.
I.e. is the smallest ring R in Theorem II.5 unique for a given
network?

We demonstrate (in Corollaries II.14 and III.8) that for
two infinite classes of networks (one of which is a class of
multicast networks) studied in this paper, the smallest-size ring
over which each network is scalar linearly solvable is unique.

A. Modules and Vector Linear Codes
In a linear network code over a module R G, in principle,

the ring R need not be finite (although representing linear
code coefficients might be problematic). However, in a linear
network code over a module, the alphabet is finite, so the
Abelian group G must be finite.4 The following lemma and

4We will call a module “finite” if and only if its Abelian group is finite.

corollary show that linear solutions over unfaithful mod-
ules (whose ring may be infinite) admit linear solutions over
faithful modules (whose ring is finite).

Lemma II.6: Let G be an R-module. There exists a finite
ring S such that G is a faithful S-module, and any network
that is linearly solvable over R G is linearly solvable over SG.

Proof: We use ideas from [6, p. 2750] here. Let

J = {r ∈ R : r · g = 0, ∀g ∈ G}
which is easily verified to be a two-sided ideal of R. Let
S = R/J . It can also be verified that G is an S-module with
action 	 : S × G → G given by

(r + J )	 g = r · g.

If (r + J ), (s + J ) ∈ S are such that

(r + J )	 g = (s + J )	 g

for all g ∈ G, then (r − s) · g = 0, which implies (r − s) ∈ J .
Hence (r + J ) = (s + J ), so the ring S acts faithfully on G.
A faithful module requires different elements of the ring to
yield different functions when acting on elements of the group.
Since G is finite, the number of such functions must be finite,
which implies the ring S must also be finite.

Suppose a network N is linearly solvable over R G. Every
output y ′ in the solution over R G is of the form

y ′ = (C1 · x1)⊕ · · · ⊕ (Cm · xm) (3)

where the xi ’s are the parent node’s inputs and the Ci ’s are
constants from R. Form a linear code over SG replacing each
coefficient Ci in (3) by (Ci + J ). Let y be the edge symbol
in the code over S G corresponding to y ′ in the code over R G.
Then

y = ((C1 + J )	 x1)⊕ · · · ⊕ ((Cm + J )	 xm)

= (C1 · x1)⊕ · · · ⊕ (Cm · xm) = y ′.

Thus, whenever an edge function in the solution over R G
outputs the symbol y ′, the corresponding edge function in
the code over SG will output the same symbol y ′. Likewise,
whenever x is an input to an edge function in the solution
over R G, the corresponding input of the corresponding edge
function in the code over S G will be the same symbol x .
The same argument holds for the decoding functions in the
code over S G, so each receiver will correctly obtain its
corresponding demands in the code over SG. Hence, the code
over S G is a linear solution for N . �

Corollary II.7: Let G be an R-module such that R is
commutative. There exists a finite commutative ring S such
that G is a faithful S-module, and any network that is linearly
solvable over R G is linearly solvable over S G.

Proof: This proof is identical to the proof of Lemma II.6.
However, since R is commutative, the ring S = R/J is also
commutative. �

A submodule of an R-module G is a subgroup H of G
such that H is closed when acted on by R. That is, both
H and G are R-modules and H ⊆ G. Submodules are of
particular interest, since by Lemma I.3, if G and H are faithful
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R-modules, then the set of networks that are linearly solvable
over R G and the set of networks that are linearly solvable
over R H are equal, yet a linear code over R H has a smaller
alphabet if H is a proper submodule of G.

As an example, let I be a two-sided ideal in the ring R.
Then (I,+) is a subgroup of (R,+) that is closed under
multiplication in R, so R I is a submodule of the R-module
R. As another example, for each finite field F and integer
k ≥ 2, the Mk(F)-module F

k is a proper submodule of the
Mk(F)-module Mk(F).

Lemmas II.8 and II.9 show results related to submodules
that will be used to prove Theorem II.10.

Lemma II.8 [14, Th. 3.3 (2), p. 31]: Let F be a finite field
and k a positive integer. Then F

k is the only Mk(F)-module
that has no proper submodules.

By Lemma I.3, for each ring R, if a network is linearly
solvable over a faithful R-module, then it is linearly solvable
over every R-module. When a network is solvable over
the R-modules for a particular ring R, it may be desirable
for linear network coding to determine the minimum-size
R-modules. Lemma II.9 considers this question for rings of
matrices over a finite field.

Lemma II.9: Let F be a finite field and k a positive
integer. If G is a finite non-zero Mk(F)-module, then |F|k
divides |G|.

Proof: Since G is finite and non-zero, G contains a
submodule with no proper submodules (possibly G itself). By
Lemma II.8, F

k is the only Mk(F)-module with no proper
submodules, so F

k is a submodule of G. Hence by Lagrange’s
theorem of finite groups (e.g. [9, p. 89, Th. 8]), |F|k divides
|G|. �

The following theorem is a generalization of Theorem II.5,
where we characterize smallest-size modules over which net-
works are linearly solvable. Theorem II.10 demonstrates that
if a network is linearly solvable over some module, then there
exists a vector linear code over a field that minimizes the
alphabet size needed for a linear solution.

Theorem II.10: Suppose a network N is linearly solvable
over an R-module G. Then the following hold:
(a) There exists a finite field F and positive integer k such

that N has a k-dimensional vector linear solution over
F and |F|k divides |G|.

(b) If R is commutative, then there exists a finite field F

such that N has a scalar linear solution over F and |F|
divides |G|.

Proof: If the ring R is infinite, then by Lemma II.6, N is
linearly solvable over some faithful module with a finite ring.
If R is commutative, then by Corollary II.7, N is linearly
solvable over some faithful module with a finite commutative
ring. So without loss of generality, assume R is finite and G
is a faithful R-module. By Lemmas II.1 and II.3 (a), since
R is finite, there exists a field F, a positive integer k, and a
surjective homomorphism φ : R → Mk(F). By Lemma I.6 any
network that is linearly solvable over the faithful R-module
G is also linearly solvable over every Mk(F)-module, so in
particular, N has a k-dimensional vector linear solution over F.
Since φ is a homomorphism, any R-module is also an Mk(F)-
module (see the proof of Lemma I.6). Thus, both G and F

k

Fig. 2. The n-Choose-Two Network is parameterized by an integer n ≥ 2.
The network’s name indicates the number of receivers.

are Mk(F)-modules, so by Lemma II.9, it must be the case
that |F|k divides |G|.

If R is commutative, then, since φ is a surjective homo-
morphism, Mk(F) must also be commutative, which implies
k = 1. Hence N has a scalar linear solution over F and |F|
divides |G|. �

Theorem II.10 demonstrates that, in some sense, vector
linear codes over finite fields are optimal for linear network
coding, as they can minimize the alphabet size needed for
a linear solution. In particular, if G is an R-module that
yields a minimum-size linear solution for a network N , then
Theorem II.10 implies there exists a field F and an integer
k such that N has a k-dimensional vector linear solution
over F and |F|k ∣∣ |G|. Since the linear code over R G yields
a minimum-size solution, we must have |G| = |F|k , so
the Mk(F)-module F

k also a yields a minimum-size linear
solution.

The following lemmas will be used to show (in Theo-
rem II.13) that a minimum-size module over which a network
is linearly solvable is not necessarily unique. Lemma II.11 is
a result of Sun et al. [18], and similar results have been shown
in, for example, [10].

Lemma II.11 [18, Proposition 1]: Let q be a prime power
and k a positive integer. If a network has a scalar linear
solution over GF(qk), then it has a k-dimensional vector linear
solution over GF(q).

For each integer n ≥ 3, the n-Choose-Two Network is a
multicast network given in Figure 2. These networks were
described by Rasala Lehman and Lehman [17] and were
further studied in our Part I.

Lemma II.12 [17, p. 144]: Let A be an alphabet and let
integer n ≥ 3.

(a) If the n-Choose-Two Network has a solution over A, then
|A| ≥ n − 1.

(b) Let A be a field. The n-Choose-Two Network is linearly
solvable over A if and only if |A| ≥ n − 1.

Theorem II.13: For each integer k ≥ 2 and prime p, the
(pk +1)-Choose-Two Network is linearly solvable over at least
two distinct modules of size pk but not over over any smaller
modules.

Proof: By Lemma II.12, the (pk + 1)-Choose-Two Net-
work is scalar linearly solvable over GF(pk) and is not
solvable over any alphabet whose size is less than pk . By
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Lemma II.11, any network with a scalar linear solution over
GF(pk) has a k-dimensional vector linear solution over GF(p).
Hence the (pk + 1)-Choose-Two Network has a scalar linear
solution over GF(pk) and a k-dimensional vector linear solu-
tion over GF(p), yet the network has no linear solution over
any module whose size is less than pk . �

The following corollary generalizes Theorem II.16 from
Part I, which showed the (pk + 1)-Choose-Two Network is
not scalar linearly solvable over any commutative ring of
size pk other than the field GF(pk). In fact, as a result of
Corollary II.14, the (pk+1)-Choose-Two Network is not scalar
linearly solvable over any ring of size pk other than the field.

Corollary II.14: For each integer k ≥ 2 and prime p, the
unique smallest-size ring over which the (pk +1)-Choose-Two
Network is scalar linearly solvable is GF(pk).

Proof: By Lemma II.12, the (pk + 1)-Choose-Two Net-
work is scalar linearly solvable over GF(pk) and is not
solvable over any smaller alphabet.

Suppose the (pk + 1)-Choose-Two Network is
scalar linearly solvable over a ring R of size pk . By
Lemmas II.1 and II.3 (a) (b), there exists a field F, a positive
integer n, and a surjective homomorphism

φ : R → Mn(F)

such that the (pk + 1)-Choose-Two Network is scalar linearly
solvable over the ring Mn(F). Since φ is surjective,

|R| = pk ≥ |F|n2
.

By Corollary I.5, the (pk + 1)-Choose-Two Network has
an n-dimensional vector linear solution over F, so by
Lemma II.12 (a), |F|n ≥ pk = |R|. Hence

|F|n ≥ |R| ≥ |F|n2

which implies n = 1 and |F| = |R| = pk . Since φ : R → F

is a surjective homomorphism and we have R ∼= F, and since
|R| = pk , we have R ∼= GF(pk). �

The following corollaries summarize our results on the
linear solvability of networks using scalar and linear vector
codes over fields, scalar linear codes over rings, and linear
codes over modules. Corollary II.15 shows an equivalence
between vector linear solvability over fields and linear solv-
ability over rings and modules, while Corollary II.16 shows
an equivalence between scalar linear solvability over fields and
linear solvability over commutative rings and modules.

Corollary II.15: For any network N , the following three
statements are equivalent:

(i) N is vector linearly solvable over some finite field.
(ii) N is scalar linearly solvable over some ring.

(iii) N is linearly solvable over some module.

Proof: If a network has a k-dimensional vector linear
solution over some field F, then by Corollary I.5 it has a scalar
linear solution over the ring Mk(F), hence (i) implies (ii).
A scalar linear code over a ring is a special case of a linear
code over a module, so (ii) implies (iii). By Theorem II.10
(a), (iii) implies (i). �

Corollary II.16: For any network N , the following three
statements are equivalent:

Fig. 3. The Dim-k Network. For each i = 1, . . . , k, the node ai is a source
node that generates messages x(1)i , . . . , x(k)i , and ai has k − 1 parallel out-
edges to node bi and one out-edge to node Z . For each j = 1, . . . , kk , the
receiver R j has k −1 parallel in-edges from each of the nodes b1, . . . , bk and
a single in-edge from node Z . Each receiver demands a single message from
each source node and each set of k messages demanded by each receiver is
unique; that is, for any i1, . . . , ik ∈ {1, . . . , k}, there is exactly one receiver
which demands x(i1)1 , . . . , x

(ik )
k .

(i) N is scalar linearly solvable over some finite field.
(ii) N is scalar linearly solvable over some commutative

ring.
(iii) N is linearly solvable over some module whose ring is

commutative.

Proof: A scalar linear code over a finite field is a
special case of a scalar linear code over a commutative ring,
hence (i) implies (ii). A scalar linear code over a commutative
ring is a special case of a linear code over a module where the
ring is commutative, so (ii) implies (iii). By Theorem II.10 (b),
(iii) implies (i). �

III. THE DIM-k NETWORK

For each integer k ≥ 2, the Dim-k Network is defined
in Figure 3 and is referred to as such because it has vector
linear solutions precisely over vector dimensions that are
multiples of k. We prove this fact in Theorem III.6. This
infinite family of networks will be used to demonstrate several
theorems related to commutative and non-commutative rings.
The special case of k = 2 corresponds to the M Network
of [16], shown later in Figure 4.

Das and Rai [5] presented a class of networks, called
the Generalized M Networks, which are similar to the Dim-
k Networks. They independently proved a result analogous
to Theorem III.6, using a more general approach involving
matroid theory. We include our proof of Theorem III.6 for
completeness.

Remark III.1: The Dim-k Network has kk + 2k + 1 nodes
and kk (k2 − k + 1)+ k2 edges.

A k-dimensional vector routing code over an alphabet A is
a code in which messages and edge symbols are elements of
Ak and edge and decoding functions copy certain input vector
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Fig. 4. The M Network has a non-commutative scalar linear solu-
tion. The messages W, X,Y, Z take values in M2(GF(2)). The variables
A, B,C, D, E, F,G, H also take values in M2(GF(2)) and represent the
symbols carried on the 8 indicated edges.

components to certain output vector components. A vector
routing code over A is, in fact, a special case of a vector
linear code over A where each row of each of the matrices
C1, . . . ,Cm in (1) is either all zero or else has 1 one and
k − 1 zeros, and for each i ≤ k, at most one of the matrices
C1, . . . ,Cm has a non-zero i th row.

Lemma III.2: For each integer k ≥ 2 and alphabet A, the
Dim-k Network has an k-dimensional vector routing solution
over A.

Proof: Each message and edge symbol is an element
of Ak . Let [x]i denote the i th component of x ∈ Ak . Define
a k-dimensional routing code over A by

[
w
( j )
i

]

l
=
[
x (l)i

]

j
(i, j, l = 1, . . . , k).

That is, the lth component of the j th out-edge of the i th source
node carries the j th component of the lth message originating
at the i th source node.

For each i = 1, . . . , k and each j = 1, . . . , kk , let the
set of (k − 1) parallel edges from node bi to receiver R j

carry the symbols w(1)i , . . . , w
(k−1)
i . Then each receiver gets

the first (k − 1) components of every message from the edges
originating at b1, . . . , bk , so in particular, each receiver can
recover the first (k − 1) components of each of the messages
it demands.

Node Z receives the kth component of each message, so
each of its out-edges can carry any k of these components.
Let j ∈ {1, . . . , kk}, suppose x (i1)1 , . . . , x (ik )k are the messages
receiver R j demands, and let

[
u j
]

l =
[
w
(k)
l

]

il
=
[
x (il )l

]

k
(l = 1, . . . , k).

Then R j can recover the kth component of each of the
messages it demands. Since j was chosen arbitrarily, the code
is an k-dimensional vector routing solution. �

The following lemmas will be used in later proofs, and
similar results have been noted in other works, such as
[18, Proposition 5] and [10, Example VI.2].

Lemma III.3: Let R be a finite ring and let k1, . . . , kt

be positive integers. If a network has k1, . . . , kt -dimensional
vector linear solutions over R, then the network has a (k1 +
· · · + kt )-dimensional vector linear solution over R.

Proof: Assume a network has a ki -dimensional vec-
tor linear solution over R for each i = 1, . . . , t . In the
ki -dimensional vector linear solution over R, every edge
function is of the form

y(i) = C(i)
1 x (i)1 + · · · + C(i)

m x (i)m

where x (i)j ∈ Rki are the inputs to the node and C(i)
j are

ki × ki matrices over R. For any such edge function, define
a (k1 + · · · + kt )-dimensional vector linear edge function over
R by letting

⎡

⎢
⎣

y(1)

...

y(t)

⎤

⎥
⎦ =

m∑

j=1

⎡

⎢
⎢
⎣

C(1)
j 0

. . .

0 C(t)
j

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x (1)j
...

x (t)j

⎤

⎥
⎥
⎦ .

It is straightforward to see this provides a vector linear solution
for the network. �

Let X and Y be collections of discrete random variables over
an alphabet A, and let pX be the probability mass function
of X . We denote the (base |A|) entropy of X as

H (X) = −
∑

u

pX (u) log|A| pX (u)

and the conditional entropy of X given Y as

H (X |Y ) = H (X,Y )− H (Y ).

The proof of Theorem III.6 will make use of Lem-
mas III.4 and III.5 and the following basic information
inequalities:

H (X |Y ) ≤ H (X) (4)

≤ H (X,Y ) (5)

≤ H (X)+ H (Y ). (6)

Lemma III.4: Let X,Y1, . . . ,Yk be collections of discrete
random variables. Then

k∑

i=1

H (X,Yi ) ≥ (k − 1)H (X)+ H (X,Y1, . . . ,Yk) .

Proof:

k∑

i=1

H (X,Yi ) = k H (X)+
k∑

i=1

H (Yi |X)

≥ k H (X)+ H (Y1|X)

+
k∑

i=2

H (Yi |X,Y1, . . . ,Yi−1)

= (k − 1)H (X)+ H (X,Y1, . . . ,Yk)

where the inequality follows from (4). �
Lemma III.5 [8, Lemma V.9]: Let L : F

m → F
n be a linear

map, and let x be a uniformly distributed random variable on
F

m. Then L(x) is uniformly distributed on the range of L, and
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the base |F| entropy of L(x) is H (L(x)) = dim (range (L(x)) ·
log |F|.

Theorem III.6: For each integer k ≥ 2 and each field F, the
Dim-k Network has an n-dimensional vector linear solution
over F if and only if k

∣
∣ n.

Proof: Suppose k
∣
∣ n. Then n = kt for some integer t ≥

1. By Lemma III.2, the Dim-k Network has a k-dimensional
vector linear solution over F, so by taking k1 = · · · = kt = k in
Lemma III.3, the Dim-k Network has an n = kt-dimensional
vector linear solution over F.

Conversely, suppose that the Dim-k Network has an
n-dimensional vector linear solution over field F. Then all
messages x ( j )

i and edge symbols w( j )
i are n-vectors over F.

For convenience of notation, let

xi = x (1)i , . . . , x (k)i

wi = w
(1)
i , . . . , w

(k−1)
i .

A linear solution must hold for any values the messages take
on, so by viewing the message components as independent
uniform random variables over F and considering the entropy
using logarithms base |F|, we have

H (x1, . . . , xk)=
k∑

i, j=1

H
(

x ( j )
i

)
. (7)

For each i = 1, . . . , k, the edge symbols w(1)i , . . . , w
(k−1)
i are

linear functions of x (1)i , . . . , x (k)i , so

H (wi | xi) = 0. (8)

The receiver R1 demands the messages x (1)1 , . . . , x (1)k and
recovers its demands from its in-edges, so

H
(

x (1)1 , . . . , x (1)k | w1, . . . ,wk, u1

)
= 0. (9)

For each i, j ∈ {1, . . . , k}, the edge symbol w( j )
i is a linear

function of only x (1)i , . . . , x (k)i , and the network’s messages
are jointly independent, which implies

k∑

i=1

H
(

wi, x (1)i

)

= H
(

x (1)1 , . . . , x (1)k ,w1, . . . ,wk

)
[from ind.]

≤ H
(

u1, x (1)1 , . . . , x (1)k ,w1, . . . ,wk

)
[from (5)]

= H (u1,w1, . . . ,wk) [from (9)]

≤ H (u1)+
k∑

i=1

k−1∑

j=1

H
(
w
( j )
i

)
[from (6)]

≤ n (1 + k (k − 1)).

By a similar argument, for any i1, . . . , ik ∈ {1, . . . , k}, there
exists a receiver which demands the messages x (i1)1 , . . . , x (ik )k ,
so

k∑

j=1

H
(

wj, x
(i j )
j

)
≤ n (k2 − k + 1). (10)

Since
{

w1, w
(k)
1 , . . . ,wk, w

(k)
k

}

is a cut-set for each receiver, we have

H
(

x1, . . . , xk | w1, w
(k)
1 , . . . ,wk, w

(k)
k

)
= 0. (11)

Therefore,

nk2 = H (x1, . . . , xk) [from (7)]

≤ H
(

x1, . . . , xk,w1, w
(k)
1 , . . . ,wk, w

(k)
k

)
[from (5)]

= H
(

w1, w
(k)
1 , . . . ,wk, w

(k)
k

)
[from (11)]

≤
k∑

i=1

k∑

j=1

H
(
w
( j )
i

)
[from (6)]

≤ nk2 (12)

which implies

k∑

i=1

k∑

j=1

H
(
w
( j )
i

)
= nk2.

But, since H
(
w
( j )
i

)
≤ n, we get

H
(
w
( j )
i

)
= n (i, j = 1, . . . , k).

This implies the bounds in (12) are tight, so

H
(
w
(1)
1 , . . . , w

(k)
1 , . . . , w

(1)
k , . . . , w

(k)
k

)
=

k∑

i=1

k∑

j=1

H
(
w
( j )
i

)

which implies w(1)1 , . . . , w
(k)
1 , . . . , w

(1)
k , . . . , w

(k)
k are indepen-

dent. Thus,

H (wi) = n(k − 1) (i = 1, . . . , k). (13)

For each j = 1, . . . , k, we have

k∑

i=1

H
(

wj, x (i)j

)

≥ (k − 1)H
(
wj
)+ H

(
wj, xj

)
[from Lemma III.4]

= n(k − 1)(k − 1)+ H
(
xj
)

[from (8), (13)]

= n(k2 − k + 1) [from (7)] . (14)

By fixing i1 = 1 and summing over all i2, . . . , ik in (10),
we have

kk−1 n (k2 − k + 1)

(a)≥
k∑

i2,...,ik =1

(

H
(

w1, x (1)1

)
+

k∑

j=2

H
(

wj, x
(i j )

j

))

= kk−1 H
(

w1, x (1)1

)
+ kk−2

k∑

j=2

k∑

i=1

H
(

wj, x (i)j

)

(b)≥ kk−1 H
(

w1, x (1)1

)
+ kk−2

k∑

j=2

n (k2 − k + 1)

= kk−1 H
(

w1, x (1)1

)
+ kk−2 n (k − 1)(k2 − k + 1)
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where (a) and (b) follow from (10) and (14), respectively.
Solving for H (w1, x (1)1 ) in the previous equation yields

H
(

w1, x (1)1

)
≤ n

(
k2 − k + 1

k

)

.

Similarly, for each i, j = 1, . . . , k, we have

H
(

wi, x ( j )
i

)
≤ n

(
k2 − k + 1

k

)

. (15)

However, for each i = 1, . . . , k we also have

n (k2 − k + 1) ≤
k∑

j=1

H
(

wi, x ( j )
i

)
[from (14)]

≤
k∑

j=1

n

(
k2 − k + 1

k

)

[from (15)]

= n (k2 − k + 1)

and so for each i, j = 1, . . . , k,

H
(

wi, x ( j )
i

)
= n

(
k2 − k + 1

k

)

.

The variables w
(1)
i , . . . , w

(k−1)
i , x ( j )

i are linear functions
of the uniformly distributed messages, so by Lemma III.5,
H (wi, x ( j )

i ) (with logarithms in base |F|) is an integer. How-
ever,

gcd
(

k, k2 − k + 1
)

= gcd
(

k, (k2 − k + 1)− k(k − 1)
)

= gcd(k, 1) = 1

so if n
(

k2−k+1
k

)
is an integer, then we must have k

∣
∣ n. �

A. Insufficiency of Commutative Rings

The following corollary demonstrates it is possible for a
network to be scalar linearly solvable over a non-commutative
ring but not over any commutative rings, which is, in fact,
equivalent to a network being vector linearly solvable over
some field but not scalar linearly solvable over any field, by
Corollaries II.15 and II.16. This fact agrees with the result of
Médard et al. [16], which demonstrate the M Network is vector
linearly solvable over fields but not scalar linearly solvable
over any field.

Corollary III.7: For all integers k ≥ 2, n ≥ 1, and prime p,
the Dim-k Network has a scalar linear solution over a non-
commutative ring of size pnk2

but has no scalar linear solution
over any commutative ring.

Proof: If the Dim-k Network were scalar linearly solvable
over a commutative ring, then by Corollary II.16, the Dim-
k Network would also be scalar linearly solvable over some
finite field. However, by Theorem III.6, the Dim-k Network is
not scalar linearly solvable over any finite field.

By Theorem III.6, the Dim-k Network has a k-dimensional
vector linear solution over GF(pn), so by Corollary I.5
the Dim-k Network has a linear solution over the ring
Mk(GF(pn)). �

Corollary III.8: For each integer k ≥ 2, the unique smallest-
size ring over which the Dim-k Network is scalar linearly
solvable is the ring of all k × k matrices over GF(2).

Proof: By taking p = 2 in Corollary III.7, the Dim-k
Network has a linear solution over the ring Mk(GF(2)).

Suppose the Dim-k Network is scalar linearly solvable over
a ring R such that |R| ≤ 2k2

. By Lemmas II.1 and II.3 (a)
(b) there exists a field F, a positive integer n, and a surjective
homomorphism φ : R → Mn(F) such that the Dim-k Network
is scalar linearly solvable over Mn(F). By Corollary I.5, this
implies the Dim-k Network has an n-dimensional vector linear
solution over F, which by Theorem III.6, implies k divides n.
Since φ is surjective, |Mn(F)| ≤ |R|. Hence we have

2k2 ≤ 2n2 ≤ |F|n2 = |Mn(F)| ≤ |R| ≤ 2k2
.

Therefore n = k and F = GF(2). Since |R| = |Mn(F)| and φ
is a surjective homomorphism, we have R ∼= Mk (GF(2)). �

It is interesting to note that, while the smallest-size ring
over which the Dim-k Network is scalar linearly solvable
has size 2k2

, the Dim-k Network also has a k-dimensional
vector linear solution over GF(2), which has alphabet size 2k .
This demonstrates that linear codes over modules can require
smaller alphabet sizes than scalar linear codes over rings. This
also agrees with Theorem II.10, which showed that vector
linear codes over fields minimize the alphabet size needed
for a linear solution.

Example III.9: Setting n = 1 and p = k = 2 in Corol-
lary III.7 results in the M Network (see Figure 4) having no
scalar linear solution over any commutative ring but having a
scalar linear solution over a non-commutative ring of size
16. The non-commutative ring M2(GF(2)) consists of all
2 × 2 binary matrices under ordinary matrix addition and
multiplication mod 2. Denote the 16 ring elements by:

Rqrst =
[

q r
s t

]

(q, r, s, t ∈ {0, 1}).

A scalar linear solution for the M Network over
the non-commutative ring M2(GF(2)) (i.e. where
A, B,C, D, E, F,G, H,W, X,Y, Z ∈ M2(GF(2))) is
given by:

Edge (1,3) : A = R1000W + R0010 X

Edge (1,4) : B = R0100W + R0001X

Edge (2,4) : C = R0100Y + R0001Z

Edge (2,5) : D = R1000Y + R0010 Z

Edge (4,6) : E = R1000 B + R0010C

Edge (4,7) : F = R1000 B + R0001C

Edge (4,8) : G = R0100 B + R0010C

Edge (4,9) : H = R0100 B + R0001C

Decode at node 6 : W = R1000 A + R0010 E + R0000 D

Y = R0000 A + R0001 E + R1000D

Decode at node 7 : W = R1000 A + R0010 F + R0000 D

Z = R0000 A + R0001 F + R0100 D

Decode at node 8 : X = R0100 A + R0010G + R0000 D

Y = R0000 A + R0001G + R1000D

Decode at node 9 : X = R0100 A + R0010 H + R0000 D

Z = R0000 A + R0001 H + R0100 D
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where the out-edges of nodes with a single in-edge each carry
the symbol on the in-edge, that is, each receiver directly
receives the edge symbols A and D from the nodes 3 and 5,
respectively.

We also note that if the messages and edge symbols of the
M Network are 2-dimensional vectors over GF(2), instead
of 2 × 2 binary matrices, then a small modification of the
linear code described above provides the 2-dimensional vector
linear solution over GF(2) given in [16]. This agrees with
Corollary I.5.

The bound in the following theorem is tight via Exam-
ple III.9.

Theorem III.10: If a network is scalar linearly solvable over
some non-commutative ring R, but not over any commutative
rings, then |R| ≥ 16.

Proof: Suppose network N is scalar linearly solvable over
some non-commutative ring R but not over any commutative
ring. By Theorem II.5, there exists a positive integer k and a
field F such that N has a scalar linear solution over Mk(F)
and |R| ≥ |Mk(F)|. If k = 1, then N is scalar linearly solvable
over a field, which contradicts the assumption that N is not
scalar linearly solvable over any commutative ring. So k ≥ 2,
which implies |R| ≥ |Mk(F)| = |F|k2 ≥ |F|4 ≥ 24 = 16. �

Suppose R is a non-commutative ring of size pn , for some
prime p. It also follows from the proof of Theorem III.10
that if a network N is scalar linearly solvable over R, but not
over any commutative ring, then n ≥ 4. In fact, we later show
in (Theorem IV.15) that whenever n ≤ 3, any network with a
scalar linear solution over some ring of size pn must also have
a scalar linear solution over the field GF(pn), which agrees
with Theorem III.10.

IV. MODULES OF THE SAME SIZE

In Part I, we compared the linear solvability of networks
over different commutative rings of the same size, and we
showed that in some cases, commutative rings of size pk can
attain scalar linear solutions when the field of size pk cannot.
In this section, we compare the linear solvability of networks
over different modules of the same size. We particularly focus
on comparing scalar linear codes over rings of size pk and
k-dimensional vector linear codes over GF(p). The following
theorem shows that a network can have a linear solution over
a module of size pk yet have no scalar linear solutions over
any ring of size pk

Theorem IV.1: For each integer k ≥ 2 and prime p, the
Dim-k Network has a k-dimensional vector linear solution
over the field GF(p) but is not scalar linearly solvable over
any ring of size pk.

Proof: By Theorem III.6, the Dim-k Network has a
k-dimensional vector linear solution over GF(p). Let R be
a ring of size pk and suppose the Dim-k Network has a scalar
linear solution over R. By Lemmas II.1 and II.3 (b) (c), there
exists a field F and a positive integer n such that any network
that is scalar linearly solvable over R is also scalar linearly
solvable over Mn(F) and |F|n2

divides pk . Hence F is a field
of characteristic p and n2 ≤ k.

Since the Dim-k Network is scalar linearly solvable over
R, the Dim-k Network is scalar linearly solvable over the

ring Mn(F). By Corollary I.5, this implies the Dim-k Network
has an n-dimensional vector linear solution over F, which by
Theorem III.6 implies k

∣
∣ n. However, this contradicts the fact

that n2 ≤ k. Thus, no such ring R exists. �
While the Dim-k Network is a non-multicast network, we

note that a similar result can occur for multicast networks as
well. The following result was shown by Sun et al. [18].

Lemma IV.2 [18, Th. 4 and Corollary 11]: For each integer
k ≥ 2 and prime p, there exists a multicast network with

(a) a k-dimensional vector linear solution over GF(p),
(b) no scalar linear solutions over any GF(q) with q ≤ pk,

and
(c) no n-dimensional vector linear solutions over any GF(q)

with qn < pk.

We thank the anonymous reviewer for a helpful suggestion,
which led to the following corollary.

Corollary IV.3: For each integer k ≥ 2 and prime p, there
exists a multicast network that has a k-dimensional vector
linear solution over GF(p) but is not scalar linearly solvable
over any ring of size pk.

Proof: Let N denote the network constructed by
Sun et al. [18] in Lemma IV.2 corresponding to p and k. Such
a network has a k-dimensional vector linear solution over
GF(p).

Since N is vector linearly solvable, by Corollary II.15, it
must be scalar linearly solvable over some ring. Now suppose
R is a minimum-size ring over which N is scalar linearly
solvable. By Theorem II.5, there exists a prime-power q and
an integer n such that R ∼= Mn(GF(q)). By Corollary I.5,
N has an n-dimensional vector linear solution over GF(q),
but by Lemma IV.2 (c), this implies qn ≥ pk .

If n ≥ 2, then |R| = qn2
> qn ≥ pk . If n = 1, then N has a

scalar linear solution over GF(q), which, by Lemma IV.2 (b),
implies pk < q = |R|. Thus the minimum size ring over which
N is scalar linearly solvable has cardinality greater than pk ,
so in particular, N is not scalar linearly solvable over any ring
of size pk . �

A. Commutative Rings

Both a scalar linear code over a ring of size pk and
a k-dimensional vector linear code are linear codes over a
module of size pk . We have already seen (in Theorem IV.1)
that there exists a network with a k-dimensional vector linear
solution over GF(p) yet with no scalar linear solutions over
any ring of size pk . The main result of this section (Theo-
rem IV.6) will show that any network that is scalar linearly
solvable over a commutative ring of size pk must also have a
k-dimensional vector linear solution over GF(p).

The following lemma was proved in Part I (in [2, Lem-
mas II.12 and V.3]) and will be used in what follows.

Lemma IV.4: For each prime p and positive integer k, if a
network N has a scalar linear solution over some commu-
tative ring of size pk, then there exists an integer partition
(n1, . . . , nr ) of k such that N is scalar linearly solvable over
each of the fields GF(pn1), . . . ,GF(pnr ).

The following standard result on rings will be used in later
proofs.
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Lemma IV.5 [15, Th. I.1]: Every finite ring is isomorphic
to a direct product of rings of prime power sizes.

Theorem IV.6: Let m be a positive integer with prime fac-
torization m = pk1

1 · · · pkt
t . If a network N has a scalar

linear solution over some commutative ring of size m, then
the following hold:

(a) For each i = 1, . . . , t , network N has a ki -dimensional
vector linear solution over GF(pi ).

(b) Network N has a linear solution over the
Mk1 (GF(p1))× · · · × Mkt (GF(pt ))-module
GF(p1)

k1 × · · · × GF(pt )
kt .

Proof: Suppose N is scalar linearly solvable over a
commutative ring R of size m. By Lemma IV.5, there exist
rings R1, . . . , Rt such that

R ∼= R1 × · · · × Rt

and |Ri | = pki
i for all i .

Let i ∈ {1, . . . , t}. Since the projection mapping from
R to Ri is a surjective homomorphism, by Corollary I.7,
network N is scalar linearly solvable over Ri . Then by
Lemma IV.4, there exists an integer partition (n1, . . . , nr ) of ki

such that N is scalar linearly solvable over each of the fields
GF(pn1

i ), . . . ,GF(pnr
i ). By Lemma II.11, this implies that N

has an n j -dimensional vector linear solution over GF(pi) for
each j = 1, . . . , r . However, by Lemma III.3, this then implies
that N has a ki = (n1 + · · · + nr )-dimensional vector linear
solution over GF(pi ).

Hence, for all i ∈ {1, . . . , t}, a Cartesian product code
formed from the ki -dimensional vector linear solutions over
GF(pi) gives a linear solution to N over the described
module. �

In Part I, we showed (in [2, Ths. V.8 and V.9]) that with
respect to ring domination for scalar linear coding, some
ring sizes give rise to multiple maximal commutative rings
whereas other ring sizes yield only a single unique maximal
commutative ring. If there is just one maximal commutative
ring of size m, then every network that is linearly solvable over
some commutative ring of size m is also linearly solvable over
the maximal ring.

In contrast, if there are multiple maximal commutative rings
of size m, then for any commutative ring R of size m, there
is always a different commutative ring S also of size m, such
that some network is scalar linearly solvable over S but not
over R. Thus, in this sense, there is no “best” commutative
ring of a given size.

However, by Theorem IV.6 (b), if a network has a linear
solution over some commutative ring of size m = pk1

1 · · · pkt
t ,

then it has a linear solution over the

Mk1 (GF(p1))× · · · × Mkt (GF(pt ))-module

GF(p1)
k1 × · · · × GF(pt)

kt , which also has size m. In fact,
we showed (in Theorem IV.1) that when m = pk , the converse
is not true. So in this sense, k-dimensional vector linear codes
over GF(p) are strictly “better” than scalar linear codes over
commutative rings of size pk .

Fig. 5. A trivial network with one message x that is demanded by the
receiver.

B. Non-Commutative Rings

This section generalizes the results of Theorem IV.6 to (not
necessarily commutative) rings of size m with prime factor
multiplicity less than or equal to 6. In order to do so, we first
will prove some intermediate results and consider special
cases.

The following lemma was proved in Part I (in [2, Th. V.9])
and will be used in what follows.

Lemma IV.7: For each k ∈ {1, 2, 3, 4, 6} and prime p,
if a network is scalar linearly solvable over some commu-
tative ring of size pk, then it is scalar linearly solvable
over GF(pk).

Lemma IV.8 characterizes the non-commutative rings of
prime-power size whose multiplicity is at most three.

Lemma IV.8 [11, pp. 512–513]: For each prime p, all rings
of size p and of size p2 are commutative, and the ring of all
upper-triangular 2 × 2 matrices over GF(p) is the only non-
commutative ring of size p3.

We remark that there exist rings of size p and p2 without
identity. For example, the set {0, 2, 4, 6} with mod 8 addition
and multiplication satisfies all of the properties of a ring except
there is no multiplicative identity. However, such rings (some-
times called “rngs”) do not appear to be practical for linear
network coding, as receivers must recover their demands from
linear combinations of their inputs.

For example, consider the trivial network shown in Figure 5
consisting of a single message x emitted by a source directly
connected by a single edge to a receiver demanding message
x . The only possible linear functions that can be carried on
the edge are of the form cx for some fixed c ∈ {0, 2, 4, 6}.
However, no matter what the choice of c is, the messages
0 and 4 always get received as 0 mod 8, so the receiver
cannot uniquely determine x in general. Thus, there is no linear
solution for the network over this ring (with no multiplicative
identity). A similar issue arises for the set {0, 2} with mod
4 addition and multiplication, which also satisfies all of the
properties of a ring except there is no multiplicative identity.

Lemma IV.9: For each prime p, if a network is scalar
linearly solvable over some ring of size p2, then it is a scalar
linearly solvable over GF(p2).

Proof: By Lemma IV.8, every ring of size p2 is commuta-
tive, and by Lemma IV.7, every network that is scalar linearly
solvable over some commutative ring of size p2 has a scalar
linear solution over GF(p2). �

By Lemma IV.8, all rings of size 2, 3, 4, 5, or 7 are
commutative, and by Lemma IV.5, any ring of size 6 is a direct
product of rings of size 2 and 3, so any ring of size 6 must also
be commutative. Hence, the smallest non-commutative ring is
the ring of the 8 binary upper-triangular 2 × 2 matrices. As a
special case of the following lemma, any network that is scalar
linearly solvable over this ring must also have a scalar linear
solution over GF(2).
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Lemma IV.10: For each finite field F and integer k ≥ 2,
any network that is scalar linearly solvable over the ring of
upper-triangular k × k matrices over F is also scalar linearly
solvable over F.

Proof: Let R be the ring of upper-triangular k×k matrices
with entries in F and let φ : R → F be given by

φ

⎛

⎜
⎝

⎡

⎢
⎣

a1,1 · · · a1,k
. . .

...

0 ak,k

⎤

⎥
⎦

⎞

⎟
⎠ = a1,1.

Then φ is clearly surjective and preserves identities, and for
any A, B ∈ R,

φ(A + B) = a1,1 + b1,1 = φ(A)+ φ(B)

φ(AB) = a1,1 b1,1 = φ(A)φ(B).

Thus φ is a surjective homomorphism, so by Corollary I.7,
any network that is scalar linearly solvable over R is scalar
linearly solvable over F. �

Lemma IV.11: For each prime p, if a network is scalar
linearly solvable over some ring of size p3, then it is scalar
linearly solvable over GF(p3).

Proof: By Lemma IV.8, the only non-commutative ring
of size p3 is the ring of upper triangular matrices with entries
in GF(p), and by Lemma IV.10, any network that is scalar
linearly solvable over this ring is also scalar linearly solvable
over GF(p). Since GF(p) is a subring of GF(p3), any network
that is scalar linearly solvable over GF(p) is scalar linearly
solvable over GF(p3).

By Lemma IV.7, every network that is scalar linearly
solvable over some commutative ring of size p3 has a scalar
linear solution over GF(p3). �

The following three lemmas are proved in the Appendix.
Lemma IV.12: For each prime p, if a network is scalar

linearly solvable over some ring of size p4, then it is
scalar linearly solvable over at least one of the rings
GF(p4) or M2(GF(p)).

Lemma IV.13: For each prime p, if a network is scalar
linearly solvable over some ring of size p5, then it is scalar
linearly solvable over at least one of the commutative rings
GF(p5) or GF(p3)× GF(p2).

Lemma IV.14: For each prime p, if a network is scalar
linearly solvable over some ring of size p6, then it is scalar
linearly solvable over GF(p6).

Theorem IV.15 is a generalization of Lemma IV.7 to scalar
linear codes over non-commutative rings. Extending Theo-
rem IV.15 to |R| = pk for k ≥ 7 is left as an open problem.

Theorem IV.15: Let p be a prime, and suppose N is scalar
linearly solvable over a ring R. Then N is scalar linearly
solvable over

(a) the field GF(p2), when |R| = p2.
(b) the field GF(p3), when |R| = p3.
(c) at least one of the rings GF(p4) or M2(GF(p)),

when |R| = p4.
(d) at least one of the commutative rings GF(p5)

or GF(p3)× GF(p2), when |R| = p5.
(e) the field GF(p6), when |R| = p6.

Proof: This follows immediately from Lemmas IV.9,
IV.11, IV.12, IV.13, and IV.14. �

We also note that by Corollary II.14, the (p4 + 1)-Choose-
Two Network is scalar linearly solvable over GF(p4) but not
over M2(GF(p)), and the (p5 + 1)-Choose-Two Network is
scalar linearly solvable over GF(p5) but not over GF(p3) ×
GF(p2). By Corollary III.7, the Dim-2 Network is scalar
linearly solvable over M2(GF(p)) but not over GF(p4). We
showed in Part I [2, Th. III.8] that there exists a network that
is scalar linearly solvable over GF(p3)×GF(p2) but not over
GF(p5). Hence it is necessary to include both rings in (c)
and (d) in Theorem IV.15.

Corollary IV.16: Let p be a prime and k ∈ {2, 3, 4, 5, 6},
and suppose N is scalar linearly solvable over a ring of size
pk. Then N has a k-dimensional vector linear solution over
GF(p).

Proof: If k ∈ {2, 3, 5, 6}, then by Theorem IV.15, N has a
scalar linear solution over a commutative ring of size pk , since
fields and direct products of fields are commutative rings. So,
by Theorem IV.6, N has a k-dimensional vector linear solution
over GF(p).

Now suppose k = 4. If N is scalar linearly solvable over
GF(p4), then by Lemma II.11, N has a 4-dimensional vector
linear solution over GF(p). If N is not scalar linearly solvable
over GF(p4), then by Theorem IV.15 (c), N must be scalar
linearly solvable over M2(GF(p)), so by Corollary I.5, N has
a 2-dimensional vector linear solution over GF(p), in which
case N also has a 4-dimensional vector linear solution over
GF(p) by Lemma III.3. �

Theorem IV.17 generalizes the results of Theorem IV.6 to
rings of size m with prime factor multiplicity less than or equal
to 6.

Theorem IV.17: Let m be a positive integer with prime
factorization m = pk1

1 · · · pkt
t . If a network N has a scalar

linear solution over a ring of size m, then, for each i =
1, . . . , t such that ki ≤ 6, network N has a ki -dimensional
vector linear solution over GF(pi).

Proof: Suppose N is scalar linearly solvable over a ring
R of size m. By Lemma IV.5, there exists rings R1, . . . , Rt

such that

R ∼= R1 × · · · × Rt

and |Ri | = pki
i for all i .

Now, let i ∈ {1, . . . , t} and suppose ki ≤ 6. The projection
mapping from R to Ri is a surjective homomorphism, so by
Corollary I.7, network N is scalar linearly solvable over Ri .
Since N is scalar linearly solvable over a ring of size pki

i
where ki ≤ 6, by Corollary IV.16, N has a ki -dimensional
vector linear solution over GF(pi). �

We leave as an open question whether the restriction that
ki ≤ 6 can be removed from the statement of Theorem IV.17.
If this generalization is false, then for what primes p and
positive integers k is it the case that there exists a network
with a scalar linear solution over a ring of size pk but with
no k-dimensional vector linear solution over GF(p)? If such
a ring and such a network do exist, the ring must be non-
commutative and k ≥ 7.
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V. CONCLUDING REMARKS

For each positive integer k and prime p, we have shown
that the set of networks with scalar linear solutions over
commutative rings of size pk is properly contained in the
set of networks with k-dimensional vector linear solutions
over GF(p).

So in this sense, k-dimensional vector linear codes over
GF(p) may be advantageous compared to scalar linear codes
over commutative rings of the same size pk . In addition, there
are more k-dimensional linear functions over GF(p) than there
over a commutative ring of size pk . Vector linear codes over
fields are also optimal in the sense that they minimize the
alphabet size needed for a linear solution over a particular
network. On the other hand, the complexity of implementing
vector linear codes is generally higher than for scalar linear
codes over commutative rings of the same size.

A. Summary of Results

We summarize our results on minimizing the alphabet size
in linear network coding by:

• If a network is scalar linearly solvable over some commu-
tative ring, then the (unique) smallest such commutative
ring is a field [2, Th. II.10].

• If a network is scalar linearly solvable over some ring,
then a smallest such ring is a matrix ring over field
(Theorem II.5). It is not known whether such a smallest
ring is unique.

• If a network is linearly solvable over some module, then
a smallest such module yields a vector linear solution
over a field (Theorem II.10). Such a module may not be
unique (Theorem II.13).

Additionally, we summarize our results on the linear solvabil-
ity of networks over fields, rings, and modules in Corollar-
ies II.15 and II.16.

We summarize our results on comparing alphabets of the
same size by:

• A network can have no scalar linear solutions over a given
field yet be scalar linearly solvable over a commutative
ring of the same size [2, Th. III.8]. Part I particularly
focuses on commutative rings for which there exists a
network that is scalar linearly solvable over the ring but
not over any other commutative ring of the same size.

• A network can have no scalar linear solutions over any
commutative ring yet be scalar linearly solvable over
a non-commutative ring (Corollary III.7). Such a non-
commutative ring must have size at least 16 (Theo-
rem III.10), and for the M Network, this bound is
achieved.

• When k ≤ 6, any network with a scalar linear solution
over a ring of size pk has a k-dimensional vector linear
solutions over GF(p) (Corollary IV.16). This extends
to all positive integers k when the ring is commutative
(Theorem IV.6).

• There exists a multicast network (Corollary IV.3)
and a non-multicast network (Theorem IV.1) with k-
dimensional vector linear solutions over GF(p) but with
no scalar linear solutions over any ring of size pk .

B. Open Questions

Some open questions related to linear solvability of net-
works over finite rings and modules include:

• Does there exist a network with a linear solution over
some ring of size pk but with no k-dimensional vector
linear solution over GF(p)? We have shown that if such
a network and such a ring exist, then the ring is non-
commutative and k ≥ 7.

• More generally, does there exist a network with a linear
solution over some module of size pk but with no
k-dimensional vector linear solution over GF(p)?

• When a network has a scalar linear solution over a ring
of a given size, over what other rings does the network
have scalar linear solutions? In particular, how does
Theorem IV.15 extend to rings of size pk when k ≥ 7?

• Does there exist a network that is scalar linearly solvable
over at least two rings of a given size but not over any
smaller ring? I.e., is the smallest-size ring over which a
network scalar linearly solvable unique?

• In Part I, we characterized commutative rings with the
property that there exists a network with a scalar linear
solution over the ring but no other commutative ring of
the same size? Is there a similar characterization when
removing the commutative restriction?

• Can the linear capacity of a network over some ring (or
module) be greater than the network’s linear capacity
over any field? I.e., are higher rates attainable using
linear codes over rings and modules?

APPENDIX

The main purpose of this Appendix is to prove Lem-
mas IV.12, IV.13, and IV.14, which are used in the proof of
Theorem IV.15. It is an open question whether Theorem IV.17
can be extended to all finite rings. The techniques presented
in this section may additionally be useful for examining such
questions.

Recall that a finite ring is simple if it has no proper two-
sided ideals. The radical of a ring R is the intersection of all
its maximal left ideals. The radical of a ring is a two-sided
ideal. A finite ring R with radical J is said to be:

• local 5 if R/J is a field.
• semi-local if R/J is simple, or equivalently R is iso-

morphic to a matrix ring over some local ring (e.g. [15,
p. 162]).

• semi-simple if R is isomorphic to a direct product of
simple rings (matrix rings over fields) or equivalently,
J = {0} (e.g. [15, pp. 75, 128]).

The following lemma is a result on local rings that will be
used in later proofs.

Lemma A.1: Let p be a prime, k a positive integer, and R
a semi-local ring of size pk. Then there exists a unique local
ring S and positive integers r, s, t such that the following hold:

(a) [15, Th. VIII.26] R ∼= Mr (S)
(b) [1, Th. 6.1.2] |S| = ps

5If R is a local commutative ring, then R has a single maximal ideal, which
corresponds to our definition of a commutative local ring in Part I.
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(c) [1, Th. 6.1.2] GF(pt ) ∼= S/J , where J is the radical of
S and t

∣
∣ s.

As an example, let p be a prime and let r, s be positive
integers. Then Mr (Zps ) is a semi-local ring, since Zps is a
local ring. We also remark that in Lemma A.1, if R is itself
local, then S ∼= R.

The following lemmas are results on semi-simple rings and
the radicals of rings.

Lemma A.2 [15, Proposition IV.6, Th. VIII.4]: Let R be a
finite ring with radical J . Then there exist fields F1, . . . ,Fs

and positive integers r1, . . . , rs such that

R/J ∼= Mr1(F1)× · · · × Mrs (Fs).

Lemma A.3: Let R be a finite ring with radical J , and
suppose

R/J ∼= Mr1 (F1)× · · · × Mrs (Fs)

for some fields F1, . . . ,Fs and positive integers r1, . . . , rs .
If a network is scalar linearly solvable over R, then it
is also scalar linearly solvable over each of the rings
Mr1 (F1), . . . ,Mrs (Fs).

Proof: By Lemma II.2, there exists a surjective homomor-
phism φ : R → R/J . Let i ∈ {1, . . . , s}. Then the projection
mapping ψi : R/J → Mri (Fi ) is a surjective homomorphism.
Hence the composition of mappings ψi ◦φ : R → Mri (Fi ) is a
surjective homomorphism. Thus by Corollary I.7, any network
with a scalar linear solution over R has a scalar linear solution
over the ring Mri (Fi ). �

The following is an enumeration of semi-simple rings that
we will reference in upcoming proofs. Semi-simple rings are
direct products of rings of matrices over fields. There are a lim-
ited number of small-size matrix rings over fields, so the semi-
simple rings of small sizes can be easily enumerated. For each
prime p, it can be verified that the rings given in (16)–(48) are
all of the semi-simple rings of sizes p, p2, p3, p4, p5, or p6

(up to isomorphism). In particular, these semi-simple rings
must be direct products of the simple rings GF(p), GF(p2),
GF(p3), GF(p4), M2(GF(p)), GF(p5), and GF(p6).

• Size p:

GF(p) (16)

• Size p2:

GF(p2) (17)

GF(p)× GF(p) (18)

• Size p3:

GF(p3) (19)

GF(p2)× GF(p) (20)

GF(p)× GF(p)× GF(p) (21)

• Size p4:

M2(GF(p)) (22)

GF(p4) (23)

GF(p3)× GF(p) (24)

GF(p2)× GF(p2) (25)

GF(p2)× GF(p)× GF(p) (26)

GF(p)× GF(p)× GF(p)× GF(p) (27)

• Size p5:

GF(p5) (28)

M2(GF(p))× GF(p) (29)

GF(p4)× GF(p) (30)

GF(p3)× GF(p2) (31)

GF(p3)× GF(p)× GF(p) (32)

GF(p2)× GF(p2)× GF(p) (33)

GF(p2)× GF(p)× GF(p)× GF(p) (34)

GF(p)× GF(p)× GF(p)× GF(p)× GF(p) (35)

• Size p6:

GF(p6) (36)

GF(p5)× GF(p) (37)

M2(GF(p))× GF(p2) (38)

GF(p4)× GF(p2) (39)

M2(GF(p))× GF(p)× GF(p) (40)

GF(p4)× GF(p)× GF(p) (41)

GF(p3)× GF(p3) (42)

GF(p3)× GF(p2)× GF(p) (43)

GF(p3)× GF(p)× GF(p)× GF(p) (44)

GF(p2)× GF(p2)× GF(p2) (45)

GF(p2)× GF(p2)× GF(p)× GF(p) (46)

GF(p2)× GF(p)× GF(p)× GF(p)× GF(p) (47)

GF(p)×GF(p)×GF(p)×GF(p)×GF(p)×GF(p) (48)

We now prove Lemmas IV.12, IV.13, and IV.14.
Proof of Lemma IV.12: Let R be a ring of size p4 with

radical J , and suppose N is scalar linearly solvable over R.
Then |R/J | ∈ {p, p2, p3, p4}, so by Lemma A.2, R/J is
isomorphic to one of the rings in (16)–(27).

If R/J is isomorphic to any of these rings except those in
(19) and (22), then by Lemma A.3, N is also scalar linearly
solvable over at least one of GF(p), GF(p2), or GF(p4). Since
GF(p) and GF(p2) are both subrings of GF(p4), in these
cases, N is also scalar linearly solvable over GF(p4).

On the other hand, if R/J is isomorphic to the ring in
(22), then by Lemma A.3, N is also scalar linearly solvable
over M2(GF(p)). It follows from Lemma A.1 that R/J is not
isomorphic to the ring in (19). �

Proof of Lemma IV.13: Let R be a ring of size p5 with
radical J , and suppose N is scalar linearly solvable over R.
Then |R/J | ∈ {p, p2, p3, p4, p5}, so by Lemma A.2, R/J
must be isomorphic to one of the rings in (16)–(35).
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If R/J is isomorphic to one of the rings in (22)–(27)
(i.e. |R/J | = p4), then |J | = p. Since (J,+) is an R-
module and N has a linear solution over the faithful module
R R, by Lemma I.3, N has a linear solution over R J . By
Theorem II.10, this implies N has a scalar linear solution
over GF(p). Since GF(p) is a subring of GF(p5), in these
cases, N also has a scalar linear solution over GF(p5).

It follows from Lemma A.1 that R/J is not isomorphic to
either of the rings in (17) or (19). If R/J is isomorphic to the
ring in (31), then by Lemma A.3, N is scalar linearly solvable
over GF(p3)× GF(p2).

If R/J is isomorphic to any of the remaining cases, then by
Lemma A.3, network N is scalar linearly solvable over either
GF(p) or GF(p5). Since GF(p) is a subring of GF(p5), in
these cases, N also has a scalar linear solution over GF(p5).�

Proof of Lemma IV.14: Let R be a ring of size p6 with
radical J , and suppose N is scalar linearly solvable over R.
Then |R/J | ∈ {p, p2, p3, p4, p5, p6}, so by Lemma A.2, R/J
must be isomorphic to one of the rings in (16)–(48). It follows
from Lemma A.1 that R/J is not isomorphic to any of the
rings in (22), (23), or (28).

If R/J is isomorphic to any of the remaining cases, then
it follows from Lemma A.3 that N is scalar linearly solvable
over GF(pn) for some n ∈ {1, 2, 3, 6}. Since n

∣
∣ 6, GF(pn)

is a subring of GF(p6), which implies N is scalar linearly
solvable over GF(p6). �
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