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Linear Network Coding Over Rings – Part I:
Scalar Codes and Commutative Alphabets

Joseph Connelly, Student Member, IEEE, and Kenneth Zeger, Fellow, IEEE

Abstract— Linear network coding over finite fields is a well-
studied problem. We consider the more general setting of linear
coding for directed acyclic networks with finite commutative ring
alphabets. Our results imply that for scalar linear network coding
over commutative rings, fields can always be used when the
alphabet size is flexible, but other rings may be needed when
the alphabet size is fixed. We prove that if a network has a
scalar linear solution over some finite commutative ring, then the
(unique) smallest such commutative ring is a field. We also show
that fixed-size commutative rings are quasi-ordered, such that all
the scalar linearly solvable networks over any given ring are also
scalar linearly solvable over any higher-ordered ring. We study
commutative rings that are maximal with respect to this quasi-
order, as they may be considered the best commutative rings
of a given size. We prove that a commutative ring is maximal
if and only if some network is scalar linearly solvable over the
ring, but not over any other commutative ring of the same size.
Furthermore, we show that maximal commutative rings are direct
products of certain fields specified by the integer partitions of
the prime factor multiplicities of the ring’s size. Finally, we prove
that there is a unique maximal commutative ring of size m if and
only if each prime factor of m has multiplicity in {1, 2, 3, 4, 6}.
As consequences, 1) every finite field is such a maximal ring and
2) for each prime p, some network is scalar linearly solvable
over a commutative ring of size pk but not over the field of the
same size if and only if k �∈ {1, 2, 3, 4, 6}.

Index Terms— Linear coding, network solvability, network
coding, modules (abstract algebra).

I. INTRODUCTION

L INEAR coding over finite fields has been the cornerstone
of a large portion of network coding research during the

last decade. Scalar linear codes over fields consist of network
out-edges carrying field elements which are linear combina-
tions of their input field elements. It has been shown that
scalar linear codes over finite fields are sufficient for multicast
networks [25]. This means that whenever a multicast network
is solvable, it must be scalar linearly solvable over some
finite field. In contrast, the more general class of vector linear
codes over fields has out-edges carrying linear combinations of
input vectors of field elements, where the linear combination
coefficients are matrices of field elements. Vector linear codes
over finite fields (or even more generally, vector linear codes
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over rings or linear codes over modules) are known to not
always be sufficient for non-multicast networks [8]. This
means that solvable non-multicast networks may sometimes
require non-linear codes to implement a solution, no matter
what field or vector dimension is chosen. Even though linear
network codes may be suboptimal for some networks, they
have been attractive to study for two primary reasons:

(1) They can be less complex to implement in practice due
to reduced storage and/or reduced computation compared
to non-linear codes.

(2) They may be mathematically tractable to analyze.

One of the most general forms of linear network coding
uses codes over modules. Specifically, a module consists of an
Abelian group (G,⊕), a ring R, and a scalar multiplication

· : R × G → G

that together satisfy certain properties. A linear network code
over such a module consists of edge functions of the form

(C1 · x1) ⊕ · · · ⊕ (Cm · xm)

where the variables x1, . . . , xm are elements of G and rep-
resent input symbols to a network node, and the multiplier
coefficients C1, . . . , Cm are constant elements of R.1 As an
example, vector linear network coding occurs when R is the
ring of n × n matrices over a finite field, G is the set of
n-dimensional vectors over the same field, and · is matrix-
vector multiplication over the field. As another example,
if G is the additive group of the finite ring R and · is
multiplication in R, then we get scalar linear coding over the
ring alphabet R.

In this paper (i.e. Part I), we focus on the further special
case where R is a commutative ring, and we make comparisons
to the even more specialized (and more studied) case where
R is a field. In a companion paper [5] (i.e. Part II), we
study vector linear codes and non-commutative rings and
specifically contrast the results with the results on scalar codes
and commutative rings given in this present paper. Since the
founding of network coding in 2000, network codes whose
edge functions are linear over fixed finite field alphabets have
been studied extensively (e.g. [9], [11], [13], [16], [18]–[25],
[29], [31]–[34]). In contrast, very little is presently known
about linear network coding over more general ring and
module alphabets.

1Throughout this paper it will be assumed that rings always have multi-
plicative identities, as any reasonable linear network code over rings would
require.
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Since a field is a commutative ring that has inverses for all
its non-zero elements, a linear network code over a ring may
be implemented analogously to a linear code over a field, by
performing multiplications and additions over the ring for each
nontrivial edge function.2 It is natural, then, to ask whether it
is better in some sense to use linear coding over a finite field
alphabet or over some other ring alphabet of the same size.
Additionally, a finite field alphabet must have prime-power
size, so linear codes over rings may be of value if non-power-
of-prime alphabet sizes are required.

Many networks evolve over time as nodes are added or
deleted and as edge connections are formed or broken. Thus,
it might be advantageous to choose a coding alphabet that
makes as many networks as possible scalar linearly solvable
over the chosen ring. If, for example, every network that is
scalar linearly solvable over a particular ring is also scalar
linearly solvable over a second ring, then, generally speaking,
the second ring would be at least as good as the first ring. This
notion of one ring being better than another ring is the core
concept behind our study in this paper. We seek out the best
such rings, namely the ones that are maximal with respect to
this induced ordering of rings of a given size.

Many interesting questions regarding linear codes over rings
exist: Which rings minimize the alphabet size needed for a
scalar linear solution? What is the best ring alphabet of a given
size to use for linear network coding? Are finite fields always
the best choice? Can a network be scalar linearly solvable over
a ring, even though it is not scalar linearly solvable over the
field of the same size? Is the set of networks that are scalar
linearly solvable over some field a proper subset of the set of
networks that are scalar linearly solvable over some ring? For
alphabets whose sizes are not powers of primes, over which
rings (if any) are particular networks scalar linearly solvable?
We address these and some other questions in this paper.

Two of our main results are:
(1) If p is prime and k �∈ {1, 2, 3, 4, 6}, then there always

exists some network that is not scalar linearly solvable
over the finite field GF(pk) yet is scalar linearly solvable
over a different commutative ring of the same size. When
k ∈ {1, 2, 3, 4, 6}, no such network exists.

(2) If a network has a scalar linear solution over a commuta-
tive ring that is not a field, then it also has a scalar linear
solution over a field of strictly smaller size.

A. Network Model

A network will refer to a finite, directed, acyclic multigraph,
some of whose nodes are sources or receivers. Source nodes
generate messages, each of which is an arbitrary element of
a fixed, finite set of size at least 2, called an alphabet. The
elements of an alphabet are called symbols. The inputs to a
node are the messages, if any, originating at the node and the
symbols on the incoming edges of the node. Each outgoing
edge of a network node has associated with it an edge function
that maps the node’s inputs to the symbol carried by the
edge, called the edge symbol. Each receiver node has decoding

2The most efficient implementation of ring arithmetic generally depends on
the specific algebraic properties of the ring being used.

functions that map the receiver’s inputs to an alphabet symbol
in an attempt to recover the receiver’s demands, which are the
messages the receiver wishes to obtain. The outputs of a node
are its demands, if any, and the symbols on the outgoing edges
of the node. A network is multicast if there is a single source
node and each receiver demands every message.

A code over an alphabet A is an assignment of edge
functions to all of the edges in a network and an assignment of
decoding functions to all of the receiver nodes in the network
such that messages and edge symbols are elements of A.
A solution is a code in which each receiver’s decoding
functions recover each of its demands from its inputs.

In particular, we will consider codes over alphabets that
have addition and multiplication operations, namely finite
rings. If A is a ring alphabet, then a function

f : Am −→ A
is linear over A if it can be written in the form

f (x1, . . . , xm) = C1x1 + · · · + Cm xm

where C1, . . . , Cm are constant values in A. A code is scalar
linear over A if each edge function and each decoding function
is linear over A.

We say a network is solvable over A (respectively, scalar
linearly solvable over A) if there exists a solution over A
(respectively, scalar linear solution over A), and we say a
network is solvable if it is solvable over some alphabet.

In contrast, in a k-dimensional vector linear code over A,
messages and edge symbols are k-dimensional vectors over A
(i.e. the alphabet is Ak), and edge functions are linear com-
binations of input vectors, using k × k matrices over A as
coefficients. Scalar linear codes are a special case of vector
linear codes where k = 1.

B. Related Work

Ahlswede et al. [1] introduced network coding in 2000 and
showed that it is possible to increase the information through-
put of a network by allowing nodes to transmit functions
of their inputs, as opposed to simply relaying their inputs.
Li et al. [25] showed that every solvable multicast network is
scalar linearly solvable over every sufficiently large finite field,
although it was shown in [8] that non-multicast networks may
not have this property. More generally, it was recently shown
in [4] that for each composite number m, there exists a network
that is not linearly solvable over any module alphabet yet is
non-linearly solvable over an alphabet of size m.

Networks were demonstrated by Riis [29], Rasala Lehman
and Lehman [28], and in [10] that are solvable non-linearly
but not scalar linearly over the same alphabet size. Effros
et al. [14] showed that network coding and index coding
are equivalent in a general setting, including with linear
and non-linear codes. It is not currently known whether
there exists an algorithm that determines if a network is
solvable; however, determining whether a network is scalar
linearly solvable over a particular field has been studied
extensively.

Koetter and Médard [21] showed that for every network,
there exists a finite collection of polynomials, such that for



276 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 1, JANUARY 2018

Fig. 1. N denotes an arbitrary network, R denotes an arbitrary finite commutative ring, and Nlin(R) denotes the set of networks scalar linearly solvable
over R. It follows from these results that finite fields minimize the alphabet size needed for a scalar linear solution over commutative rings, and the set of
networks that are scalar linearly solvable over some commutative ring and the set of networks that are scalar linearly solvable over some field are equal.

every finite field F, the network is scalar linearly solvable
over F if and only if the polynomials have a common root in F.
Conversely, it was shown in [9] that for every finite collection
of polynomials, there exists a network, such that for every
finite field F, the polynomials have a common root in F if and
only if the network is scalar linearly solvable over F. This
connection between scalar linear solvability and polynomials
stems from the connection between scalar linearly solvable
networks and matroid theory. It was also shown in [11] that
every network that is scalar linearly solvable over some field
is naturally associated with a representable matroid.

The study of linear network codes over fields has led to
efficient methods of constructing scalar linear solutions for net-
works that also minimize the field alphabet size. Ho et al. [18]
described a random scalar linear coding technique where the
probability that a code is a solution grows with the field
size. Jaggi et al. [19] presented polynomial-time algorithms
for designing scalar linear codes for multicast networks.
Karimian et al. [20] showed there exists a class of non-
multicast networks for which random scalar linear coding
algorithms fail with high probability and presented a new
approach to random scalar linear network coding for such
networks. Lehman and Lehman [28] and Tavory et al. [34]
independently showed that some solvable multicast networks
asymptotically require finite field alphabets to be at least as
large as twice the square root of the number of receiver nodes
in order to achieve scalar linear solutions. Sun et al. [32] and
Sun et al. [33] both demonstrated classes of multicast networks
that are scalar linearly solvable over certain fields but not every
larger field.

Médard et al. [27] showed that there can exist a network
that is vector linearly solvable over some field but not scalar
linearly solvable over any field. Sun et al. [31] demonstrated
that, while vector linear codes can outperform scalar linear
codes in terms yielding solutions for general networks, there
can exist multicast networks that are not k-dimensional
vector linearly solvable over GF(2) yet have scalar linear
solutions over some field alphabet whose size is less than 2k .
Etzion and Wachter-Zeh [16] bounded the reduction in
alphabet size needed for a vector linear solution to a multicast

network as compared to a scalar linear solution. Ebrahimi and
Fragouli [13] presented algorithms for constructing vector
linear codes that achieve solutions not possible with scalar
linear codes.

Convolutional network coding (e.g. [22], [23]) is a technique
for linear coding for networks that may contain cycles, and
the alphabets in such codes can be viewed as principal ideal
domains (and more generally as discrete valuation rings),
which are not necessarily finite. However, in this paper, we
focus on acyclic networks and finite coding alphabets.

To our knowledge, outside of the context of the insufficiency
of linear codes and convolutional coding, there has been
little study of linear network codes over more general ring
and module alphabets. In this paper and its companion, we
consider such linear codes and compare them to the well-
studied case of linear codes over fields.

C. Our Contributions

In this paper (i.e. Part I), we restrict attention to network
coding alphabets that are finite rings with at least two elements
and specifically focus on scalar linear codes over commutative
rings with identity. Our main results show that for networks
that use scalar linear codes over commutative rings, finite fields
can always be used if the alphabet size is flexible, but if the
alphabet size is fixed, then finite fields may not always be the
best choice for every network. Figure 1 summarizes our main
results for fixed networks, and Figure 2 summarizes our main
results on the “best” commutative rings of a fixed size. We
outline the remainder of the paper in what follows.

We prove (in Theorem II.10) that if a network has a scalar
linear solution over some commutative ring, then the unique
smallest-size commutative ring over which the network has a
scalar linear solution is a field. Thus, for a given network,
if the minimum alphabet size is desired for scalar linear
network coding, it suffices to use finite fields. This result also
shows that networks that are scalar linearly solvable over some
commutative ring are also scalar linearly solvable over some
field although not necessarily of the same size.

Section II introduces a “dominance” relation on finite
rings, such that all networks that are scalar linearly solv-
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Fig. 2. A ring S is dominated by a ring R if every network that is scalar linearly solvable over S is also scalar linearly solvable over R. This dominance
induces a quasi-order on R(pk), i.e. the set of commutative rings of size pk . The rings which are maximal with respect to these quasi-orders are, in some
sense, the best rings of a given size. The finite field GF(pk ) is always maximal (Theorem II.16), but it follows from these results that, whenever k = 5 or
k ≥ 7, there are other maximal rings of size pk . GF(8) × GF(4) is the smallest such maximal commutative ring (Corollary V.10). In particular, it follows that
there exist networks with scalar linear solutions over some ring of size pk but not the field GF(pk ), whenever k �∈ {1, 2, 3, 4, 6}. The maximal rings of size
pk1

1 · · · pkt
t (for distinct primes p1, . . . , pt ) are direct products of maximal rings of size pk1

1 , . . . , pkt
t (Remark V.5).

able over a given ring are also scalar linearly solvable over
any ring that dominates the given ring. We show that this
relation is a quasi-order on the set of commutative rings of
a given size.3 We also demonstrate (in Theorem II.19 and
Corollary III.3) non-isomorphic commutative rings of the same
size that are equivalent with respect to dominance, and we
show (in Theorem II.20) that dominance is a total quasi-order
of the commutative rings of size p2.

Section II-D analyzes the scalar linear solvability of a class
of multicast networks. We show (in Theorem II.16) that for
every finite field, there exists a multicast network that is
scalar linearly solvable over the field but is not scalar linearly
solvable over any other commutative ring of the same size.
This demonstrates that every finite field is maximal with
respect to the dominance. We also show (in Corollary II.18)
that there exists a solvable multicast network that is not scalar
linearly solvable over any ring whose size is equal to 2 mod 4,
which contrasts with the fact that every solvable multicast
network is scalar linearly solvable over every sufficiently large
field.

Section III compares various commutative rings with respect
to dominance. We demonstrate (in Theorem III.8) that some
network is scalar linearly solvable over a commutative ring
of size 32 but is not scalar linearly solvable over any other
commutative ring of size 32, including the field GF(32),
and we later prove (in Corollary V.10) that 32 is the size
of the smallest such commutative ring alphabet where this
phenomenon can occur.

We prove (in Theorem III.9) that whenever a network is
scalar linearly solvable over a commutative ring, the network
must also be scalar linearly solvable over a field whose size
divides the ring size. In fact, for each prime factor of the ring

3Although the relation is defined on all finite rings, a maximal ring will
always refer to a commutative ring which is maximal with respect to the
quasi-order on the set of commutative rings of a given size.

size, there is a corresponding such field whose characteristic
equals the prime factor. As a consequence (in Corollary III.11),
whenever a network is scalar linearly solvable over a ring
whose size is a product of distinct primes (i.e. “square free”),
the network must also be scalar linearly solvable over each
finite field whose size is a prime factor of the ring size.
However, we demonstrate (in Corollary III.12) that when the
ring size is not square free, the particular ring may need to be
examined in order to determine over which fields the network
is scalar linearly solvable.

Section IV introduces “partition rings” which are direct
products of finite fields that are specified by integer partitions
of the prime factor multiplicities of the ring size. We define
a relation called “partition division” and show that it induces
a quasi-order on the set of partitions of a given integer. We
show that the maximal partitions under this quasi-order are
precisely the partitions that do not divide any other partition
of the same integer. We also provide a partial characterization
of the maximal partitions. The results of this section are used
in various proofs in Section V.

Section V connects the relations of ring dominance and
partition division. We prove (in Theorem V.4) that, when
restricting to commutative rings of a given size, the maximal
commutative rings under dominance are precisely partitions
rings where each partition is maximal under partition division.
We prove (in Theorem V.8) that a finite commutative ring is
maximal if and only if there exists a network that is scalar
linearly solvable over the ring but is not scalar linearly solvable
over any other commutative ring of the same size.

Finally, we prove (in Theorem V.9) that if p is prime, then
the field GF(pk) is the unique maximal commutative ring of
size pk whenever k ∈ {1, 2, 3, 4, 6}, but if k = 5 or k ≥ 7, then
there exist multiple maximal commutative rings of size pk .
This result is also generalized to commutative rings of non-
power-of-prime sizes in Theorem V.9. Since there can exist
more than one maximal ring of a given size, there are instances
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where scalar linear solutions cannot be obtained using finite
field alphabets of a given size but can be achieved using other
commutative rings of the same size.

Part II [5] studies similar network coding questions with
emphasis on non-commutative rings and vector linear codes.

II. RING DOMINANCE

A quasi-order4 � on a set A is a subset of A × A that
is reflexive and transitive. We write x � y to indicate that
the pair (x, y) is in the relation. Each quasi-order induces an
equivalence relation on A defined by x ≡ y if and only if
x � y and y � x . We denote the equivalence class of x
by [x]. Any quasi-order naturally extends to a partial order on
the equivalence classes by defining [x] � [y] if and only if
x � y. An element x ∈ A is said to be maximal with respect
to the quasi-order if for all y ∈ A, we have y � x whenever
x � y. The same definition of maximal applies with respect
to the induced partial order on equivalence classes.

For each integer m ≥ 2 and each finite ring R,

• R(m) denotes the set of commutative rings of size m, up
to isomorphism,

• ∼= denotes ring isomorphism, and
• Nlin(R) denotes the set of all networks scalar linearly

solvable over R.

Definition II.1: For any two finite rings R and S, we say S
is dominated by R (denoted S 	 R) if every network that is
scalar linearly solvable over S is also scalar linearly solvable
over R.

Equivalently, S 	 R if and only if Nlin(S) ⊆ Nlin(R). On
the other hand, S is not dominated by R whenever there exists
a network with a scalar linear solution over S but not over R.

For each m ≥ 2, it can be verified that the relation 	 is a
quasi-order on the set R(m). Throughout this paper, whenever
we refer to a finite commutative ring as being maximal, we
mean the ring is maximal with respect to the relation 	 on
the set of commutative rings of the same size. Since R(m)
is a finite set, every ring R ∈ R(m) is dominated by some
maximal ring, so there must exist at least one maximal ring
in R(m).

The induced equivalence relation on rings has the property
that R ≡ S if and only if Nlin(R) = Nlin(S). It turns out
that the exact same set of networks can sometimes be scalar
linearly solvable over non-isomorphic rings of the same size
(as illustrated later, in Theorem II.19 and Corollary III.3),
which means that the quasi-order 	 is not anti-symmetric
on R(m).

Intuitively, if a ring R dominates a ring S of the same size,
it may be viewed as advantageous5 to use R instead of S in
a network coding implementation, since any network that is
scalar linearly solvable over S is also scalar linearly solvable
over R. If, additionally, Nlin(S) ⊂ Nlin(R) then even more
networks are scalar linearly solvable over R.

A maximal commutative ring R has the desirable property
that, for any commutative ring S of the same size, the set of

4Also known as a pre-order (e.g. [30, Ch. 1]).
5There may be other advantages to using one ring over another, such as

lower computational complexity arithmetic, ease of implementation, etc.

Fig. 3. The Char-m Network has source nodes S0, S1, . . . , Sm+1 which
generate the message x0, x1, . . . , xm+1, respectively. The node ux has a single
incoming edge from each source node, and the edge connecting nodes ux and
vx carries the edge symbol ex . For each i = 0, 1, . . . , m + 1, the node ui
has a single incoming edge from each source node, except Si . The edge
connecting nodes ui and vi carries the edge symbol ei . The receiver Ri
demands xi and has an incoming edge from node vi and an incoming edge
from vx . The receiver Rx demands x0 and has an incoming edge from each
of v1, . . . , vm+1.

networks that are scalar linearly solvable over R cannot be a
proper subset of the set of networks that are scalar linearly
solvable over S. Thus, in this sense, maximal rings may be
considered the “best” commutative rings to use for network
coding, and non-maximal rings are always “worse” than some
maximal ring of the same size.

Remark II.2 : Every commutative ring of size m is domi-
nated by a maximal commutative ring of size m, since R(m)
is a finite quasi-order. Hence any network that is linearly
solvable over some commutative ring of size m is linearly
solvable over some maximal commutative ring of size m.

A. Fundamental Ring Comparisons

In this section, we prove results on ring dominance which
will be used throughout the rest of the paper.

For each integer m ≥ 2, the Char-m Network is given in
Figure 3. This network was introduced as N2(m, 1) (with a
slight relabeling of sources) in [4] and is a generalization of the
Fano Network. We use this class of networks to demonstrate
some interesting properties of scalar linear codes over rings.
The following lemma was shown in [4, Lemma IV.6] in a
slightly more general form.

Lemma II.3 : For each finite ring R and integer m ≥ 2,
the Char-m Network is scalar linearly solvable over R if and
only if char(R) | m.

In particular, if R is a finite ring such that char(R)
∣
∣ m,

then m = 0 in R, and the following scalar linear code over R
is a solution for the Char-m Network:

ei =
m+1
∑

j=0
j �=i

x j and ex =
m+1
∑

j=0

x j
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where i = 0, 1, . . . , m + 1, and the receivers linearly recover
their demands as follows

Ri : ex − ei = xi

Rx :
m+1∑

i=1

ei = x0 + m
m+1∑

i=0

xi

= x0
[

from char(R)
∣
∣ m

]

.

On the other hand, if char(R) � m, then m �= 0 in R, so
this code is not a solution in this case, which agrees with
Lemma II.3.

The following corollary demonstrates that rings whose sizes
are powers of distinct primes cannot dominate one another.
Our focus on comparing rings of the same size is driven in
part from a practical standpoint, i.e. determining the “best”
rings of a given size. However, the study of dominance is also
more interesting when applied to rings whose sizes are powers
of the same prime, particularly rings of the same size.

Corollary II.4 : Let p and q be distinct primes, and let k
and n be positive integers. No ring of size pk is dominated by
a ring of size qn.

Proof: The characteristic of any ring of size pk must
divide pk , so by taking m = pk in Lemma II.3, the Char- pk

Network is scalar linearly solvable over any ring of size pk ,
but this network is not scalar linearly solvable over any ring
of size qn , since p and q are distinct primes. Hence, no ring
of size pk is dominated by a ring of size qn . �

The following lemma is also shown in Part II Corollary I.7,
where it follows from a more general result on linear codes
over modules. However, we include the proof of Lemma II.5
in this paper for completeness.

A ring homomorphism is a mapping that preserves the
additive and multiplicative structure of rings. Intuitively, a
linear code consists of addition and multiplication operations,
so taking the image of linear coding coefficients under the
homomorphisms should preserve the structure of the code. In
fact, this lemma shows that ring homomorphisms induce ring
dominance.

Lemma II.5 : Let R and S be finite rings. If φ : S → R is
a homomorphism, then S is dominated by R.

Proof: Let N be a network that has a scalar linear solution
over S. Suppose the inputs to a node in a scalar linear solution
over S are x1, . . . , xm ∈ S and can be written in terms of the
messages z1, . . . , zn ∈ S in the following way

xi =
n∑

j=1

Bi, j z j

where Bi,1, . . . , Bi,n ∈ S are constants. Then any output y ∈ S
of the node is of the form

y =
m

∑

i=1

Ci xi (1)

=
n

∑

j=1

(
m

∑

i=1

Ci Bi, j

)

z j (2)

for some constants C1, . . . , Cm ∈ S. Then (1) describes y in
terms of the inputs to the node, and (2) describes y in terms
of the messages of the network.

Form a scalar linear code for N over R by replacing each
coefficient Ci in (1) by φ(Ci ). In other words, the coefficients
in R that describe the linear combinations of the inputs at a
node are the image under φ of the corresponding coefficients
in S. We will now show that the coefficients in R that describe
the linear combinations of the messages at a node are the
image under φ of the corresponding coefficients in S.

Assume the corresponding inputs to the node in the linear
code over R are x ′

1, . . . , x ′
m ∈ R and can be written in terms

of the messages z′
1, . . . , z′

n ∈ R in the following way

x ′
i =

n
∑

j=1

φ(Bi, j ) z′
j .

i.e. the inputs to the node in the linear code over R are
such that the coefficients are the image under φ of the
corresponding coefficients in S. Then, since homomorphisms
preserve addition and multiplication, the corresponding output
y ′ ∈ R of the node is of the form

y ′ =
m

∑

i=1

φ(Ci ) x ′
i

=
m

∑

i=1

φ(Ci )

n
∑

j=1

φ(Bi, j ) z′
j

=
n

∑

j=1

m
∑

i=1

φ(Ci ) φ(Bi, j ) z′
j

=
n

∑

j=1

φ

(
m

∑

i=1

Ci Bi, j

)

z′
j (3)

so the coefficients in R that describe the linear combinations
of the messages at a node in (3) are the image under φ of the
corresponding coefficients in S in (2).

If a decoding function in the linear solution over S produces
the message zl (i.e. y = zl ), then in (2)

m
∑

i=1

Ci Bi, j =
{

1 if j = l

0 if j �= l.

Since φ is a homomorphism, φ(1) = 1 and φ(0) = 0, so the
corresponding coefficients in (3) are

φ

(
m

∑

i=1

Ci Bi, j

)

=
{

1 if j = l

0 if j �= l

so the decoding function in the linear code over R produces
the message z′

l (i.e. y ′ = z′
l ). Thus each receiver recovers its

demands in the scalar linear code over R, so the code is, in
fact, a solution for N . Therefore S 	 R. �

The following corollary is a special case of Lemma II.5
where S is a subring of R. A further special case, which will
be used frequently throughout the rest of the paper, is when

R = GF(pk) and S = GF(pm)

where p is prime and k, m are positive integers such that m
divides k (e.g. see [3, Th. 2.3.1]). We also remark that for
finite rings R1 and R2, the multiplicative identity of R1 × R2
is in neither R1 nor R2, so while R1 and R2 are isomorphic
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to subsets of R1 × R2 that are closed under addition and
multiplication, neither is a subring of R1 × R2.

Corollary II.6 : If S is a subring of a finite commutative
ring R, then S is dominated by R.

Proof: If S is a subring of R, then the identity mapping
from S to R is an injective homomorphism, so by Lemma II.5,
S 	 R. �

In general, if a network is scalar linearly solvable over an
alphabet A, then it is also scalar linearly solvable over the
alphabet Ak , for any k ≥ 2, by using a Cartesian product
code.6 In particular, if a network is scalar linearly solvable
over the ring Zn , then it is also scalar linearly solvable over
the direct product of rings

Zk
n = Zn × · · · × Zn

︸ ︷︷ ︸

k times

.

Since Znk is not isomorphic to the product ring Zk
n , it does

not immediately follow that a network scalar linearly solvable
over Zn must also be scalar linearly solvable over Znk , and,
in fact, the contrary is demonstrated below in Corollary II.7.

Corollary II.7 : Let m, n ≥ 2. The ring Zm is dominated
by the ring Zn if and only if n

∣
∣ m.

Proof: Let φ : Zm → Zn be defined such that φ(a) is the
unique integer in {0, 1, . . . , n − 1} satisfying

φ(a) = a mod n.

If n
∣
∣ m, then φ is a surjective homomorphism, so by

Lemma II.5 we have Zm 	 Zn .
Conversely, if n � m, then by Lemma II.3, the Char-m

Network is scalar linearly solvable over Zm but not Zn , since

char(Zm) = m
∣
∣ m and char(Zn) = n � m

which implies Zm is not dominated by Zn . �
If p is prime and k ≥ 2, then by Corollary II.7, we have

Nlin(Zpk ) ⊂ Nlin(Zp).

In this sense, the larger ring alphabet Zpk is strictly “worse”
than the smaller field alphabet Zp . This contrasts significantly
with finite fields, where, generally speaking, larger field alpha-
bets are “better” than smaller field alphabets. In particular,
it follows from Corollary II.6 and Lemma II.15 that

Nlin(GF(p)) ⊂ Nlin(GF(pk)).

B. Minimizing Alphabet Size

In this section, we prove our main result (Theorem II.10)
on minimizing the alphabet size needed for a scalar linear
solution over a commutative ring. The following lemma is a
standard result of algebra related to ideals of rings which will
be used to show Corollary II.9.

Lemma II.8 [12, Th. 7, p. 243]: If I is a two-sided ideal of
ring R, then the mapping φ : R → R/I given by φ(x) = x + I
is a surjective homomorphism.

Corollary II.9 demonstrates that rings with large ideals are
“bad” in the sense that they are always dominated by a smaller

6In fact, the network is solvable over any alphabet of size |A|k but linearity
may not be preserved.

ring. Intuitively, rings without ideals should minimize the ring-
size needed for a scalar linear solution. We formalize this
notion in Theorem II.10.

Corollary II.9 : If I is a proper ideal in a finite commutative
ring R, then R is dominated by R/I .

Proof: The quotient ring R/I is finite and commutative.
By Lemma II.8, there is a surjective homomorphism from R
to R/I , so R 	 R/I by Lemma II.5. �

Theorem II.10 next demonstrates that when attempting to
find a minimum size commutative ring over which a network
is scalar linearly solvable, it suffices to restrict attention to
finite field alphabets. In other words, if N ∈ Nlin(R) for some
commutative ring R, then there exists a field F such that

N ∈ Nlin(F) and N �∈ Nlin(S)

whenever S ∈ R(n) − {F} and n ≤ |F|.
Theorem II.10 : If a network is scalar linearly solvable over

a commutative ring, then the unique smallest such ring is a
field.

Proof: Let N be a scalar linearly solvable network and
let R be a smallest commutative ring over which N is scalar
linearly solvable. Suppose R is not a finite field, and let I be
a maximal ideal7 of R. Since {0} is an ideal in every ring,
R must have at least one maximal (proper) ideal. Then R/I is
a field (e.g. see [12, p. 254, Proposition 12]). By Lemma II.8,
there is a surjective homomorphism from R to R/I , but R/I
is a field and R is not, so the rings cannot be isomorphic.
Therefore, |R/I | < |R|. By Corollary II.9, R 	 R/I. Thus
N must also be scalar linearly solvable over R/I , which
contradicts the assumption that R is a smallest commutative
ring over which N is scalar linearly solvable. �

C. Direct Products of Rings

Sun et al. [32] presented a class of multicast networks,
called Swirl Networks, parameterized by an integer ω ≥ 3
that affects the number of independent messages generated by
the source as well as the number of receivers and intermediate
nodes. An interesting open question is for which p and k does
there exist a multicast network that is scalar linearly solvable
over some ring of size pk but not over the field of the same
size. Example II.11 demonstrates a particular Swirl Network
is such a multicast network for p = 2 and k = 13.

Example II.11 : It was shown in [32, p. 6185] that the Swirl
Network with ω = 213 is scalar linearly solvable over GF(29)
and GF(24) but not over GF(213). By using a Cartesian
product code, this Swirl Network is scalar linearly solvable
over the ring GF(29) × GF(24).

The following lemma relates Cartesian product codes and
the dominance relation.

Lemma II.12 : A network is scalar linearly solvable over a
finite direct product of finite rings if and only if the network
is scalar linearly solvable over each ring in the product.

7Whenever we refer to a maximal ideal, we will always mean maximal with
respect to set inclusion.
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Fig. 4. The n-Choose-Two Network is parameterized by an integer n ≥ 2.
The network’s name indicates the number of receivers.

Proof: Let R1, . . . , Rm be finite rings. For each j =
1, . . . , m, the projection mapping

φ j : R1 × · · · × Rm → R j

defined by φ j (x1, . . . , xm) = x j is a surjective homomor-
phism, so by Lemma II.5,

R1 × · · · × Rm 	 R j

and thus any network that is scalar linearly solvable over the
product ring R1 ×· · ·× Rm is also scalar linearly solvable over
each ring R1, . . . , Rm .

Conversely, any network that is scalar linearly solvable over
each ring R1, . . . , Rm , is clearly scalar linearly solvable over
the product ring R1 × · · · × Rm by using a Cartesian product
code of the scalar linear solutions over each R1, . . . , Rm . �

Lemma II.13 demonstrates that if each ring in a collection
of rings dominates at least one ring in a second collection
of rings, then the direct product of the rings in the first
collection dominates the direct product of the rings in the
second collection.

Lemma II.13: If each of the finite rings S1, . . . , Sn is
dominated by at least one of the finite rings R1, . . . , Rm, then
S1 × · · · × Sn is dominated by R1 × · · · × Rm.

Proof: Let N be a network that is scalar linearly solvable
over S1 × · · · × Sn . Let i ∈ {1, . . . , m} and let j be such
that Sj 	 Ri . By Lemma II.12, N is scalar linearly solvable
over Sj , so N is scalar linearly solvable over Ri . Thus by
Lemma II.12, since i was chosen arbitrarily, N is also scalar
linearly solvable over R1 × · · · × Rm . �

The following remark notes that two rings of different sizes
can each dominate the other.

Remark II.14 : For each finite ring R and all positive
integers m, n, the direct product rings

R × · · · × R
︸ ︷︷ ︸

n times

and R × · · · × R
︸ ︷︷ ︸

m times

each dominate the other by Lemma II.13.

D. The n-Choose-Two Networks

Figure 4 shows a multicast network studied by Rasala
Lehman and Lehman [28], which we call the n-Choose-Two
Network. This network will be used to illustrate various facts

Fig. 5. The Two-Six Network is a multicast network studied in [10]. Each
of the receivers gets a unique pair of edge symbols (λi , λ j ), where i < j .
The network’s name indicates the alphabet sizes over which the network is
not solvable.

in what follows. The network has two messages x and y,
intermediate edge symbols λ1, . . . , λn , and

(n
2

)

receivers. Each
receiver receives a unique pair of symbols (λi , λ j ), where
i < j , and must decode both messages x and y.

A variation of the 4-Choose-Two Network, called the Two-
Six Network, is given in Figure 5. The Two-Six Network was
used in [10] to show that a multicast network with a solution
over a given alphabet size might not have a solution over all
larger alphabet sizes.

The following lemma was shown in [28], and it charac-
terizes the finite fields over which a scalar linear solution to
the n-Choose-Two Network exists and gives an alphabet-size
condition necessary for solvability.

Lemma II.15 [28, p. 144]: Let A be an alphabet and let
n ≥ 3.

(a) If the n-Choose-Two Network has a solution over A, then
|A| ≥ n − 1.

(b) Let A be a field. The n-Choose-Two Network is scalar
linearly solvable over A if and only if |A| ≥ n − 1.

The following theorem demonstrates that for each finite
field, there exists a multicast network that is scalar linearly
solvable over the field but is not scalar linearly solvable over
any other commutative ring of the same size. Theorem II.16
additionally implies that GF(pk) is not dominated by any other
commutative ring of size pk , which implies that GF(pk) is
maximal with respect to the quasi-order of commutative rings
of size pk .

Theorem II.16 : For each prime p and positive integer k,
the (pk + 1)-Choose-Two Network is scalar linearly solvable
over the field GF(pk) but not over any other commutative ring
of size pk.

Proof: Lemma II.15 (b) implies that the (pk +1)-Choose-
Two Network is scalar linearly solvable over GF(pk). On the
other hand, if the (pk +1)-Choose-Two Network network were
scalar linearly solvable over a commutative ring R of size pk

that is not a field, then by Theorem II.10, it would also be
scalar linearly solvable over some field whose size is less than
pk , which would contradict Lemma II.15. �
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The following theorem gives a necessary and sufficient
condition on the alphabet sizes over which a scalar linear
solution to the n-Choose-Two Network exists for at least one
ring.

Theorem II.17 : Let m = pk1
1 · · · pkt

t denote the prime
factorization of m ≥ 2, and let n ≥ 3. The n-Choose-Two
Network is scalar linearly solvable over some ring of size m
if and only if pki

i ≥ n − 1 for each i .
Proof: Assume pki

i ≥ n − 1. Then by Lemma II.15 (b),
the n-Choose-Two Network is scalar linearly solvable over
GF(pki

i ). So by Lemma II.12, the n-Choose-Two Network is
scalar linearly solvable over the product ring

GF(pk1
1 ) × · · · × GF(pkt

t )

which has cardinality m.
Conversely, suppose m = pk1

1 · · · pkt
t and the n-Choose-Two

Network is scalar linearly solvable over a ring R of size m. R
is isomorphic to a direct product of rings of size pk1

1 , . . . , pkt
t

(e.g. see [26, p. 2]). For each i = 1, . . . , t , let Ri be the ring
of size pki

i . Then by Lemma II.12, the n-Choose-Two Network
is scalar linearly solvable over each of R1, . . . , Rt . Hence by
Lemma II.15 (a), we must have pki

i ≥ n − 1 for all i . �
Corollary II.18 gives conditions on the solvability and scalar

linear solvability of the Two-Six Network. We use the fact that
the Two-Six Network is equivalent in terms of solvability to
the 4-Choose-Two Network.

Corollary II.18: For each m ≥ 2, the Two-Six Network is:
(a) Solvable over an alphabet of size m if and only if

m �∈ {2, 6}.
(b) Scalar linearly solvable over some ring of size m if and

only if m �= 2 mod 4.
(c) Scalar linearly solvable over all finite fields except GF(2).

Proof: Part (a) is [10, Lemma V.3]. Parts (b) and (c)
follow immediately from Theorem II.17 and Lemma II.15,
respectively, when n = 4. �

The proof of Corollary II.18 (a) (i.e. [10, Lemma V.3])
made use of a theorem characterizing the orders for which
orthogonal latin squares exist. Euler originally conjectured
over 230 years ago that orthogonal latin squares existed for
all orders not congruent to 2 mod 4. It turned out that Euler
was incorrect, and it was shown in 1960 that orthogonal latin
squares existed for all orders except 2 and 6. Interestingly,
the Two-Six Network was shown in Corollary II.18 to be
solvable for all alphabet sizes except 2 and 6 and scalar
linearly solvable over some ring of every size that is not
congruent to 2 mod 4.

Li et al. [25] showed that every solvable multicast network
is scalar linearly solvable over every sufficiently large finite
field. We observe that this property is not true for finite
rings, as the Two-Six Network is a solvable multicast network
and is not scalar linearly solvable over any ring whose size
is 2 mod 4.

E. Rings of Size p2

Remark II.14 demonstrated that it is possible for the exact
same set of networks to be scalar linearly solvable over two
rings of different sizes. The following theorem shows that,

for each prime p, this is also possible for two rings of
size p2, i.e. it is possible to have two non-isomorphic
commutative rings of size p2, such that the rings are
equivalent under dominance.

Theorem II.19 : For each prime p, the rings GF(p)[x]/〈x2〉
and GF(p) × GF(p) are each dominated by the other but are
not isomorphic.

Proof: The rings are clearly not isomorphic since the only
element of GF(p)×GF(p) whose square is zero is zero itself,
and in GF(p)[x]/〈x2〉, the squares of both zero and x are
zero. The field GF(p) is a subring of GF(p)[x]/〈x2〉, so by
Corollary II.6,

GF(p) 	 GF(p)[x]/〈x2〉.
On the other hand, the mapping φ : GF(p)[x]/〈x2〉 → GF(p)
given by φ(a + bx) = a is a surjective homomorphism, so by
Lemma II.5,

GF(p)[x]/〈x2〉 	 GF(p).

Thus,

GF(p) ≡ GF(p)[x]/〈x2〉
and by Lemma II.12, GF(p) × GF(p) ≡ GF(p). �

In the proof of the previous theorem it is shown that

GF(p) ≡ GF(p)[x]/〈x2〉
which is another interesting example of rings of different sizes
being equivalent under dominance.

It is known [17, Th. 2, p. 250] that, for each prime p, the
only four commutative rings of size p2 are

GF(p2), GF(p) × GF(p), Zp2 , and GF(p)[x]/〈x2〉.
The following theorem describes a chain of dominances
between these rings and shows that dominance is a total quasi-
order of the commutative rings of size p2.

Theorem II.20 : For each prime p, the four commutative
rings of size p2 satisfy

Nlin(Zp2) ⊂ Nlin(GF(p)[x]/〈x2〉)
= Nlin(GF(p) × GF(p))

⊂ Nlin(GF(p2)).
Proof: The field GF(p) is a subring of the field GF(p2), so

by Corollary II.6, GF(p) 	 GF(p2). This, along with the fact
the (p2 + 1)-Choose-Two Network is scalar linearly solvable
over GF(p2) but not GF(p) (via Lemma II.15), implies

Nlin(GF(p)) ⊂ Nlin(GF(p2)).

By Theorem II.19 and Corollary II.7, we also have

Zp2 	 GF(p) ≡ GF(p) × GF(p) ≡ GF(p)[x]/〈x2〉.
Additionally, by Lemma II.3, the Char-p Network is scalar
linearly solvable over GF(p) but not Zp2 , thus proving the
claim. �
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III. FINITE FIELD DOMINANCE

A ring R does not dominate the ring S whenever there exists
a network that is scalar linearly solvable over S but not over R.
The following lemma demonstrates a class of non-multicast
networks that will be used in later proofs to show a given ring
is not dominated by another given ring. Such networks are
scalar linearly solvable only over certain fields.

Lemma III.1 [9, Sec. VI, Example (7)]: For any primes
q1, . . . , qs and any positive integers m1, . . . , ms, there exists
a non-multicast network that is scalar linearly solvable over
the fields

GF(qnm1
1 ), . . . , GF(qnms

s )

for all n ≥ 1, but not over any other fields.
Note that the primes q1, . . . , qs in Lemma III.1 need not be

distinct. The following lemma will enable us to demonstrate
certain networks that are scalar linearly solvable over some
ring of prime power size but not over the field of the same
size. Lemma III.2 will also be used in some of the proofs in
Section V.

Lemma III.2 : Let p1, . . . , pr and q1, . . . , qs be primes,
and let k1, . . . , kr and m1, . . . , ms be positive integers. The
ring

GF(qm1
1 ) × · · · × GF(qms

s )

is dominated by the ring

GF(pk1
1 ) × · · · × GF(pkr

r )

if and only if for each i ∈ {1, . . . , r} there exists j ∈ {1, . . . , s}
such that q j = pi and m j

∣
∣ ki .

Proof: If, for each i , there is a j such that q j = pi

and m j
∣
∣ ki , then GF(q

m j
j ) is a subring of GF(pki

i ) so by
Corollary II.6,

GF(q
m j
j ) 	 GF(pki

i )

and therefore, by Lemma II.13,

GF(qm1
1 ) × · · · × GF(qms

s ) 	 GF(pk1
1 ) × · · · × GF(pkr

r ).

To prove the converse, suppose to the contrary that there
exists i ∈ {1, . . . , r} such that for all j ∈ {1, . . . , s}, either
q j �= pi or m j � ki . By Lemma III.1, there exists a network
N that is scalar linearly solvable precisely over those fields
of size q

nm j
j , where j ∈ {1, . . . , s} and n ≥ 1. Taking n = 1

and applying Lemma II.12, implies that N is scalar linearly
solvable over

GF(qm1
1 ) × · · · × GF(qms

s ).

But N can not be scalar linearly solvable over GF(pki
i ), since

for all j ∈ {1, . . . , s}, either q j �= pi or m j � ki , so by
Lemma II.12, N is not scalar linearly solvable over

GF(pk1
1 ) × · · · × GF(pkr

r ).

Thus,

GF(qm1
1 ) × · · · × GF(qms

s ) �	 GF(pk1
1 ) × · · · × GF(pkr

r ).

�

As in Theorem II.19, the following corollary demonstrates
that two non-isomorphic commutative rings of the same size
may be equivalent with respect to the dominance relation 	.
In this case, the rings are both direct products of fields.

Corollary III.3 : For each k ≥ 3 and prime p, the rings

GF(pk−1) × GF(p) and GF(pk−2) × GF(p) × GF(p)

each dominate the other.
Proof: The result follows from Lemma III.2 by taking

r = 2, s = 3, p1 = p2 = q1 = q2 = q3 = p, k1 = k − 1,
m1 = k − 2, and k2 = m2 = m3 = 1 to get

GF(pk−2) × GF(p) × GF(p) 	 GF(pk−1) × GF(p)

and by taking r = 3, s = 2, p1 = p2 = p3 = q1 = q2 = p,
k1 = k − 2, m1 = k − 1, and k2 = k3 = m2 = 1 to get

GF(pk−1) × GF(p) 	 GF(pk−2) × GF(p) × GF(p).

�
Example III.4 next demonstrates a network that is scalar

linearly solvable over a ring of size 32 but is not scalar linearly
solvable over the field of size 32. It turns out that 32 is the
smallest prime power alphabet size for which a network can
have a scalar linear solution over a commutative ring but not
over the field of the same size (see Corollary V.10).

Example III.4 : Taking r = 1, s = 2, p1 = q1 = q2 =
2 and k1 = 5, k1 = 3, k2 = 2 in Lemma III.2 shows that
GF(8) × GF(4) is not dominated by GF(32). In particular,
there exists a network that is scalar linearly solvable over the
ring GF(8) × GF(4) but not over the field GF(32).

Theorem II.16 and Examples II.11 and III.4 also demon-
strate that dominance is not necessarily a total quasi-order of
the commutative rings of a given size, as there can exist rings
of the same size such that neither dominates the other.

A. Local Rings

A finite commutative ring is said to be local if it has a
single maximal ideal (see [3, Definition 1.2.9]). Lemmas III.5
and III.6 are standard results from commutative ring theory.

Lemma III.5 [3, Th. 3.1.4]: Every finite commutative ring
is a direct product of local rings.

Lemma III.6 [3, Th. 6.1.2 II]: If R is a finite commutative
local ring with maximal ideal I , then there exists a prime p
and positive integers k and m such that

(i) |R| = pk

(ii) R/I is a field of size pm and m divides k.

All finite fields are local rings, since their unique maximal
ideal is the trivial ring {0}. The ring Zn is local if and only if
n is a prime power, since for any prime divisor p of n,

〈p〉 = {ap : a ∈ Zn}
is a maximal ideal of Zn . However, not every ring of prime
power size is local. For example, GF(2) × GF(2) has distinct
maximal ideals {(0, 0), (1, 0)} and {(0, 0), (0, 1)}.

The following lemma connects the algebraic concept of
local rings to the dominance relation of network coding.

Lemma III.7 : Every finite commutative local ring is dom-
inated by the finite field of the same size.
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Proof: Let R be a finite commutative local ring with
maximal ideal I . By Lemma III.6, there exist a prime p and
positive integers k and m such that |R| = pk , m

∣
∣ k, and

R/I ∼= GF(pm). (4)

Thus,

R 	 GF(pm)
[

from (4), Corollary II.9
]

	 GF(pk)
[

from m
∣
∣ k, Lemma III.2

]

.

�
Example III.4 demonstrated that there exists a network that

is scalar linearly solvable over the ring GF(8)×GF(4) but not
over the field GF(32). The following theorem strengthens the
result in Example III.4 by additionally showing the network is
not even scalar linearly solvable over any other commutative
ring of size 32. This contrasts with Theorem II.16, which
demonstrates a network that is scalar linearly solvable over
GF(32) but not over any other commutative ring of size 32.

Theorem III.8 : There exists a network that is scalar
linearly solvable over GF(8) × GF(4) but not over any other
commutative ring of size 32.

Proof: By Lemma III.1, there exists a network N that
is scalar linearly solvable precisely over all fields whose size
is of the form 22n or 23n , where n ≥ 1. Hence N is scalar
linearly solvable over both GF(4) and GF(8) but neither GF(2)
nor GF(32). By using a product code, N is also scalar linearly
solvable over the ring GF(8)×GF(4) of size 32. We will now
show that N is not scalar linearly solvable over any other
commutative ring of size 32.

By Lemmas III.5 and III.6 (i), every commutative ring R of
size 32 satisfies exactly one of the following seven properties:
(a) R is a local ring of size 32
(b) R is a direct product of local rings of size 16 and 2
(c) R is a direct product of local rings of size 8 and 4
(d) R is a direct product of local rings of size 8, 2, and 2
(e) R is a direct product of local rings of size 4, 4, and 2
(f) R is a direct product of local rings of size 4, 2, 2, and 2
(g) R is a direct product of five local rings of size 2.

By Lemma III.7, any network that is scalar linearly solvable
over a commutative local ring of size 32 is also scalar
linearly solvable over GF(32). This eliminates case (a).
Similarly, any network that is scalar linearly solvable over
a local ring of size 2 is also scalar linearly solvable over
GF(2). By Lemma II.12, any network that is scalar linearly
solvable over a direct product ring is also scalar linearly
solvable over every ring in the direct product. This eliminates
cases (b),(d),(e),(f),(g). Thus if N is scalar linearly solvable
over a commutative ring R of size 32, R must satisfy case (c).

Suppose S is a commutative local ring of size 8 with
maximal ideal I . Then Lemma III.6 (ii) implies S/I ∼=
GF(2m) for some m ∈ {1, 3}. If m = 3, then S ∼= GF(8),
and if m = 1, then by Corollary II.9, S 	 GF(2). Similarly, a
commutative local ring of size 4 is either isomorphic to GF(4)
or is dominated by GF(2). Thus if N is scalar linearly solvable
over a ring R satisfying case (c), then R ∼= GF(8) × GF(4);
otherwise, by Lemma II.12, a scalar linear solution over R
would imply there exists a scalar linear solution over GF(2).

Thus GF(8) × GF(4) is the only commutative ring of size 32
over which N is scalar linearly solvable. �

Theorem III.8 demonstrates that GF(8) × GF(4) is not
dominated by any other commutative ring of size 32 (including
GF(32)) and thus is maximal. On the other hand, Theo-
rem II.16 demonstrates that GF(32) is not dominated by any
other commutative ring of size 32 (including GF(8) × GF(4))
and thus is maximal. In Section V, we characterize all maximal
rings, and we show that all maximal rings have the property
that there exists some network that is scalar linearly solvable
over the maximal ring but not over any other commutative ring
of the same size, which agrees with Theorems III.8 and II.16.

The network in the previous theorem is clearly also scalar
linearly solvable over the fields GF(8) and GF(4). So while
GF(8)×GF(4) is the only commutative ring of size 32 that the
network is scalar linearly solvable over, it is not the smallest
commutative ring the network is scalar linearly solvable over.
This fact agrees with Theorem II.10.

B. Non-Power-of-Prime Size Rings

Theorem II.10 demonstrated that scalar linear solutions over
commutative rings induce scalar linear solutions over finite
fields. For a network that is scalar linearly solvable over a
given commutative ring it is natural to ask over which fields
is the network also scalar linearly solvable. In this section, we
partially answer this question.

Theorem III.9 : Suppose a network is scalar linearly solv-
able over some commutative ring whose size is divisible by
the prime p. Then the network is scalar linearly solvable over
some finite field of characteristic p whose size divides the size
of the ring.

Proof: Let the commutative ring be R. By Lemma III.5,
there exist commutative local rings R1, . . . , Rn such that

R ∼= R1 × · · · × Rn .

So we have

|R| = |R1| · · · |Rn |
and since p divides |R|, there exists j ∈ {1, . . . , n} such that
p divides |R j |. By Lemma III.6 (i), this implies |R j | = pm

for some positive integer m. Therefore, by Lemma III.7,

R j 	 GF(pm).

Since N is scalar linearly solvable over R, by Lemma II.12,
N must be scalar linearly solvable over R j , and since
R j 	 GF(pm), N must also be scalar linearly solvable over
GF(pm). �

Theorem III.9 demonstrates that commutative rings of non-
power-of-prime size are always dominated by some fields
whose characteristics are the prime factors of the ring’s size.
Determining which fields dominate a particular ring appears
to be a non-trivial problem, since it depends on the local
decomposition of the ring. We address a select few cases.

The following result is a standard result of algebra and
shows that for each square-free integer m, any ring (with
identity) of size m must be isomorphic to a direct product
of prime fields. As an example, the ring Z6 is isomorphic to
GF(3) × GF(2).
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Lemma III.10 [2, p. 457]: Let p1, . . . , pn be distinct
primes. The commutative ring GF(p1)×· · ·×GF(pn) is the
only ring of size p1 · · · pn.

The following corollary shows that if a network is scalar
linearly solvable over a ring whose size is square-free, then
it must also be scalar linearly solvable over the prime fields
corresponding to its prime factors.

Corollary III.11: Let p1, . . . , pn be distinct primes. If
a network is scalar linearly solvable over a ring of size
p1 · · · pn, then the network is scalar linearly solvable over
each of the fields GF(p1), . . . , GF(pn).

Proof: By Lemma III.10, the only ring of size p1 · · · pn is
GF(p1)×· · ·×GF(pn). By Lemma II.12, any network that is
scalar linearly solvable over this ring must also have a scalar
linear solution over each of GF(p1), . . . , GF(pn). �

In general, one cannot specify in Theorem III.9 which
fields of characteristic p a particular network is scalar linearly
solvable over without knowing the particular ring R. As
an example, the following corollary illustrates that different
networks that are scalar linearly solvable over different rings
of size 12, may be scalar linearly solvable over different
finite fields. Additionally, Corollary III.12 demonstrates that
Corollary III.11 does not always hold when p1, . . . , pn are
non-distinct primes.

Corollary III.12: (i) If a network is scalar linearly solvable
over GF(4) × GF(3), then the network is scalar linearly solv-
able over GF(4) and GF(3) but not necessarily over GF(2).
(ii) If a network is scalar linearly solvable over Z12, then the
network is scalar linearly solvable over GF(2) and GF(3).

Proof: Part (i) follows from Lemma II.12 and the fact that
the Two-Six Network is scalar linearly solvable over GF(4)
and GF(3) but not over GF(2) (see Corollary II.18).

Part (ii) follows from Corollary II.7. �

IV. INTEGER PARTITIONS

This section focuses on using integer partitions to describe
a particular class of commutative rings that are direct products
of finite fields. These rings will then be used in Section V to
characterize commutative rings that are maximal.

For any positive integer k, a partition of k of length r is
a non-decreasing sequence of positive integers (a1, . . . , ar )
whose sum is equal to k. The length r of a partition A
is sometimes denoted |A|. Let �(k) denote the set of all
partitions of k.

Definition IV.1: For each prime p, and each partition A =
(a1, . . . , ar ) of k, define the product ring

RA,p =
r

∏

i=1

GF(pai ).

Let m ≥ 2 have prime factorization m = pk1
1 · · · pkt

t , and let
R ∈ R(m). We call R a partition ring if for each i = 1, . . . , t ,
there exists Ai ∈ �(ki) such that

R ∼=
t

∏

i=1

RAi ,pi .

We will refer to A1, . . . , At as the partitions of R.

As an example, if m = 864 = 2533, then

R = GF(22) × GF(22) × GF(21) × GF(32) × GF(31)

is a partition ring and the partitions of R are A1 = (2, 2, 1)
and A2 = (2, 1). Another partition ring of size 864 is

R = GF(24) × GF(21) × GF(33)

and the partitions of R are A1 = (4, 1) and A2 = (3).
As another special case, any field GF(pk) is a partition ring
whose partition is (k).

In later proofs, we will encounter direct products of fields
not given in terms of partitions; however, Lemma IV.2 demon-
strates that each such direct product is, in fact, a partition ring.

Lemma IV.2 : Every finite direct product of finite fields is
a partition ring.

Proof: Suppose q1, . . . , qs are (not necessarily distinct)
prime numbers and n1, . . . , ns are positive integers and define
the product ring

R =
s

∏

j=1

GF(q
n j
j ).

Let pk1
1 · · · pkt

t denote the prime factorization of the ring size
|R|, so that

pk1
1 · · · pkt

t = qn1
1 · · · qns

s .

For each j ∈ {1, . . . , s}, we have q j = pi for some unique
i ∈ {1, . . . , t}. Thus, for each i = 1, . . . , t , there exist positive

integers ri and ai,1 ≥ · · · ≥ ai,ri such that
ri∑

j=1

ai, j = ki and

s
∏

j=1

GF(q
n j
j ) ∼=

t
∏

i=1

ri∏

j=1

GF(p
ai, j
i ).

Let Ai = (ai,1, . . . , ai,ri ). Then for each i , Ai is a partition of
ki , and we have

R ∼=
t

∏

i=1

ri∏

j=1

GF(p
ai, j
i ) ∼=

t
∏

i=1

RAi ,pi .

�

A. Partition Division

Definition IV.3: Let A and B be partitions of k. We say
that A divides B and write A

∣
∣ B if for each element b of B,

there exists an element a of A such that a
∣
∣ b. We call the

relation “
∣
∣” partition division.

For each positive integer k, it can be verified that the
partition division relation is a quasi-order on the set �(k).
Throughout this paper, whenever we refer to a partition of an
integer as being maximal, we mean the partition is maximal
with respect to the relation

∣
∣ on the set of all partitions of the

same integer. In particular, a partition B of k is maximal if
and only if A

∣
∣ B whenever B

∣
∣ A, for all partitions A of k.

Sometimes distinct partitions of the same integer each divide
the other. For example, for each k ≥ 3, the partitions

(k − 1, 1) and (k − 2, 1, 1)
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of k divide one another. Hence partition division is not
anti-symmetric on �(k).

Lemma IV.4 demonstrates the connection between partition
division and dominance of partition rings. Lemma IV.4 is a
special case of Lemma III.2, where the direct products of finite
fields are based on partition rings.

Lemma IV.4 : Let m ≥ 2 have prime factorization m =
pk1

1 · · · pkt
t , and for each i = 1, . . . , t , let Ai and Bi be

partitions of ki . Then

RA1,p1 × · · · × RAt ,pt

is dominated by the ring

RB1,p1 × · · · × RBt ,pt

if and only if Ai divides Bi for all i .
Proof: For each i ∈ {1, . . . , t}, let Ai = (ai,1, . . . , ai,ri )

and Bi = (bi,1, . . . , bi,si ). Then

t
∏

i=1

RAi ,pi
∼=

t
∏

i=1

ri∏

j=1

GF(p
ai, j
i )

and

t
∏

i=1

RBi ,pi
∼=

t
∏

i=1

si∏

j=1

GF(p
bi, j
i ).

By Lemma III.2,

t∏

i=1

si∏

j=1

GF(p
ai, j
i ) 	

t∏

i=1

ri∏

j=1

GF(p
bi, j
i )

if and only if for each i ∈ {1, . . . , t} and each j ∈ {1, . . . , ri },
there exists l ∈ {1, . . . , si } such that ai,l

∣
∣ bi, j . However, the

latter condition is precisely Ai
∣
∣ Bi for all i . �

B. Maximal Partitions

The following lemma shows that if a partition divides
a partition that is not shorter than it, then it also divides
a partition which is shorter. This property will be used to
characterize maximal partitions in Theorems IV.6 and IV.9.

Lemma IV.5 : Let A and B be different partitions of k. If
|A| ≤ |B| and A

∣
∣ B, then there exists a partition C of k such

that |C| < |A| and A
∣
∣ C.

Proof: The proof uses induction on |B| − |A|. In this
proof, when we refer to elements of an integer partition as
being “distinct” we mean that the elements are in different
positions in the partition but possibly equal in value, i.e. if
i �= j , then ai and a j are distinct elements of A, even when
ai = a j .

• Base case: |B| − |A| = 0.
If no element of A divides multiple elements of B, then,
since |A| = |B|, each element of A must divide exactly
one element of B. Then there exists a permutation σ of

{1, . . . , |A|} such that ai divides bσ(i). Then

|A|
∑

i=1

bσ(i) =
|A|
∑

i=1

bi
[

from σ is a permutation
]

=
|B|
∑

i=1

bi [from |A| = |B|]

=
|A|
∑

i=1

ai [from A, B ∈ �(k)]

which implies ai = bσ(i) for all i . However, this contra-
dicts the assumption that A �= B.
So we may assume there exists an element a of A that
divides some distinct elements bi , b j of B. Let C be the
partition B with elements bi and b j removed and replaced
by (bi + b j ). Then C is a partition of k that is shorter
than A, and since a divides (bi + b j ), we have A

∣
∣ C.

• Induction step: Assume true whenever |B| − |A| < n
(where n ≥ 1).
Suppose |B| − |A| = n.
� Case: n = 1

Since |B| > |A| and A
∣
∣ B, there exists an element a

of A that divides some distinct elements bi , b j of B.
If there is a third distinct element bl of B such that
a

∣
∣ bl , then let C be the partition B with elements bi ,

b j , and bl removed and replaced by (bi + b j + bl).
Then C is a partition of k that is shorter than A, and
since a divides (bi + b j + bl), we have A

∣
∣ C.

If there is no such third distinct element bl , then
modify B by removing the elements bi and b j and
adding an element (bi +b j ). The new B is a partition
of k that is the same length as A, and since a divides
(bi + b j ), we have A

∣
∣ B. Since a divides both bi

and b j , we have a �= bi + b j , and since (bi + b j ) is
the only element of B that a divides, the value a is
not one of the elements of B. Hence B �= A, which
reduces to the base case n = 0.

� Case: n ≥ 2
Since |B| > |A| and A

∣
∣ B, there exists an element a

of A that divides some distinct elements bi , b j of B.
Modify the partition B by removing the elements bi

and b j and adding the element (bi +b j ). The new B
is a partition of k that is one shorter than before the
modification, and since a divides (bi + b j ), we have
A

∣
∣ B. This reduces to the case |B| − |A| = n − 1,

which is true by the induction hypothesis.
�

Theorem IV.6 : No maximal partition of k can divide any
other partition of k.

Proof: Any partition A is maximal if and only if the
equivalence class [A] is maximal (with respect to the induced
partial order under partition division), so it suffices to show
that if [A] is maximal, then [A] = {A}.

Let A be a maximal partition of k such that A is of minimal
length among the partitions in [A], and suppose B ∈ [A]−{A}.
Then |A| ≤ |B| and A

∣
∣ B, so by Lemma IV.5, there exists C ∈

�(k) such that |C| < |A| and A
∣
∣ C. Since [A] is maximal,
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we must have C
∣
∣ A, which implies C ∈ [A], but this violates

the minimum length of A in [A]. Thus, [A] = {A}. �
In theory, the maximal elements in a quasi-order could be

equivalent to another maximal element, i.e. the corresponding
equivalence class contains more than one element. However,
Theorem IV.6 implies the maximal partitions of k are precisely
the partitions of k that do not divide any other partition of k,
i.e. each maximal partition is in a distinct equivalence class.
This is a stronger maximality condition than the maximality
induced by the quasi-order.

Lemma IV.7 demonstrates a property of maximal partitions
that will be used in a later proof.

Lemma IV.7 : No element of a maximal partition of k is
divisible by a different element of the partition.

Proof: Let A = (a1, . . . , ar ) be a partition of k. Assume
there exist distinct i, j ∈ {1, . . . , r} such that ai divides a j .
Then ai divides (ai + a j ). Create a new partition B of k by
removing the elements ai and a j of A and inserting a new
element (ai +a j ). Then B �= A and A

∣
∣ B, so by Theorem IV.6,

A is not maximal. �
The converse of Lemma IV.7 does not necessarily hold. For

example, the partition (5, 3, 2) satisfies the latter condition
of Lemma IV.7, but (5, 3, 2)

∣
∣ (10), so (5, 3, 2) is not

maximal.

C. Maximal Partitions of Short Length

The following results provide a partial characterization of
the maximal partitions with respect to partition division.

Remark IV.8 : For each k ≥ 1, the partition (k) is maximal
since k does not divide any positive integer less than k.

Theorem IV.9 gives a complete characterization of the
maximal partitions of length 2.

Theorem IV.9 : Let k and m be positive integers such that
m ≤ k/2. The partition (k −m, m) of k is maximal if and only
if m � k.

Proof: Assume m
∣
∣ k. Then (k − m, m)

∣
∣ (k), so by

Theorem IV.6, (k − m, m) is not a maximal partition.
Now assume m � k. Then k �= 2m, so m < k/2, or

equivalently k−m > k/2. Thus, (k−m) � k, which means that
(k − m, m) does not divide (k). But (k) is the only partition
of k shorter than the partition (k − m, m), so by Lemma IV.5,
the partition (k − m, m) cannot divide any other partition of
k that is at least as long as (k − m, m). Thus (k − m, m) is
maximal. �

We can have maximal partitions of length 3 or greater, such
as (7, 6, 4), although we do not know of a nice characterization
of such partitions. In Table I, we provide a computer generated
list of all maximal partitions of k, for each k ≤ 30.

Theorem IV.10 : Let k be a positive integer. Then (k) is the
unique maximal partition of k if and only if k ∈ {1, 2, 3, 4, 6}.

Proof: For each positive integer k, by Remark IV.8, (k)
is a maximal partition. It is easily verified that the following
are all the partitions of k, for k ∈ {1, 2, 3, 4, 6}:

�(1) = {(1)}
�(2) = {(2), (1, 1)}
�(3) = {(3), (2, 1), (1, 1, 1)}

TABLE I

THE MAXIMAL PARTITIONS OF k = 1, 2, . . . , 30
UNDER PARTITION DIVISION

�(4) = {(4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1)}
�(6) = {(6), (5, 1), (4, 2), (4, 1, 1), (3, 3),

(3, 2, 1), (3, 1, 1, 1), (2, 2, 2),

(2, 2, 1, 1), (2, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1)} .

For each k ∈ {1, 2, 3, 4, 6}, every partition of k has an
element that divides k, so (k) is the only maximal partition for
such k.
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For each odd k ≥ 5, we have

gcd

(
k − 1

2
, k

)

= gcd

(
k − 1

2
, k − 2

(
k − 1

2

))

= gcd

(
k − 1

2
, 1

)

= 1 <
k − 1

2

so k−1
2 � k. Therefore

( k+1
2 , k−1

2

)

is a maximal partition, by
taking m = k−1

2 in Theorem IV.9.
For each even k ≥ 8, we have

gcd

(
k

2
− 1, k

)

= gcd

(
k

2
− 1, k − 2

(
k

2
− 1

))

= gcd

(
k

2
− 1, 2

)

≤ 2 <
k

2
− 1

so
( k

2 − 1
)

� k. Therefore
( k

2 + 1, k
2 − 1

)

is a maximal
partition, by taking m = k

2 − 1 in Theorem IV.9.
Thus if k = 5 or if k ≥ 7, then there exist at least two

maximal partitions of k. �

V. MAXIMAL COMMUTATIVE RINGS

In this section, we characterize the commutative rings which
are maximal with respect to the quasi-order of commutative
rings of a given size under dominance.

Corollary V.1 : If each of a partition ring’s integer partitions
is maximal, then the ring is not dominated by any other
partition ring of the same size.

Proof: Let m = pk1
1 · · · pkt

t be the prime factorization
of m. For each i = 1, . . . , t , let Ai , Bi ∈ �(ki) be such that
Ai is maximal. Suppose

t∏

i=1

RAi ,pi 	
t∏

i=1

RBi ,pi .

Then by Lemma IV.4, Ai
∣
∣ Bi for all i . Since each Ai is

maximal, by Theorem IV.6, Bi = Ai , for all i . Therefore
t

∏

i=1

RBi ,pi
∼=

t
∏

i=1

RAi ,pi .

�
Lemma V.2 extends Corollary V.1 to show that partition

rings, where each partition is maximal, are not dominated by
any other (not necessarily partition) commutative ring of the
same size.

Lemma V.2 : If each of a partition ring’s integer partitions
is maximal, then the ring is not dominated by any other
commutative ring of the same size.

Proof: Let m = pk1
1 · · · pkt

t be the prime factorization of
the size of the ring

R =
t

∏

i=1

RAi ,pi

where for each i = 1, . . . , t , the partition Ai = (ai,1, . . . , ai,ri )
of ki is maximal. Suppose R is dominated by a commutative
ring S of size m. We will show that R and S are isomorphic
rings.

By Lemma III.5, S can be written as a direct product of
commutative local rings, and by Lemma III.6 (i), the size of

each such local ring has to be a power of one of the prime
factors p1, . . . , pt of m. Specifically, for each i = 1, . . . , t ,
there exist local rings Li,1, . . . , Li,si such that each |Li, j | is a
power of pi and

S ∼=
t∏

i=1

si∏

j=1

Li, j . (5)

For each i = 1, . . . , t and j = 1, . . . , si , Lemma III.7 impies
that Li, j 	 GF(|Li, j |). Then,

t
∏

i=1

RAi ,pi 	
t

∏

i=1

si∏

j=1

Li, j [from R 	 S, (5)]

	
t∏

i=1

si∏

j=1

GF(|Li, j |) [from Lemma II.13] (6)

and the right-hand-side of (6) is a partition ring of size m, by
Lemma IV.2.

Since each Ai is maximal, by Corollary V.1 and (6), we
have

t
∏

i=1

si∏

j=1

GF(|Li, j |) ∼=
t

∏

i=1

RAi ,pi

∼=
t

∏

i=1

ri∏

j=1

GF(p
ai, j
i ). (7)

Therefore for each i = 1, . . . , t , we have si = ri , and by (7),
without loss of generality, we may assume |Li, j | = p

ai, j
i , for

all j = 1, . . . , ri .
For each i = 1, . . . , t and j = 1, . . . , ri , let Ii, j be the

maximal ideal of the local ring Li, j . Then, by Lemma III.6
(ii), for each i and j , there exists a positive integer bi, j such
that bi, j

∣
∣ ai, j and

GF(p
bi, j
i ) ∼= Li, j /Ii, j .

Corollary II.9 then implies

Li, j 	 GF(p
bi, j
i ) (i = 1, . . . , t and j = 1, . . . , ri ) (8)

and therefore

R ∼=
t

∏

i=1

ri∏

j=1

GF(p
ai, j
i )

	
t

∏

i=1

ri∏

j=1

Li, j [from R 	 S, (5)]

	
t

∏

i=1

ri∏

j=1

GF(p
bi, j
i ) [from (8), Lemma II.13] . (9)

Lemma III.2 and (9) imply that for each i ∈ {1, . . . , t} and
j ∈ {1, . . . , ri }, there exists l ∈ {1, . . . , ri } such that ai,l

∣
∣ bi, j .

We also have bi, j
∣
∣ ai, j , so ai,l

∣
∣ ai, j . Since Ai is maximal,

by Lemma IV.7, this implies l = j . Thus bi, j = ai, j , for all
i ∈ {1, . . . , t} and j ∈ {1, . . . , ri }, and therefore

Li, j /Ii, j ∼= GF(p
ai, j
i )
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for all i, j . However, we also have |Li, j | = p
ai, j
i for all i, j .

So it must be the case that |Ii, j | = 1, and

Li, j ∼= GF(p
ai, j
i ) (i = 1, . . . , t and j = 1, . . . , ri ). (10)

Thus,

S ∼=
t

∏

i=1

ri∏

j=1

GF(p
ai, j
i ) [from (5), (10)]

∼=
t∏

i=1

RAi ,pi
∼= R.

�
Lemmas V.2 and V.3 will be used in the proof of Theo-

rem V.4 to show that the maximal commutative rings with
respect to dominance are precisely partition rings where each
partition is maximal.

Lemma V.3 : Every finite commutative ring is dominated by
some partition ring of the same size, all of whose partitions
are maximal.

Proof: Let R be a finite commutative ring. By
Lemma III.5, there exist commutative local rings
R1, R2, . . . , Rn such that

R ∼=
n

∏

j=1

R j . (11)

By Lemma III.7, for each j = 1, . . . , n, we have

R j 	 GF(|R j |)
so by Lemma II.13, we have

n
∏

j=1

R j 	
n

∏

j=1

GF(|R j |). (12)

Let m = pk1
1 · · · pkt

t denote the prime factorization of m.
Then by Lemma IV.2, for each i = 1, . . . , t , there exists a
partition Bi of ki such that

t
∏

i=1

RBi ,pi
∼=

n
∏

j=1

GF(|R j |). (13)

Since �(ki ) is a finite quasi-ordered set under parti-
tion division, for each i = 1, . . . , t , there exists maximal
Ai ∈ �(ki) such that Bi

∣
∣ Ai . So we have

R ∼=
n∏

j=1

R j [from (11)]

	
n

∏

j=1

GF(|R j |) [from (12)]

∼=
t

∏

i=1

RBi ,pi [from (13)]

	
t

∏

i=1

RAi ,pi [from Lemma IV.4] .

�
The following theorem characterizes maximal commutative

rings.

Theorem V.4 : A finite commutative ring is maximal if and
only if it is a partition ring, each of whose integer partitions
is maximal.

Proof: If R is a partition ring such that each of its
partitions is maximal, then by Lemma V.2, no other commu-
tative ring of the same size dominates R. Thus, R is maximal.

Conversely, assume commutative ring R is maximal. By
Lemma V.3, R is dominated by a partition ring S of the
same size where each of its partitions is maximal. Since R is
maximal, this implies S 	 R. However, by Lemma V.2, this
implies S ∼= R. Thus, R is a partition ring such that each of
its partitions is maximal. �

Remark V.5 : Since the maximal rings of a given size are
partition rings where each integer partition is maximal, the
maximal rings of non-power-of-prime size are direct products
of maximal rings of prime-power sizes.

Corollary V.6 : Let m ≥ 2 have prime factorization m =
pk1

1 · · · pkt
t . Then GF(pk1

1 ) × · · · × GF(pkt
t ) is a maximal ring

of size m.
Proof: This follows from Theorem V.4 and Remark IV.8.

�
It was shown in Theorem II.19 and Corollary III.3 that non-

isomorphic rings can be equivalent under dominance; however,
Corollary V.7 demonstrates that such equivalent rings cannot
be maximal.

Corollary V.7 : No maximal commutative ring is dominated
by any other commutative ring of the same size.

Proof: This follows immediately from Theorem V.4 and
Lemma V.2 �

We note that this is a stronger maximality than the
maximality induced by the quasi-order, since in a quasi-
order, maximal elements can be equivalent to other maximal
elements.

Theorem II.16 demonstrated that for each finite field, there
exists a multicast network that is scalar linearly solvable over
the field but not over any other commutative ring of the same
size, and Theorem III.8 demonstrated a network that is scalar
linearly solvable over GF(8) × GF(4) but not over any other
commutative ring of size 32. The following theorem shows
a similar property for every maximal commutative ring and
provides an alternate characterization of maximal commutative
rings than in Theorem V.4.

Theorem V.8 : A finite commutative ring is maximal if and
only if there exists a network that is scalar linearly solvable
over the ring but not over any other commutative ring of the
same size.

Proof: Let R be a maximal commutative ring of size
m. By Corollary V.7, R is not dominated by any other
commutative ring of size m, so for each ring S of size m
that is not isomorphic to R, there exists a network NS that
is scalar linearly solvable over R but not S. Then the disjoint
union of networks

⋃

S∈R(m)
S �∼=R

NS

is scalar linearly solvable over R, since each NS is scalar
linearly solvable over R. However, for each S ∈ R(m), if S
is not isomorphic to R, then NS is not scalar linearly solvable
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over S, so the disjoint union of networks
⋃

S∈R(m)
S �∼=R

NS

is not scalar linearly solvable over S.
Conversely, if R is a finite commutative ring that is not

maximal, then it is dominated by some other commutative
ring S of the same size, so any network that is scalar linearly
solvable over R is also scalar linearly solvable over S. �

An interesting open problem related to Theorem V.8 is to
characterize rings with the property that there exists a multicast
network that is scalar linearly solvable over the ring but not
over any other commutative ring of the same size. We showed
(in Theorem II.16) that such a multicast network exists for
every finite field, and we showed (in Example II.11) that there
exists a multicast network that is scalar linearly solvable over
a ring of size 213 but not the field GF(213).

A. Multiple Maximal Rings of a Given Size

Theorem V.9 demonstrates that in some cases, there is only
one maximal commutative ring of a given size. If R is the only
maximal ring of a given size, then by Lemma V.3, any network
with a scalar linear solution over some commutative ring of
size |R| also has a scalar linear solution over R. Alternatively,
since the set of commutative rings of size |R| is finite and
quasi-ordered under dominance, each ring S ∈ R(|R|) is
dominated by some maximal ring, and if R is the only maximal
ring of size |R|, then S is dominated by R. In this case, R can
be thought of as the “best” commutative ring of size |R|, in
terms of scalar linear solvability.

However, by Theorem V.8, for each maximal ring, there
exists a network which is scalar linearly solvable over the
maximal ring but not over any other commutative ring of the
same size. When there are multiple maximal rings of a given
size, not every network with a scalar linear solution over some
commutative ring of this size is scalar linearly solvable over
every maximal ring. Thus there is no “best” commutative ring
of this size.

Theorem V.9 : Let m ≥ 2 have prime factorization m =
pk1

1 · · · pkt
t . Then GF(pkt

1 )×· · ·×GF(pkt
t ) is the only maximal

ring of size m if and only if {k1, . . . , kt } ⊆ {1, 2, 3, 4, 6}.
Proof: By Corollary V.6,

GF(pkt
1 ) × · · · × GF(pkt

t )

is a maximal ring. Assume ki ∈ {1, 2, 3, 4, 6} for all i . Then
by Theorem IV.10, (ki ) is the only maximal partition of ki for
all i . Thus, by Theorem V.4,

GF(pkt
1 ) × · · · × GF(pkt

t )

is the only maximal ring of size m.
Conversely, assume there exists j such that k j = 5 or

k j ≥ 7. Then by Theorem IV.10, there exists a maximal
partition B j of k j such that B j �= (k j ). Then by Theorem V.4,

RB j ,p j ×
t

∏

i=1
i �= j

GF(pki
i )

and

GF(pkt
1 ) × · · · × GF(pkt

t )

are distinct maximal rings of size m. �
The bound in the following corollary can be achieved with

equality, as illustrated in Example III.4.
Corollary V.10 : If a network is not scalar linearly solvable

over a given finite field but is scalar linearly solvable over
some commutative ring of the same size, then the size of the
field is at least 32.

Proof: It follows from Theorem V.9 that for each k ∈
{1, 2, 3, 4, 6} and prime p, any network that is scalar linearly
solvable over some commutative ring of size pk must also
be scalar linearly solvable over the field GF(pk). The claim
follows from the fact p = 2 and k = 5 yield the minimum pk

that does not satisfy this condition. �
In the following example, we list the maximal rings of

various sizes.
Example V.11 : For each integer k ≥ 1 and prime p, GF(pk)

is a maximal ring. The following are the other maximal
commutative rings of size pk for all k ≤ 12:

p5 : GF(p3) × GF(p2)

p7 : GF(p5) × GF(p2) and GF(p4) × GF(p3)

p8 : GF(p5) × GF(p3)

p9 : GF(p7) × GF(p2) and GF(p5) × GF(p4)

p10 : GF(p7) × GF(p3) and GF(p6) × GF(p4)

p11 : GF(p9) × GF(p2), GF(p8) × GF(p3),

GF(p7) × GF(p4), and GF(p6) × GF(p5)

p12 : GF(p7) × GF(p5).

GF(8) × GF(4) is the smallest prime-power size maximal
commutative ring that is not a finite field, and

GF(128) × GF(64) × GF(16)

has size 217 and is the smallest known8 prime-power size
maximal commutative ring consisting of a direct product of
more than two fields.

Maximal commutative rings of non-power-of-prime size are
direct products of maximal commutative rings of prime-power
size (see Remark V.5) and can be found using the maximal
partitions of the prime factor multiplicities. For example,
consider maximal rings of size 777600 = 273552. The max-
imal partitions of 7 are (7), (5, 2), and (4, 3); the maximal
partitions of 5 are (5) and (3, 2); and the only maximal
partition of 2 is (2). Hence the 6 maximal commutative rings of
size 777600 are

GF(27) × GF(35) × GF(52)

GF(25) × GF(22) × GF(35) × GF(52)

GF(24) × GF(23) × GF(35) × GF(52)

GF(27) × GF(33) × GF(32) × GF(52)

GF(25) × GF(22) × GF(33) × GF(32) × GF(52)

GF(24) × GF(23) × GF(33) × GF(32) × GF(52).

8If there were a prime-power size maximal commutative ring, consisting of a
direct product of more than two fields, and whose size were less than 217, then
there would exist a length-3 maximal partition of an integer less than 17. The
enumeration of maximal partitions given in Table I implies such a partition
does not exist.
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Table I provides a list of the maximal partitions of k for
k = 1, 2, . . . , 30, which can be used to find maximal com-
mutative rings of size m = pk1

1 · · · pkt
t , where k1, . . . , kt ≤ 30.

VI. OPEN QUESTIONS

Some potentially interesting open questions related to scalar
linear codes over commutative rings and partition division
include:

• We have demonstrated there exist non-multicast networks
with scalar linear solutions over commutative rings of
size pk but not GF(pk) whenever k = 5 or k ≥ 7. For
which p and k do there exist multicast networks with this
property?

• Are there cleaner characterizations of maximal rings of a
given size?

• Are there cleaner characterizations of maximal partitions
of length 3 or greater?

• What is the asymptotic behavior of the number of maxi-
mal partitions (rings, respectively) of a given integer (size,
respectively)?

• Can the quasi-order of (not necessarily commutative)
rings of a given size under dominance be cleanly char-
acterized? In particular, what are the maximal rings of a
given size when the commutative restriction is removed?
Non-commutative rings lack some of useful properties of
commutative rings, such as local decomposition.
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