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A Class of Non-Linearly Solvable Networks
Joseph Connelly, Student Member, IEEE, and Kenneth Zeger, Fellow, IEEE

Abstract— For each positive composite integer m, a network
is constructed, which is solvable over an alphabet of size m
but is not solvable over any smaller alphabet. These networks
have no linear solutions over any module alphabets and are not
asymptotically linearly solvable over any finite-field alphabets.
The networks’ capacities are all shown to equal one, and their
linear capacities are all shown to be bounded away from one
for all finite-field alphabets. In addition, if m is a non-power-of-
prime composite number, then such a network is not solvable
over any prime-power-size alphabet.

Index Terms— Capacity, linear coding, network solvability,
network coding.

I. INTRODUCTION

ANETWORK will refer to a finite, directed, acyclic multi-
graph, some of whose nodes are sources or receivers.

Source nodes generate k-dimensional vectors of messages,
where each of the k messages is an arbitrary element of a fixed,
finite set of size at least 2, called an alphabet. The elements
of an alphabet are called symbols. The inputs to a node are
the messages, if any, originating at the node and the symbols
carried by the incoming edges of the node. Each outgoing
edge of a network node carries a vector of n alphabet symbols,
called edge symbols. If a node has at most n input symbols,
then we will assume, without loss of generality, that each of its
out-edges carries all n of such symbols. Each outgoing edge
of a node has associated with it an edge function which maps
the node’s inputs to the output vector carried by the edge.
Each receiver node has demands, which are k-dimensional
message vectors the receiver wishes to obtain. Each receiver
also has decoding functions which map the receiver’s inputs
to k-dimensional vectors of alphabet symbols in an attempt to
satisfy the receiver’s demands.

A (k, n) fractional code over an alphabet A (or, more
briefly, a (k, n) code over A) is an assignment of edge
functions to all of the edges in a network and an assignment of
decoding functions to all of the receiver nodes in the network
such that message vectors are elements of Ak and edge vectors
are elements of An .

A (k, n) solution over A is a (k, n) code over A such that
each receiver recovers all k components of each of its demands
from its inputs.
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For linear network coding, we will focus attention on two
specific types of (k, n) codes:

- Case (1): k = n = 1 and the network alphabet is a module.
- Case (2): Any k, n and the network alphabet is a ring.
In a (1, 1) code over an R-module G, an edge or decoding

function f : Gi → G is linear over the R-module G if it can
be written in the form

f (x1, . . . , xi ) = (M1 · x1)⊕ · · · ⊕ (Mi · xi )

where x1, . . . , xi ∈ G are the node’s inputs, M1, . . . ,Mi ∈ R
are constants, ⊕ is the Abelian group operation, and · is the
action of the module. A (1, 1) code is said to be linear over
the R-module G if each edge function and decoding function
is linear over the R-module G. Note that for any R-module G
and positive integer k, the set Mk(R) of k × k matrices over
R with matrix addition and multiplication defined in the usual
way is a ring, and Gk is an Mk(R)-module. Hence a “vector
linear code” over a module is, in fact, a (1, 1) linear code over
a different module.

In a (k, n) fractional code over a ring R, an edge function

f : Rk × · · · × Rk
︸ ︷︷ ︸

i message vectors

× Rn × · · · × Rn
︸ ︷︷ ︸

j in-edges

−→ Rn

is linear over R if it can be written in the form

f (x1, . . . , xi , y1, . . . , y j )

= M1x1 + · · · + Mi xi + M ′
1 y1 + · · · + M ′

j y j (1)

where x1, . . . , xi ∈ Rk are message vectors originating at
the node, y1, . . . , y j ∈ Rn are edge vectors carried by the
incoming edges to the node, M1, . . . ,Mi are n×k matrices and
M ′

1, . . . ,M ′
j are n×n matrices whose entries are constant in R,

i.e. the edge symbol can be written as a linear combination
of the node’s inputs. Similarly, a decoding function is linear
if it has a form analogous to (1). A (k, n) code is said to be
linear over the ring R if each edge function and each decoding
function is linear over R.

A (1, 1) linear code over a ring R (also called a scalar
linear code over R) is a linear code over the R-module R,
where R acts on its own Abelian group by multiplication in R.
For each positive integer k, a (k, k) linear code over R (also
called a k-dimensional vector linear code over R) is a linear
code over the Mk(R)-module Rk . Hence scalar and vector
linear codes over rings are special cases of linear codes over
modules. When discussing linear codes over rings, we will
always specify the dimension (e.g. scalar, vector, or (k, n)),
but a linear code over a module will always refer to a (1, 1)
linear code.
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A network is defined to be
• solvable over A if there exists a (1, 1) solution over A,
• asymptotically solvable over A if for any ε > 0, there

exists a (k, n) solution over A for some k and n satisfying
k/n > 1 − ε,

• linearly solvable over the R-module G if there exists a
linear solution over the R-module G,

• scalar linearly solvable over the ring R if there exists a
(1, 1) linear solution over R,

• vector linearly solvable over the ring R if there exists a
(k, k) linear solution over R, for some k ≥ 1.

We say that a network is solvable if it is solvable over
some alphabet. A solvable network is able to communicate
at rate k/n = 1, and an asymptotically solvable network is
able to communicate at a rate arbitrarily close to 1. Since
scalar and vector linear codes over rings are special cases of
linear codes over modules, a network that is vector (or scalar)
linearly solvable over some ring is also linearly solvable over
some module. Conversely, a network with no linear solution
over any module also has no vector linear solutions over any
ring (or field). This paper focuses on solvable networks that
are not linearly solvable over any module.

The capacity1 of a network is:

sup{k/n : ∃ a (k, n) solution over some A}.
The linear capacity of a network with respect to a ring

alphabet R is:

sup{k/n : ∃ a (k, n) linear solution over R}.
It was shown in [4] that the capacity of a network is

independent of alphabet size, and it was noted that linear
capacity can depend on alphabet size.

A. Previous Work

One decade ago, it was demonstrated in [7] that there can
exist a solvable network which is not vector linearly solv-
able over any finite-field alphabet and any vector dimension.
To date, the network given in [7] is the only known example of
such a network published in the literature. In fact, the network
given in [7] was shown to not be linearly solvable over very
general algebraic types of alphabets, such as finite rings and
modules, and it was shown not to even be asymptotically
linearly solvable over finite-field alphabets. As a result, the net-
work has been described as “diabolical” by Kschischang [19]2

and Koetter [17].
The diabolical network has been utilized in numerous

extensions and applications of network coding, such as by
Krishnan and Rajan [18] for network error correction, and by
Rai and Dey [23] for multicasting the sum of messages to con-
struct networks with equivalent solvability properties, hence
showing that linear codes are insufficient for each problem. El
Rouayheb et al. [13] reduced the index coding problem to a
network coding problem, thereby using the diabolical network

1In the literature, this is sometimes referred to as the “coding capacity”
(as opposed to the routing capacity). For brevity, we will simply use the term
“capacity,” as we do not discuss routing capacity in this paper.

2The terminology was apparently attributed by F. Kschischang to M. Sudan.

to show that linear index codes are not necessarily sufficient.
Blasiak et al. [2] used index codes to create networks where
there is a polynomial separation between linear and non-linear
network coding rates. Chan and Grant [5] showed a duality
between entropy functions and network coding problems,
which allowed for an alternative proof of the insufficiency of
linear network codes.

We now summarize some of the existing results regarding
the solvability and linear solvability of multicast networks
(in which each receiver demands all of the messages) and
general networks (in which each receiver demands a subset
of the messages). Network codes were first presented by
Ahlswede et al. [1] as a method of improving the throughput
of a network; they presented the butterfly network, a variant of
which is scalar linearly solvable over every field but not solv-
able via routing. Li et al. [20] showed that if a multicast net-
work is solvable, then it is scalar linearly solvable over every
sufficiently large finite-field alphabet. In addition, Riis [25]
showed that every solvable multicast network has a binary
vector linear solution in some dimension. Feder et al. [15] and
Rasala Lehman and Lehman [24] both independently showed
that some solvable multicast networks asymptotically require
finite-field alphabets to be at least as large as twice the square
root of the number of receiver nodes in order to have a scalar
linear solution over the field.

Non-linear coding in multicast networks can offer advan-
tages such as reducing the alphabet size required for solv-
ability; Rasala Lehman and Lehman [24] presented a network
which is solvable over a ternary alphabet but has no scalar
linear solution over any field alphabet whose size is less
than five, and Riis [25] and also [9] demonstrated general
and multicast networks, respectively, which have scalar non-
linear binary solutions but no scalar linear binary solutions.
A multicast network was presented in [9] which is solvable
precisely over those alphabets whose size is neither 2 nor 6,
and Sun et al. [33] presented families of multicast networks
which are scalar linearly solvable over certain finite-field
alphabets but not over all larger finite-field alphabets.

Unlike multicast networks, general networks that are solv-
able do not necessarily have vector linear solutions over fields,
as demonstrated in [7]. Médard et al. [21] showed that there
can exist a network which is vector linearly solvable over
some field but is not scalar linearly solvable over any field.
Das and Rai [6] showed more generally that for each integer
m ≥ 2 the following holds: there exists a network with
k-dimensional vector linear solutions over an arbitrary field
if and only if k is a multiple of m. Sun et al. [31] compared
alphabet sizes using scalar and vector linear codes over fields,
where the vector alphabet size is |F|k . They showed that
in some cases, linear solutions may be obtained with vector
alphabet sizes that are smaller than any possible scalar solution
alphabet size. They also showed that in other cases, the oppo-
site result may be true. Similarly, Etzion and Wachter-Zeh [14]
showed that vector linear coding can significantly reduce the
required vector alphabet size compared to scalar coding.

Shenvi and Dey [29] showed that for networks with two
source-receiver pairs the following are equivalent: the net-
work is solvable, the network is vector linearly solvable



CONNELLY AND ZEGER: CLASS OF NON-LINEARLY SOLVABLE NETWORKS 203

over some field, the network satisfies a simple cut condition.
Cai and Han [3] showed that for a particular class of net-
works with three source-receiver pairs: the solvability can be
determined in polynomial time, being solvable is equivalent
to being scalar linearly solvable over some field, and finite-
field alphabets of size 2 or 3 are sufficient to construct scalar
linear solutions. In [11], the Fano and non-Fano networks
were shown to be solvable precisely over power-of-two and
odd alphabet sizes, respectively. For each integer m ≥ 2,
Rasala Lehman and Lehman [24] demonstrated a class of
networks which are not solvable over any alphabet whose size
is less than m and are solvable over all alphabets whose size
is a prime power greater than or equal to m. For each integer
m ≥ 3, Yuan and Kan [34] demonstrated a class of networks
which are not solvable over any alphabet whose size is less
than m and are solvable over all alphabets whose size is not
divisible by 2, 3, . . . ,m − 1.

Koetter and Médard [16] showed for every finite field F and
every network, the network is scalar linearly solvable over F

if and only if a corresponding system of polynomials has a
common root in F, and in [8] it was shown that for every finite
field F and any system of polynomials, there exists a corre-
sponding network which is scalar linearly solvable over F if
and only if the system of polynomials has a common root in F.
Subramanian and Thangaraj [30] showed an alternate method
of deriving a system of polynomials which corresponds to the
scalar linear solvability of a network, such that the degree of
each polynomial equation is at most 2. Presently, there are no
known algorithms for determining whether a general network
is solvable.

While networks that are linearly solvable over some module
are solvable, the converse need not be true. This paper demon-
strates infinitely many such counterexamples. There remain
numerous open questions regarding the existence of solvable
networks which are not linearly solvable over any module.
Are many/most solvable networks not linearly solvable? Can
such networks be efficiently characterized? Can such networks
be algorithmically recognized? We leave these questions for
future research.

B. Our Contributions

In this paper, we present an infinite class of solvable
networks which are not linearly solvable over any module
alphabet. We denote each such network as N4, and we
construct N4 from several intermediate networks denoted
by N1,N2, and N3, all of which are constructed from a
fundamental network building block B . Specifically, for each
positive composite number m, we describe how to construct a
network N4 which has a non-linear solution over an alphabet
of size m yet has no linear solution over any module alphabet,
including vector linear codes over rings and fields. In addition,
such a network is not solvable over any alphabet whose size
is less than m. The diabolical network in [7] was shown
to be non-linearly solvable over an alphabet of size 4. The
network in [7] was designed using matroid theory. Other
connections between networks and matroids were investigated,
for example, by [10], [13], [18], [22], [32], and [35].

The inspiration for the construction of networks N1, N2,
and N3 in order to construct N4 relates to specific solvability
properties of each of these component networks. The N1
networks are a generalization of the non-Fano network, the
N2 networks are a generalization of a modified Fano network
that also have non-linear solutions in some cases, and the
N3 networks are a generalization of a modified non-Fano
network that also have non-linear solutions in some cases.
We construct all of these component networks from the
same network building block B . As a result, we can more
easily characterize the solvability and linear solvability of
the networks, since the solvability of this network building
block was characterized in [34]. By combining the net-
works N1,N2, and N3 with certain parameters, we construct
non-linearly solvable networks.

We will now summarize the main results of this paper,
which all appear in Section VI. The network N4 is parame-
terized by an arbitrary integer m ≥ 2. Theorem VI.4 shows
that N4 is solvable over an alphabet of size m. Theorem VI.5
shows, however, that N4 is never solvable over alphabets
smaller than m. Theorem VI.8 shows that when m is prime,
N4 has a scalar linear solution over a field of size m.
In fact, for all non-prime integers m, the network N4 has no
linear solution, as demonstrated by Theorems VI.9 and VI.10.
In particular, Theorem VI.9 shows that when m is compos-
ite, no linear solution for N4 exists over any module, and
Corollary VI.11 shows that in such case, N4 is not even
asymptotically linearly solvable over any finite-field alphabet.
In the special case of m = 4, the demonstrated network N4
exhibits properties similar to the network presented in [7]. We
also demonstrate (in Corollary VI.6) that if m is a non-power-
of-prime composite (e.g. 6), then N4 is not solvable over any
prime-power size alphabets.

The diabolical network was shown in [7] to have capacity
equal to one, whereas its linear capacity is bounded away
from one for any finite-field alphabet. Analogously, we show
in Theorem VI.10 that for all m, the capacity of N4 equals
one, whereas for all composite m, its linear capacity over
any finite-field alphabet is bounded away from one. Related
capacity results are given for the constituent networks N0 (in
Lemma II.4), N1 (in Lemma III.4), N2 (in Lemma IV.7), and
N3 (in Lemma V.8). We do not see a straightforward method to
determine the linear capacity or asymptotic linear solvability
over more general ring alphabets, as many of the linear algebra
results used in this analysis do not extend to matrices over
general rings.

The rest of the paper is organized as follows. Table I
summarizes the networks created and the results in this paper.
Section I-C provides mathematical background and definitions.
Sections II-V present the building block networks which are
used to construct the main class of networks. Section VI details
the properties and construction of the main class of networks.
For each network family, we will discuss the solvability
properties, the linear solvability properties, and the capacity.
The Appendix contains the proofs of all but two of the lemmas
in this paper. All other proofs are given in the main body of
the paper.
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TABLE I

SUMMARY OF THE NETWORKS CONSTRUCTED IN THIS PAPER, WHERE m,m1,m2, AND w ARE INTEGERS SUCH THAT m,m1,m2 ≥ 2 AND w ≥ 1

Section VII poses some open questions regarding the
solvability and capacity of general networks.

C. Preliminaries

The following definitions and results regarding linear
network codes over modules are from [7] and [12].

Definition I.1: Let (R,+, ∗) be a ring with additive
identity 0R . An R-module (specifically a left R-module) is
an Abelian group (G,⊕) with identity 0G and an action

· : R × G → G

such that for all r, s ∈ R and all g, h ∈ G the following hold:

r · (g ⊕ h) = (r · g)⊕ (r · h)

(r + s) · g = (r · g)⊕ (s · g)

(r ∗ s) · g = r · (s · g).

The ring multiplication symbol ∗ will generally be omitted
for brevity. If the ring R has a multiplicative identity 1R , then
we also require 1R · g = g for all g ∈ G. For brevity, we say
that G is an R-module. 	 will denote adding the inverse of
an element (subtraction) within the group.

For any finite ring R with multiplicative identity, the
characteristic of R is denoted char(R) and is the smallest
positive integer m such that 1R added to itself m times
equals 0R . The characteristic of a finite field is always a prime
number.

The following definition describes a class of modules which
we use to discuss linear solvability in this paper.

Definition I.2: Let G be an R-module. We will say that G
is a standard R-module if

1) R acts faithfully on G; that is if r, s ∈ R are such that
r · g = s · g for all g ∈ G, then r = s.

2) R has a multiplicative identity 1R .
3) R is finite.
4) If r ∈ R has a multiplicative left (respectively, right)

inverse, then this element is a two-sided inverse, which
will be denoted r−1.

A finite commutative ring R, with a multiplicative identity,
acting on itself is a standard R-module. For each positive
integer k, the set Mk(R) of k × k matrices over R with matrix
addition and multiplication is a ring and Rk is a standard
Mk(R)-module. In particular, a field is a special case of a
commutative ring, so a vector (or scalar) linear code over
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field is, in fact, a special case of a linear code over a standard
module.

Lemma I.3 was proved in a slightly different form in the
proof of [7, Th. III.4].

Lemma I.3: If a network is not linearly solvable over any
standard module, then it is not linearly solvable over any
module.

The following definition was called Property P ′ by Yuan
and Kan [34]. They used this property to characterize the
solvability of classes of networks similar to N0 and N1, and
we will use it throughout this paper.

Definition I.4: Let m ≥ 2. A (1, 1) code for a network N
over an alphabet A, containing messages x0, x1, . . . , xm and
edge symbols e0, e1, . . . , em , e, is said to have Property P(m)
if there exists a binary operation

⊕ : A × A → A

and permutations π0, π1, . . . , πm and σ0, σ1, . . . , σm of A,
such that (A,⊕) is an Abelian group and the edge symbols
can be written as

ei = σi

⎛

⎜

⎜

⎝

m
⊕

j=0
j 
=i

π j (x j )

⎞

⎟

⎟

⎠

(i = 0, 1, . . . ,m)

e =
m
⊕

j=0

π j (x j ).

II. NETWORK N0(m)

For each m ≥ 2, the network building block B(m) is
defined in Figure 1 and is used to build network N0(m),
which is defined in Figure 2. For each i , the node vi within
B(m) has a single incoming edge from node ui , so without
loss of generality, we may assume both outgoing edges of
vi carry the symbol ei . Similarly, we may assume each of
the outgoing edges of the node v carries the symbol e.
Lemma II.2 demonstrates that for each m ≥ 2, the (1, 1)
solutions of network N0(m) are precisely those codes which
satisfy Property P(m), defined in Definition I.4. In particular,
the solution alphabets have to be permutations of Abelian
groups.

Remark II.1: The network N0(m) has m + 1 source nodes,
2(m +2) intermediate nodes, and m +1 receiver nodes, so the
total number of nodes in N0(m) is 4m + 6.

Lemma II.2 characterizes the solvability of N0(m) and will
be used in the proofs of the solvability conditions of N1,N2,
and N3. This lemma was proved in a slightly different form
in [34, Proposition 3.2].

Lemma II.2: Let m ≥ 2. A (1, 1) code over an alphabet
A is a solution for network N0(m) if and only if the code
satisfies Property P(m).

The following result regarding the linear solvability of
N0(m) will be used in later proofs.

Lemma II.3: Let m ≥ 2 and let G be a standard R-module.
Suppose a linear solution for network N0(m) over G has edge

Fig. 1. The network building block B(m) has message vector inputs
y0, y1, . . . , ym (from unspecified source nodes) and m + 1 output edges. The
node u receives each of the inputs and has a single outgoing edge to the node
v , which carries the edge symbol e. For each i , the node ui receives each of
the inputs except yi and has a single outgoing edge to the node vi , which
carries the edge symbol ei . The receiver node Ri has an incoming edge from
vi and an incoming edge from v and demands the ith message vector yi . The
ith output edge of B(m) is an outgoing edge of node vi .

Fig. 2. The network N0(m) consists of a block B(m) together with
source nodes S0, S1, . . . , Sm , which generate message vectors x0, x1, . . . , xm ,
respectively. The output edges of B(m) are unused.

symbols

ei =
m
⊕

j=0
j 
=i

(

ci, j · x j
)

(i = 0, 1, . . . ,m)

e =
m
⊕

j=0

(

c j · x j
)

and decoding functions

Ri : xi = (

di,e · e
)⊕ (di · ei ) (i = 0, 1, . . . ,m)

where ci, j , c j , di,e, di ∈ R. Then each ci, j , c j , di,e, and di is
invertible in R, and

ci, j = −d−1
i di,e c j (i, j = 0, 1, . . . ,m and j 
= i).
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Fig. 3. The network N1(m) is constructed from a B(m) block together
with source nodes S0, S1, . . . , Sm and an additional receiver Rx . For each i ,
the source node Si generates the message vector xi and is the ith input to
B(m). The additional receiver Rx receives all of the output edges of B(m)
and demands the message vector x0.

Lemma II.4 characterizes the capacity and linear capacity of
N0, and this lemma will be used to upper bound the capacities
of N1, N2, and N3 in the proofs of Lemmas III.4, IV.7, and
V.8, respectively.

Lemma II.4: The network N0(m) has capacity and linear
capacity, for any finite-field alphabet, equal to 1.

III. NETWORK N1(m)

For each m ≥ 2, network N1(m) is defined in Figure 3.
The special case m = 2 corresponds to the non-Fano network
from [10] and [11], with a relabeling of messages and nodes.
Lemmas III.2, III.3, and III.4, respectively, demonstrate that
network N1(m) is

1) solvable over A only if |A| is relatively prime to m,
2) linearly solvable over standard R-module G if and only

if char(R) is relatively prime to m,
3) asymptotically linearly solvable over finite field F if and

only if char(F) does not divide m.

Remark III.1: Network N1(m) is a network N0(m) with
one additional receiver node, so the total number of nodes in
N1(m) is 4m + 7.

A. Solvability of N1(m)

The following lemma also follows from [34, Proposi-
tion 4.1] and characterizes a condition on the alphabet size
necessary for the solvability of N1(m).

Lemma III.2: For each m ≥ 2, if network N1(m) is
solvable over alphabet A, then m and |A| are relatively prime.

B. Linear Solvability of N1(m)

Lemma III.3 presents a necessary and sufficient condition
for the linear solvability of N1(m) over standard modules.

Lemma III.3: Let m ≥ 2, and let G be a
standard R-module. Then network N1(m) is linearly solvable
over G if and only if char(R) is relatively prime to m.

For example, for each q ≥ 2 relatively prime to m, network
N1(m) has a scalar linear solution over the ring Zq , since Zq

is a standard Zq -module and char
(

Zq
) = q . It then follows

from Lemma III.2 that network N1(m) is solvable over A if
and only if |A| is relatively prime to m.

C. Capacity and Linear Capacity of N1(m)

The following lemma characterizes the capacity and the
linear capacity over finite-field alphabets of N1(m).

Lemma III.4: For each m ≥ 2, network N1(m) has:

(a) capacity equal to 1,
(b) linear capacity equal to 1 for any finite-field alphabet

whose characteristic does not divide m,
(c) linear capacity equal to

1 − 1

2m + 2

for any field alphabet whose characteristic divides m.

IV. NETWORK N2(m, w)

For each m ≥ 2 and w ≥ 1, network N2(m, w) is defined in
Figure 4. We note that N2(m, 1) and N1(m + 1) have similar
structure, but in network N1(m + 1) each of the output edges
of B(m + 1) is connected to Rx , and in network N2(m, 1) all
but one of the output edges of B(m + 1) are connected to Rz .
This disconnected edge causes the difference in solvability
properties of the two networks. Lemmas IV.4, IV.5, IV.6, and
IV.7 demonstrate that network N2(m, w) is:

1) non-linearly solvable over an alphabet of size mw,
if w ≥ 2,

2) solvable over A only if |A| is not relatively prime to m,
3) linearly solvable over standard R-module G if and only

if char(R) divides m,
4) asymptotically linearly solvable over finite field F if and

only if char(F) divides m.

Remark IV.1: For each m ≥ 2 and w ≥ 1, the network
N2(m, w) has:

w(m + 1)+ 1 source nodes,

w(2m + 6) intermediate nodes,

w(m + 2)+ 1 receiver nodes,

so the total number of nodes in N2(m, w) is 4mw+ 9w+ 2.

A. Solvability of N2(m, w)

For each positive integer m, we will view the ring Zm as the
set {0, 1, . . . ,m −1} together with addition and multiplication
modulo m. This ring will be used to construct non-linear
solutions in Lemmas IV.2, IV.4, V.2, and V.4.

For each m, w ≥ 2 and each a ∈ Zmw , a receiver cannot
uniquely determine the symbol a in Zmw from the symbol
wa ∈ Zmw since the integer w is not invertible in Zmw .

For example, if a receiver receives wa = 0 in Zmw , then
the symbol a could be any element in the set

{0,m, 2m, . . . , (w − 1)m}.
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Fig. 4. The network N2(m, w) is constructed from w blocks of B(m + 1) together with w(m + 1) + 1 source nodes and an additional receiver Rz . The
lth block is denoted B(l)(m + 1), and the nodes and edge symbols within B(l)(m + 1) are denoted with a superscript l. For each l = 1, 2, . . . , w, the block
B(l)(m +1) has inputs from source nodes S(l)1 , S(l)2 , . . . , S(l)m+1, which generate message vectors x(l)1 , x(l)2 , . . . , x(l)m+1. The shared message vector z is generated

by source node Sz and is the 0th input to each B(l)(m + 1). Each of the output edges of B(l)(m + 1), except the 0th, is an input to the shared receiver Rz ,
which demands the shared message vector z.

The following lemma describes a technique for recovering
the value of a via a decoding function ψ from the w-tuple

wπ1(a),wπ2(a), . . . , wπw(a),

where each πi is a particular permutation of Zmw . This
technique will then be used to show that network N2(m, w)
is solvable over an alphabet of size mw.

Lemma IV.2: For each m ≥ 2 and w ≥ 1, there exists a
mapping ψ : Zwmw → Zmw and permutations π1, π2, . . . , πw
of Zmw such that for all a ∈ Zmw ,

ψ (wπ1(a),wπ2(a), . . . , wπw(a)) = a.

Lemma IV.2 will be used in the proof of Lemma IV.4 to
show that the receiver Rz can recover z from its inputs.

Example IV.3: The following table illustrates the permuta-
tions of Z12 described in Lemma IV.2 for the case m = 4 and
w = 3.

a = π3(a) π2(a) π1(a) 3π3(a) 3π2(a) 3π1(a)
0 0 0 0 0 0
1 1 1 3 3 3
2 2 2 6 6 6
3 3 3 9 9 9
4 4 5 0 0 3
5 5 6 3 3 6
6 6 7 6 6 9
7 7 4 9 9 0
8 9 8 0 3 0
9 10 9 3 6 3

10 11 10 6 9 6
11 8 11 9 0 9

For each a ∈ Z12, the triple

(3π3(a), 3π2(a), 3π1(a)) ∈ Z3
12

is distinct, so a can be uniquely determined from 3π3(a),
3π2(a), and 3π1(a).

The proof of Lemma IV.4 describes a (possibly non-linear)
solution for N2(m, w) over the ring Zmw .

Lemma IV.4: For each m ≥ 2 and w ≥ 1, network
N2(m, w) is solvable over an alphabet of size mw.

Proof: Let ψ and π1, π2, . . . , πw be the mapping and
permutations, respectively, from Lemma IV.2. Define a (1, 1)
code for network N2(m, w) over the ring Zmw for each l =
1, 2, . . . , w by:

e(l)0 =
m+1
∑

j=1

x (l)j

e(l)i = πl(z)+
m+1
∑

j=1
j 
=i

x (l)j (i = 1, 2, . . . ,m + 1)

e(l) = πl(z)+
m+1
∑

j=1

x (l)j .

For each l = 1, 2, . . . , w, the receivers within each
B(l)(m + 1) block can recover their respective demands as
follows:

R(l)0 : π−1
l

(

e(l) − e(l)0

)

= z

R(l)i : e(l) − e(l)i = x (l)i (i = 1, 2, . . . ,m + 1).
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For each l = 1, 2, . . . , w, we have

w

m+1
∑

i=1

e(l)i = w(m + 1) πl(z)+ mw
m+1
∑

j=1

x (l)j

= wπl(z) [from mw = 0 mod mw] . (2)

Receiver Rz can recover z from its inputs as follows:

Rz : ψ
(

w

m+1
∑

i=1

e(1)i , w

m+1
∑

i=1

e(2)i , . . . , w

m+1
∑

i=1

e(w)i

)

= ψ (wπ1(z), wπ2(z), . . . , wπw(z))

= z [from (2) and Lemma IV.2] .

Thus the code described above is, in fact, a solution for the
network N2(m, w).

In the code given in the proof of Lemma IV.4, if w = 1,
then π1 and ψ are identity permutations, so the code is linear.
However if w > 1, then π1, π2, . . . , πw−1 are generally
non-linear, so the code is non-linear.

Lemma IV.5: For each m ≥ 2 and w ≥ 1, if network
N2(m, w) is solvable over alphabet A, then m and |A| are
not relatively prime.

Lemmas IV.4 and IV.5 together provide a partial
characterization of the alphabet sizes over which network
N2 is solvable. However, these conditions are sufficient for
showing our main results.

B. Linear Solvability of N2(m, w)

Lemma IV.6 characterizes a necessary and sufficient con-
dition for the linear solvability of network N2(m, w) over
standard modules.

Lemma IV.6: Let m ≥ 2 and w ≥ 1, and let G be a
standard R-module. Then network N2(m, w) is linearly solv-
able over G if and only if char(R) divides m.

By Lemma IV.4, for every m, w ≥ 2, network N2(m, w) is
solvable over the ring Zmw , but char(Zmw) = mw � m so by
Lemma IV.6, the solution is necessarily non-linear.

C. Capacity and Linear Capacity of N2(m, w)

The following lemma provides a partial characterization of
the linear capacity of N2(m, w) over finite-field alphabets.

Lemma IV.7: For each m ≥ 2 and w ≥ 1, network
N2(m, w) has

(a) capacity equal to 1,
(b) linear capacity equal to 1 for any finite-field alphabet

whose characteristic divides m,
(c) linear capacity upper bounded by

1 − 1

2mw + 2w + 1

for any finite-field alphabet whose characteristic does not
divide m.

Improving these upper bounds on the linear capacities
and/or finding codes at these rates are left as open problems.
The problems appear to be non-trivial, and such improvements
are unrelated to the main results of this paper.

V. NETWORK N3(m1,m2)

For each m1,m2 ≥ 2, network N3(m1,m2) is defined
in Figure 5. We note that N2(m, 2) and N3(m + 1,m + 1)
have similar structure, with the exception of the disconnected
output edge of each B(m + 1) in N2(m, 2). This disconnected
edge causes the difference in solvability properties of the
two networks. Corollary V.7 and Lemmas V.5, V.6, and V.8
demonstrate that network N3(m1,m2) is:

1) non-linearly solvable over an alphabet of size tmα+1
1 , if

m2 = smα
1 , where α, s, t ≥ 1 and s and t are relatively

prime to m1,
2) solvable over alphabet A only if |A| is relatively prime

to m1 or |A| does not divide m2,
3) linearly solvable over standard R-module G if and only

if gcd(char(R),m1,m2) = 1,
4) asymptotically linearly solvable over finite field F if and

only if char(F) is relatively prime to m1 or m2.
Remark V.1: For each m1,m2 ≥ 2, the network

N3(m1,m2) has m1 + m2 + 1 source nodes, 2(m1 + m2 + 4)
intermediate nodes, and m1 + m2 + 3 receiver nodes, so the
total number of nodes in N3(m1,m2) is 4m1 + 4m2 + 12.

A. Solvability of N3(m1,m2)

The following lemmas demonstrate that N3(m1,m2) is non-
linearly solvable when m2 = smα

1 , where α ≥ 1 and s is
relatively prime to m1. Consider the ring alphabet Zmα+1

1
. For

every a ∈ Zmα+1
1

, a receiver cannot uniquely determine a
symbol a from the symbols m1a and smα

1 a, since the integer
m1 is not invertible in Zmα+1

1
. For example, if a receiver

receives

m1a = smα
1 a = 0 ∈ Zmα+1

1
,

then the symbol a could be any element in the set

{0,mα
1 , 2mα

1 , . . . , (m1 − 1)mα
1 }.

The following lemma describes a technique for recovering
the value of a via a decoding function ψ from m1π1(a) and
smα

1π2(a), where π1 and π2 are particular permutations of
Zmα+1

1
. This technique will be used to show that, in some

cases, network N3 has non-linear solutions.
Lemma V.2: Let m ≥ 2 and α, s ≥ 1 be integers such that

s is relatively prime to m. Then there exist permutations π1
and π2 of Zmα+1 and a mapping ψ : Z2

mα+1 → Zmα+1 such
that for all a ∈ Zmα+1 ,

ψ
(

mπ1(a), smαπ2(a)
) = a.

Lemma V.2 will be used in the proof of Lemma V.4
to show that the receiver Rz can recover z from its
inputs.

Example V.3: The table below illustrates the permutations
of Z8 described in Lemma V.2 for the case m = 2, s = 3, and
α = 2.
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Fig. 5. The network N3(m1,m2) is constructed from B(m1) and B(m2) blocks together with m1 + m2 + 1 source nodes and an additional receiver Rz .
The blocks are denoted B(1)(m1) and B(2)(m2) respectively, and for each l = 1, 2, the nodes and edge symbols in B(l)(ml ) are denoted with a superscript l.
Each B(l)(ml) block has inputs from source nodes S(l)1 , S(l)2 , . . . , S(l)ml , which generate message vectors x(l)1 , x(l)2 , . . . , x(l)ml . The shared message vector z is
generated by source node Sz and is the 0th input to B(l)(ml ). The additional receiver Rz receives all of the output edges of B(1)(m1) and B(2)(m2) and
demands the shared message vector z.

a = π2(a) π1(a) 12π2(a) 2π1(a)
0 0 0 0
1 4 4 0
2 1 0 2
3 5 4 2
4 2 0 4
5 6 4 4
6 3 0 6
7 7 4 6

For each a ∈ Z8, the pair (2π1(a), 12π2(a)) ∈ Z2
8

is distinct. Hence a can uniquely be determined from
2π1(a) and 12π2(a).

Lemma V.4: Let m1,m2 ≥ 2 and α, s ≥ 1 be integers such
that m2 = smα

1 and s is relatively prime to m1. Then network
N3(m1,m2) is solvable over an alphabet of size mα+1

1 .
Proof: Let π1, π2 and ψ be the permutations and map-

ping, respectively, from Lemma V.2. Define a (1, 1) code
for the network N3(m1,m2) over the ring Zmα+1

1
, for each

l = 1, 2, by:

e(l)0 =
ml
∑

j=1

x (l)j

e(l)i = πl(z)+
ml
∑

j=1
j 
=i

x (l)j (i = 1, 2, . . . ,ml)

e(l) = πl(z)+
ml
∑

j=1

x (l)j .

For each l = 1, 2, the receivers within the block B(l)(ml) can
recover their respective demands as follows:

R(l)0 : π−1
l

(

e(l) − e(l)0

)

= z

R(l)i : e(l) − e(l)i = x (l)i (i = 1, 2, . . . ,ml).

For each l = 1, 2, we have

− mle
(l)
0 +

ml
∑

i=0

e(l)i

= −ml

ml
∑

j=1

x (l)j + mlπl(z)+ ml

ml
∑

j=1

x (l)j

= mlπl(z). (3)

The receiver Rz can recover z from its inputs as follows:

ψ

(

−m1e(1)0 +
m1
∑

i=0

e(1)i , −m2e(2)0 +
m2
∑

i=0

e(2)i

)

= ψ (m1π1(z), m2π2(z)) [from (3)]

= ψ
(

m1π1(z), smα
1π2(z)

) [

from m2 = smα
1

]

= z [from Lemma V.2] .

Thus the code described above is, in fact, a solution for the
network N3(m1,m2).

In the code given in the proof of Lemma V.4, the permuta-
tion π1 is non-linear, so the code is non-linear.

Lemma V.5: Let m1,m2 ≥ 2. If network N3(m1,m2) is
solvable over alphabet A and |A| divides m2, then m1 and |A|
are relatively prime.
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Lemmas V.4 and V.5 together provide a partial characteriza-
tion of the alphabet sizes over which network N3 is solvable.
However, these conditions are sufficient for showing our main
results.

B. Linear Solvability of N3(m1,m2)

Lemma V.6 characterizes a necessary and sufficient con-
dition for the linear solvability of network N3(m1,m2) over
standard modules.

Lemma V.6: Let m1,m2 ≥ 2, and let G be a standard
R-module. Then network N3(m1,m2) is linearly solvable
over G if and only if gcd(char(R),m1,m2) = 1.

Corollary V.7 uses Lemmas V.4 and V.6 to show that
network N3 is solvable over additional alphabet sizes.

Corollary V.7: Let m1,m2 ≥ 2 and α, s, t ≥ 1 be integers
such that m2 = smα

1 and s and t are relatively prime to m1.
Then the network N3(m1,m2) is solvable over an alphabet of
size tmα+1

1 .
Proof: By Lemma V.4, the network N3(m1,m2) is

solvable over an alphabet of size mα+1
1 . Zt is a standard

Zt -module and char(Zt ) = t is relatively prime to m1, so
by Lemma V.6, the network N3(m1,m2) is scalar linearly
solvable over the ring Zt . By taking the Cartesian product
code of these solutions, the network N3(m1,m2) is solvable
over an alphabet of size tmα+1

1 .
For each m1 ≥ 2 and α, s ≥ 1 such that s is relatively prime

to m1, let m2 = mα
1 s. By Lemma V.4, network N3(m1,m2)

is solvable over the ring Zmα+1
1
, but in this case we have

gcd
(

m1,m2, char
(

Zmα+1
1

))

= gcd
(

m1,mα
1 s,mα+1

1

)

= m1 
= 1.

So, by Lemma V.6, the solution is necessarily non-
linear. This also implies that the Cartesian product code
in Corollary V.7 is necessarily non-linear.

C. Capacity and Linear Capacity of N3(m1,m2)

Since the characteristic of any finite field is prime, the con-
ditions of (b) and (c) of the following lemma are complements
of one another.

Lemma V.8: For each m1,m2 ≥ 2, network N3(m1,m2)
has

(a) capacity equal to 1,
(b) linear capacity equal to 1 for any finite-field alphabet

whose characteristic is relatively prime to m1 or m2,
(c) linear capacity equal to

1 − 1

2m1 + 2m2 + 3

for any finite-field alphabet whose characteristic divides
m1 and m2.

VI. NETWORK N4(m)

A disjoint union of networks refers to a new network
formed by combining existing networks with disjoint sets
of nodes, edges, sources, and receivers. Specifically, the
nodes/edges/sources/receivers in the resulting network are

the disjoint union of the nodes/edges/sources/receivers in the
smaller networks.

Remark VI.1: The disjoint union of networks N1, . . . ,Nw ,
has a (k, n) solution over the alphabet A if and only if each
of N1, . . . ,Nw has a (k, n) solution over A.

For any integer m ≥ 2, let ω(m) denote the number of
distinct prime factors of m. Denote the prime factorization
of m by

m = pγ1
1 · · · p

γω(m)
ω(m)

where γ1, . . . , γω(m) ≥ 1 and p1, . . . , pω(m) are dis-
tinct primes. The following functions of m and its prime
divisors will be used throughout this section. For each
i = 1, . . . , ω(m), let

f (m) = pγ1−1
1 · · · p

γω(m)−1
ω(m) (4)

μ(m, i) = min
{

α ≥ 0 : pαi ≥ f (m)
}

(5)

g(m, i) = pγi−1
i

ω(m)
∏

j=1
j 
=i

pμ(m, j )
j . (6)

We construct network N4(m) from the following disjoint
union 3 of networks:

N4(m) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⋃

prime q
q�m

q< f (m)

N1(q)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

∪
⎛

⎝

ω(m)
⋃

i=1

N2
(

pγi
i , (m/pγi

i )
)

⎞

⎠

∪

⎛

⎜

⎜

⎝

ω(m)
⋃

i=1
γi>1

N3 (pi , g(m, i))

⎞

⎟

⎟

⎠

. (7)

Theorem VI.2: For each m ≥ 2, the network N4(m) is:
1) solvable over an alphabet of size m,
2) not solvable over any alphabet whose size is less than m,
3) not solvable over any prime-power-size alphabet, if m

is not a prime power,
4) scalar linearly solvable over GF(m), if m is prime,
5) neither linearly solvable over any module alphabet nor

asymptotically linearly solvable over any finite-field
alphabet if m is composite.

Proof: The theorem follows immediately from Theo-
rems VI.4, VI.5, VI.8, VI.9, and Corollaries VI.6 and VI.11.

Example VI.3: Consider the special cases of the square-free
integer 4 6, the prime power 27, and the integer 100 which is
neither square-free nor a prime power.

• m = 6 = 2131. We have γ1 = γ2 = 1 and

f (6) = 2(1−1)3(1−1) = 1,

3When node (respectively, edge and message) labels are repeated
(e.g. N1(m1) and N1(m2) both have receiver Rx ), add additional superscripts
to each node (respectively, edge and message) to avoid repeated labels. Each
disjoint network has a set of messages, nodes, and edges which is disjoint to
every other network’s set in the union. The messages, nodes, and edges are
not directly referenced in this section, so the additional level of labeling is
arbitrary so long as the networks are disjoint.

4An integer is square-free if it is not divisible by the square of any prime.
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so N4(6) has neither N1 nor N3 components. Thus by (7),
network N4(6) is the disjoint union of networks:

N2(2, 3) ∪ N2(3, 2).

• m = 27 = 33. We have

f (27) = 3(3−1) = 9 and g(27, 1) = 3(3−1) = 9,

and the primes less than f (27) which do not divide 27
are 2, 5, and 7. Thus by (7), network N4(6) is the disjoint
union of networks:

N1(2) ∪ N1(5) ∪ N1(7) ∪ N2(27, 1) ∪ N3(3, 9).

• m = 100 = 2252. We have

f (100) = 2(2−1)5(2−1) = 10.

Then μ(100, 1) = 4, since

24 > f (100) > 23,

and μ(100, 2) = 2, since

52 > f (100) > 51.

So

g(100, 1) = 2152 and g(100, 2) = 5124,

and the primes less than f (100) which do not divide 100
are 3 and 7. Thus by (7), network N4(100) is the disjoint
union of networks:

N1(3) ∪ N1(7) ∪ N2(4, 25) ∪ N2(25, 4)

∪N3(2, 50) ∪ N3(5, 80).

We will use the networks described in Example VI.3 as
running examples throughout this section and will refer back
to these constructions.

A. Solvability of N4(m)

The following lemma shows that each disjoint component
of N4(m) is solvable over an alphabet of size m, and there-
fore N4(m) is solvable over an alphabet of size m. The
proofs of Theorems VI.4 and VI.5 make use of the functions
f, μ, and g defined in (4), (5), and (6), respectively.

Theorem VI.4: For each m ≥ 2, network N4(m) is solvable
over an alphabet of size m.

Proof: Let pγ1
1 · · · p

γω(m)
ω(m) be the prime factorization of m.

For each prime q < f (m) such that q � m, by (7), network
N4(m) contains a copy of N1(q). Zm is a standard Zm-module
and char(Zm) = m is relatively prime to q , so by Lemma III.3,
network N1(q) is scalar linearly solvable over the ring Zm .

For each i = 1, . . . , ω(m), by (7), network N4(m) con-
tains a copy of N2

(

pγi
i , (m/pγi

i )
)

. By Lemma IV.4, network
N2
(

pγi
i , (m/pγi

i )
)

is solvable over an alphabet of size m.
For each i = 1, . . . , ω(m) such that γi > 1, by (7), network

N4(m) contains a copy of N3(pi , g(m, i)). Also, pi and
m/pγi

i are relatively prime, and by (6), g(m, i) is the product
of pγi−1

i and a term which is relatively prime to pi , so by
Corollary V.7, network N3 (pi , g(m, i)) is solvable over an
alphabet of size m.

Thus each disjoint component of N4(m) is solvable over an
alphabet of size m, so N4(m) is solvable over an alphabet of
size m.

Each network N1,N2, and N3 requires the alphabet size to
meet some divisibility condition in order to have a solution
over that alphabet. The following lemma shows that because
of these conditions, there does not exist an alphabet whose
size is less than m over which each component of N4(m) is
solvable.

Theorem VI.5: For each m ≥ 2, if network N4(m) is
solvable over alphabet A, then |A| ≥ m.

Proof: Assume to the contrary that N4(m) is solvable
over an alphabet A such that |A| < m. Then each disjoint
component of N4(m) must be solvable over A.

Let m have prime factorization

m = pγ1
1 · · · p

γω(m)
ω(m) .

For each i = 1, . . . , ω(m), by (7), network N4(m) contains
a copy of N2

(

pγi
i , (m/pγi

i )
)

. Network N2
(

pγi
i , (m/pγi

i )
)

is
solvable over A, so by Lemma IV.5, pi is not relatively prime
to |A|. Since pi is prime, we have pi

∣

∣ |A|, and thus each of
p1, . . . , pω(m) divides |A|. Let

δ = |A|
p1 · · · pω(m)

.

If m = p1 · · · pω(m) (i.e. m is square-free), then we
contradict the assumption that |A| < m.

So we may assume m > p1 · · · pω(m), which implies δ ≥ 2.
If δ ≥ f (m), then

|A| = δ p1 · · · pω(m)
≥ f (m) p1 · · · pω(m)
= pγ1

1 · · · p
γω(m)
ω(m) = m [from (4)] ,

which again contradicts the assumption that |A| < m, so we
assume δ < f (m).

Consider the prime factorization of δ. Let {q1, . . . , qρ}
denote the set of primes which are less than f (m) and do
not divide m. Each prime less than f (m) either divides m and
is in the set {p1, . . . , pω(m)} or it does not divide m and is in
the set {q1, . . . , qρ}. Thus δ must be a product of q1, . . . , qρ
and p1, . . . , pω(m) terms, so there exist α1, . . . , αω(m) ≥ 1 and
β1, . . . , βρ ≥ 0 such that we can write |A| as

|A| = pα1
1 . . . p

αω(m)
ω(m) qβ1

1 . . . q
βρ
ρ . (8)

For each prime q < f (m) such that q � m, by (7), network
N4(m) contains a copy of N1(q). Network N1(q) is solvable
over A, so by Lemma III.2, we have gcd(q, |A|) = 1. Thus
in (8) we have β1 = · · · = βρ = 0.

For each i = 1, . . . , ω(m) such that γi > 1, by (7),
network N4(m) contains a copy of N3(pi , g(m, i)). Network
N3(pi , g(m, i)) is solvable over A and pi

∣

∣ |A|, so by
Lemma V.5, |A| does not divide g(m, i). Expressing |A| and
g(m, i) as their prime factorizations yields:

pα1
1 . . . p

αω(m)
ω(m) 


∣

∣

∣ pγi−1
i

ω(m)
∏

j=1
j 
=i

pμ(m, j )
j [from (6), (8)] .
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This implies that for each i ∈ {1, . . . , ω(m)} such that
γi > 1, either αi ≥ γi or α j ≥ μ(m, j)+ 1 for some j 
= i .
If there exists j ∈ {1, . . . , ω(m)} such that

α j ≥ μ(m, j)+ 1,

then we have

|A| = pα1
1 · · · p

αω(m)
ω(m) [from (8)]

≥ p
α j−1
j

(

p1 · · · pω(m)
)

[from αl ≥ 1]

≥ pμ(m, j )
j

(

p1 · · · pω(m)
)

≥ f (m)
(

p1 · · · pω(m)
) = m [from (4), (5)] ,

which contradicts the assumption that |A| < m. So it must be
the case that αi ≥ γi , for each i such that γi > 1. If γi = 1,
then αi ≥ 1 = γi . So we have αi ≥ γi for all i , but this
implies

|A| = pα1
1 · · · p

αω(m)
ω(m) [from (8)]

≥ pγ1
1 · · · p

γω(m)
ω(m) = m,

which again contradicts the assumption that |A| < m.
Thus there does not exist an alphabet A whose size is less

than m such that each disjoint component of N4(m) is solvable
over A.

Corollary VI.6 demonstrates that, in some cases, network
N4(m) is not solvable over any prime-power size alphabets.
In particular, such a solvable network is not solvable over any
finite-field alphabet.

Corollary VI.6: For each non-power-of-prime composite
number m ≥ 6, network N4(m) is not solvable over any prime-
power-size alphabet.

Proof: Let m = pγ1
1 · · · p

γω(m)
ω(m) , and assume network

N4(m) is solvable over the alphabet A. It follows from the of
the proof of Theorem VI.5 that each of p1, . . . , pω(m) must
divide |A|. If ω(m) ≥ 2, then network N4(m) is not solvable
over any prime-power-size alphabet.

Example VI.7: We continue our example networks N4(6),
N4(27), and N4(100).

• Suppose N4(6) is solvable over an alphabet A. Since
N2(2, 3) is solvable over A, we have 2

∣

∣ |A|. Similarly for
N2(3, 2), we have that 3

∣

∣ |A|. Hence we have |A| ≥ 6.
• Suppose N4(27) is solvable over an alphabet A whose

size is less than 27. Then
– N2(27, 1) requires 3

∣

∣ |A|, so

|A| ∈ {3, 6, 9, 12, 15, 18, 21, 24}.
– N1(2), N1(5), and N1(7) require |A| be relatively

prime to 2, 5, and 7, so

|A| 
∈ {6, 12, 15, 18, 21, 24}.
– N3(3, 9) requires |A| � 9, so

|A| 
∈ {3, 9}.
Therefore N4(27) is not solvable over any alphabet whose
size is less than 27.

• Suppose N4(100) is solvable over an alphabet A whose
size is less than 100. Then

– N2(4, 25) and N2(25, 4) require 10
∣

∣ |A|, so

|A| ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90}.
– N1(3) and N1(7) require |A| to be relatively prime

to 3 and 7, so

|A| 
∈ {30, 60, 70, 90}.
– N3(2, 50) requires |A| � 50, so

|A| 
∈ {10, 50}.
– N3(5, 80) requires |A| � 80, so

|A| 
∈ {10, 20, 40, 80}.
Therefore N4(100) is not solvable over any alphabet
whose size is less than 100.

B. Linear Solvability of N4(m)

The following theorems show that network N4(m) is
linearly solvable if and only if m is prime.

Theorem VI.8: For each prime p, the network N4(p) is
scalar linearly solvable over GF(p).

Proof: If p is a prime number, then f (p) = 1 and the
power of p is one, so by (7), network N4(p) consists solely
of a copy of network N2(p, 1). By Lemma IV.6, network
N2(p, 1) has a scalar linear solution over every finite-field
alphabet with characteristic p.

Theorem VI.9: For each composite number m, the
network N4(m) is not linearly solvable over any module.

Proof: Let G be a standard R-module, and assume a linear
solution for N4(m) exists over G. Since N4(m) is linearly
solvable over G, each disjoint component of N4(m) is linearly
solvable over G. Suppose m is a composite number. Then m
is a product of two or more (possibly distinct) primes. We will
separately consider the cases of prime powers and non-power-
of-prime composite numbers.

For each prime p and integer γ ≥ 2, by (7), network
N4(pγ ) contains copies of N2(pγ , 1) and N3

(

p, pγ−1
)

.
Since network N2(pγ , 1) is linearly solvable over G, by
Lemma IV.6, the characteristic of R divides pγ . Since network
N3
(

p, pγ−1
)

is linearly solvable over G, by Lemma V.6, the
characteristic of R is relatively prime to p. If the characteristic
of R both divides pγ and is relatively prime to p, then the
characteristic of R is 1, which only occurs in the trivial ring
(of size one). Thus there is no standard module over which
all components of network N4(pγ ) are linearly solvable.

Now suppose ω(m) ≥ 2. Then m has prime factorization

m = pγ1
1 · · · p

γω(m)
ω(m) ,

and by (7), network N4(m) contains copies of networks
N2
(

pγ1
1 , (m/pγ1

1 )
)

and N2
(

pγ2
2 , (m/pγ2

2 )
)

. Both of these
networks are linearly solvable over G, so by Lemma IV.6,
the characteristic of R divides pγ1

1 and pγ2
2 . Since p1 
= p2,

the characteristic of R must be 1, which only occurs in the
trivial ring. Thus there is no standard module over which all
components of network N4(m) are linearly solvable.

If m is a composite number, then there are no linear
solutions for N4(m) over any standard module, which, by
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Lemma I.3 implies there are no linear solutions for N4(m)
over any module.

C. Capacity and Linear Capacity of N4(m)

Theorem VI.10: For each m ≥ 2 network N4(m) has:
(a) capacity equal to 1,
(b) linear capacity bounded away from 1 over all finite-field

alphabets, if m is composite.
Proof: For each m ≥ 2, by Theorem VI.4, network

N4(m) is solvable over an alphabet of size m, so its capacity
is at least 1. Network N4(m) consists of disjoint copies of
N1,N2, and N3, which each have capacity equal to 1, so the
capacity of N4(m) is at most 1. Thus the capacity of N4(m) is
equal to 1. For composite m, we will again separately consider
the cases of prime powers and non-power-of-prime composite
numbers.

For each prime p and integer γ ≥ 2, by (7), network
N4(pγ ) contains copies of N2(pγ , 1) and N3

(

p, pγ−1
)

.
By Lemma IV.7, network N2(pγ , 1) has linear capacity upper
bounded by

1 − 1

2 pγ + 3

for finite-field alphabets with characteristic other than p.
By Lemma V.8, network N3

(

p, pγ−1
)

has linear capacity
equal to

1 − 1

2 pγ−1 + 2 p + 3

for finite-field alphabets with characteristic p. Whether we
select a finite-field alphabet with characteristic p or character-
istic other than p, the linear capacity of N4(pγ ) is bounded
away from 1, for fixed p and γ .

Now suppose ω(m) ≥ 2. Then m has prime factorization

m = pγ1
1 · · · p

γω(m)
ω(m) ,

and by (7), the network N4(m) contains copies of net-
work N2

(

pγ1
1 , (m/pγ1

1 )
)

and network N2
(

pγ2
2 , (m/pγ2

2 )
)

.
By Lemma IV.7, network N2

(

pγi
i , (m/pγi

i )
)

has linear capac-
ity upper bounded by

1 − 1

2m + 2(m/pγi
i )+ 1

for finite-field alphabets with characteristic other than pi .
Since p1 
= p2, whether we select a finite-field alphabet with
characteristic p1, p2, or neither p1 nor p2, the linear capacity
is bounded away from 1, for fixed m.

Thus for any fixed composite number m, the linear capacity
of network N4(m) is bounded away from 1 over all finite-field
alphabets.

Calculating the exact linear capacity of network N4 over
every finite-field alphabet is left as an open problem.

Corollary VI.11: For each composite m, network N4(m)
is not asymptotically linearly solvable over any finite-field
alphabet.

Proof: This follows directly from the fact that for any
fixed composite number m, by Theorem VI.10, the linear
capacity of N4(m) is bounded away from one over all finite-
field alphabets.

D. Size of N4(m)

Depending on the prime divisors of m, the number of nodes
in N4(m) can be dominated by nodes from N1 networks,
N2 networks, or N3 networks. The following theorem makes
use of the functions f (m), μ(m, i), and g(m, i) defined
in (4), (5), (6).

Theorem VI.12: For each m ≥ 2, the number of nodes in
network N4(m) is asymptotically

(a) �(m),
(b) O(m), when mis prime,

(c) O

(

m log m

log log m

)

, when m is square-free,

(d) O

(

m2

log m

)

,when m is a prime-power,

(e) O

(

m
log m

log log m

)

, when m is neither square-free text nor

a prime-power.
Proof: By Remark III.1, the number of nodes in N1(q)

is

4q + 7.

By Remark IV.1, the number of nodes in N2(m, w) is

4mw + 9w + 2.

By Remark V.1, the number of nodes in N3(m1,m2) is

4m1 + 4m2 + 12.

By the construction of N4(m) given in (7), the total number
of nodes in N4(m) is:

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∑

prime q
q�m

q< f (m)

(4q + 7)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+
⎛

⎝

ω(m)
∑

i=1

(4m + 9(m/pγi
i )+ 2)

⎞

⎠

+

⎛

⎜

⎜

⎝

ω(m)
∑

i=1
γi>1

(4g(m, i)+ 4 pi + 12)

⎞

⎟

⎟

⎠

(9)

where the first, second, and third terms are the number of
nodes from N1, N2, and N3 networks, respectively. In order
to find upper and lower bounds on the total number of
nodes in N4(m), we will first find upper and lower bounds
on the number of nodes from N1,N2, and N3 networks
within N4(m).

It is known [27, p. 257] that
∑

prime q
q≤m

q = O

(

m2

log m

)

. (10)

If m is a square-free number, then we have f (m) = 1, so
in this case, there are no nodes in N4(m) from N1 networks.
Thus for general m, we have

∑

prime q
q�m

q< f (m)

(4q + 7) ≥ 0 (11)
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and
∑

prime q
q�m

q< f (m)

(4q + 7) <
∑

prime q
q≤m

(4q + 7) (12)

= O

(

m2

log m

)

[from (10)] . (13)

The total number of nodes in N4(m) from N2 networks is
ω(m)
∑

i=1

(4m + 9(m/pγi
i )+ 2) >

ω(m)
∑

i=1

4m

= � (ω(m)m) (14)

and
ω(m)
∑

i=1

(4m + 9(m/pγi
i )+ 2) <

ω(m)
∑

i=1

(13m + 2)

= O (ω(m)m) . (15)

For each i = 1, . . . , ω(m) we have

pμ(m,i)i < pi f (m) [from (5)] (16)

g(m, i) = pγi−1
i

ω(m)
∏

j=1
j 
=i

pμ(m, j )
j [from (6)]

< pγi−1
i

ω(m)
∏

j=1
j 
=i

p j f (m) [from (16)]

< pγi
i f (m)ω(m)−1

ω(m)
∏

j=1

p j

= pγi
i f (m)ω(m)−2 m [from (4)] . (17)

If m is square-free, then γi = 1 for all i , so in this case,
there are no nodes in N4(m) from N3 networks. Thus for
general m, we have

ω(m)
∑

i=1
γi>1

(4g(m, i)+ 4 pi + 12) ≥ 0. (18)

and
ω(m)
∑

i=1
γi>1

(4g(m, i)+ 4 pi + 12)

≤
ω(m)
∑

i=1

20g(m, i) [from (6)]

< 20m f (m)ω(m)−2
ω(m)
∑

i=1

pγi
i [from (17)]

< 20m f (m)ω(m)−2
ω(m)
∏

i=1

pγi
i [from ab ≥ a + b, ∀a, b ≥ 2]

= 20m2 f (m)ω(m)−2

< 20mω(m) = O
(

mω(m)
)

[from (4)] . (19)

To prove part (a), consider the lower bounds of each term
of (9). By equations (9), (11), (14), and (18), the total number
of nodes in N4(m) is lower bounded by:

0 +�(ω(m)m)+ 0 = �(ω(m)m) = �(m),

where the final equality comes from the fact ω(m) = �(1),
since ω(m) = 1 when m is prime.

It follows from [26, Th. 11] that

ω(m) = O
(

log m
log log m

)

. (20)

To prove parts (b)-(e), we will consider the upper bounds on
the number of nodes of each term of (9). However, each term
dominates in different cases, depending on the prime factors
of m.

To prove parts (b) and (c), consider a square-free integer

m = p1 · · · pω(m).

Since γi = 1 for all i , we have f (m) = 1, so there are
neither N1 nor N3 components in N4(m). Thus there are
0 nodes from N1 and N3 components. Then by (9) and (15),
the number of nodes in N4(m) is O(ω(m)m). If m is prime,
then ω(m) = 1, so we have the desired bound. If m is not
prime, then the number of nodes is O(ω(m)m), which, along
with (20), yields the desired bound.

To prove part (d), consider a prime power m = pγ , where
γ ≥ 2. We have ω (pγ ) = 1, so by (15), the number of nodes
from N2 components is O(m), and, by (19), the number of
nodes from N3 components is O(m). By (13), the number of
nodes from N1 components is O(m2/ log m). Thus the number
of nodes in N4(m) is O(m2/ log m).

To prove part (e), consider m which is neither a prime power
(so ω(m) ≥ 2) nor square-free (so there are N3 components
in N4(m)). By equations (9), (13), (15), and (19), The number
of nodes in N4(m) is

O

(

m2

log m

)

+ O (ω(m)m)+ O
(

mω(m)
)

= O
(

mω(m)
)

[from ω(m) ≥ 2] ,

which, along with (20), yields the desired bound.
Example VI.13: We continue our example networks N4(6),

N4(27), and N4(100).

• N4(6) has 97 nodes:

53 from N2(2, 3) 44 from N2(3, 2).

• N4(27) has 256 nodes:

15 from N1(2), 27 from N1(5),

35 from N1(7), 119 from N2(27, 1),

60 from N3(3, 9).

• N4(100) has 1691 nodes:

19 from N1(3), 35 from N1(7),

627 from N2(4, 25), 438 from N2(25, 4),

220 from N3(2, 50), 352 from N3(5, 80).
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VII. OPEN QUESTIONS

Below are some remaining open questions regarding linear
and non-linear network coding:

1) In [7] it was shown that there exists a network which
is not linearly solvable over any module yet is non-
linearly solvable over an alphabet of size 4. We have
shown that for each composite number m, there exists a
network which is not linearly solvable over any module
yet is non-linearly solvable over an alphabet of size m.
Do there exist networks which are not linearly solvable
over any module but are non-linearly solvable over some
alphabet of prime size?

2) There are examples [24], [34], in the literature of solv-
able networks which are not solvable over any alphabet
whose size is less than some m. For each m ≥ 2, we
have demonstrated a network which is solvable over an
alphabet of size m but is not solvable over any alphabet
whose size is less than m. For each m ≥ 2 does there
exist a network which is solvable over alphabet A if and
only if |A| ≥ m? Which other “interesting” sets S ⊆ N
have the property that there exists a network which is
solvable over A if and only if |A| ∈ S?

3) It is not currently known whether there can exist an algo-
rithm which determines whether a network is solvable.
We have demonstrated a class of solvable networks with
no linear solutions (i.e. diabolical networks). Can there
exist an algorithm which detects whether a network is
diabolical?

4) We partially characterized the linear capacities of N1,
N2, and N3 over finite-field alphabets. However, the
techniques we use do not extend more general ring
alphabets. What techniques exist for upper bounding the
linear capacities over ring alphabets?

APPENDIX

We say that a positive integer m is invertible in R if there
exists m−1 ∈ R such that m−1 (m1R) = 1R , where (m1R)
denotes 1R added to itself m times. Specifically,

m−1 =
⎛

⎝1R + · · · + 1R
︸ ︷︷ ︸

m adds

⎞

⎠

−1

.

Lemma A.1 is relatively straightforward to show, and thus
its proof is omitted. This lemma discusses properties of
multiplicative inverses in rings and will be used in the proofs
of Lemmas III.3 and V.6 to more easily characterize the classes
of modules over which N1 and N3 are linearly solvable.

Lemma A.1: For each finite ring R with a multiplicative
identity and each positive integer m, the integer m is invertible
in R if and only if char(R) and m are relatively prime.

The following definition and lemmas will be used in the
proofs of Lemmas III.4, IV.7, and V.8.

Definition A.2: Let F be a finite field and suppose

a1 ∈ F
s1, . . . , aq ∈ F

sq and b1 ∈ F
t1, . . . , br ∈ F

tr

are functions of variables x1, . . . , xw. We write

a1, . . . , aq −→ b1, . . . , br

to mean that there exist t j × si matrices M j,i over F such that
for all choices of the variables x1, . . . , xw,

b j =
q
∑

i=1

M j,i ai ( j = 1, . . . , r).

I.e. each of b1, . . . , br can be written as a linear combination
of a1, . . . , aq . In the context of network coding, the variables
x1, . . . , xw will always be taken as the network messages.
Lemma A.3 is known from linear algebra [28, p. 124] and
will be used in later proofs. In particular, Lemmas A.3, A.4,
and A.5 will be used in bounding the linear capacities of
N1,N2, and N3.

Lemma A.3: Let F be a finite field. If A : F
m → F

n and
B : F

k → F
m are linear maps, then

rank (A)+ rank (B)− m

≤ rank (A B) (21)

≤ min(rank (A) , rank (B)). (22)

The following two lemmas were proved in slightly different
form in [7, Lemma IV.2, Th. IV.4].

Lemma A.4: If A is an n × k matrix of rank k over finite
field F, then there exists a nonsingular n × n matrix B such
that

B A =
[

Ik

0

]

.

In what follows, the transitive relation −→ will be used to
describe linear coding functions at network nodes.

Lemma A.5: If A is an m × n matrix of rank k over finite
field F, then there exists an (n − k) × n matrix Q over F of
rank n − k such that for all x ∈ F

n

Ax, Qx −→ x .

A. Proofs of Lemmas in Section II

Proof of Lemma II.3: Equating message components at the
receiver Ri yields

1R = di,e ci (i = 0, 1, . . . ,m)

0R = di,e c j + di ci, j (i, j = 0, 1, . . . ,m and j 
= i)

which implies the following elements of R are invertible:

di,e and ci (i = 0, 1, . . . ,m)

di and ci, j (i, j = 0, 1, . . . ,m and j 
= i).

The result then follows by solving for ci, j .
Proof of Lemma II.4: Let G be a standard R-module.

The network N0(m) has the following linear solution
over G:

ei =
m
⊕

j=0
j 
=i

x j (i = 0, 1, . . . ,m)

e =
m
⊕

j=0

x j
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and decoding at each receiver as follows:

Ri : e 	 ei = xi (i = 0, 1, . . . ,m).

A scalar linear solution over a finite-field alphabet is a
special case of a linear solution over a standard module.
Therefore N0(m) is scalar linearly solvable over any
finite-field alphabet, so the linear capacity of N0(m) for
any finite-field alphabet is at least 1. The only path for
message vector x0 to reach the receiver R0 is through the
edge connecting nodes u and v, so its capacity is at most 1.
Thus, both the capacity of N0(m) and its linear capacity for
any finite-field alphabet are equal to 1.

B. Proofs of Lemmas in Section III

Proof of Lemma III.2: Assume N1(m) is solvable over A.
Network N1(m) consists of a network N0(m) with the addi-
tional receiver Rx , so by Lemma II.2, the edge functions
within B(m) must satisfy Property P(m). Thus, there exists
an Abelian group (A,⊕) and permutations π0, π1, . . . , πm

and σ0, σ1, . . . , σm of A, such that the edges carry the
symbols:

ei = σi

⎛

⎜

⎜

⎝

m
⊕

j=0
j 
=i

π j (x j )

⎞

⎟

⎟

⎠

(i = 0, 1, . . . ,m) (23)

e =
m
⊕

j=0

π j (x j ).

Now suppose to the contrary that m and |A| share a prime
factor p. By Cauchy’s Theorem of Finite Groups [12, p. 93],
there exists a nonzero element a in the group A whose order
is p. Since p

∣

∣m, we have

a ⊕ · · · ⊕ a
︸ ︷︷ ︸

m adds

= 0.

Define two collections of messages as follows:

x j = π−1
j (0) and x̂ j = π−1

j (a),

where j = 0, 1, . . . ,m. Since a 
= 0 and each π j is bijective,
it follows that x j 
= x̂ j for all j .

By Property P(m), for each i = 0, 1, . . . ,m, we have

ei = σi

⎛

⎝0 ⊕ · · · ⊕ 0
︸ ︷︷ ︸

m adds

⎞

⎠ = σi (0) [from (23)]

for the messages x0, x1 . . . , xm , and

ei = σi

⎛

⎝a ⊕ · · · ⊕ a
︸ ︷︷ ︸

m adds

⎞

⎠ = σi (0) [from (23)]

for the messages x̂0, x̂1 . . . , x̂m . For both collections of mes-
sages, the edge symbols e0, e1, . . . , em are the same, and
therefore the decoded value x0 at Rx must be the same.
However, this contradicts the fact that x0 
= x̂0.

Proof of Lemma III.3: By Lemma A.1, m is invertible in R
if and only if char(R) is relatively prime to m, so it suffices

to show that for each m and each standard R-module G,
network N1(m) is linearly solvable over G if and only if m
is invertible in R.

Assume network N1(m) is linearly solvable over the stan-
dard R-module G. The messages are drawn from G, and
there exist ci, j , c j ∈ R, such that the edge symbols can be
written as:

ei =
m
⊕

j=0
j 
=i

(

ci, j · x j
)

(i = 0, 1, . . . ,m) (24)

e =
m
⊕

j=0

(

c j · x j
)

(25)

and there exist di,e, di , dx,i ∈ R, such that each receiver can
linearly recover its demands from its inputs by:

Ri : xi = (

di,e · e
)⊕ (di · ei ) (i = 0, 1, . . . ,m) (26)

Rx : x0 =
m
⊕

i=0

(

dx,i · ei
)

. (27)

Since N1(m) contains N0(m), by Lemma II.3 and
(24)–(26), each ci and each di is invertible in R, and

ci, j = −d−1
i di,e c j (i, j = 0, 1, . . . ,m and j 
= i). (28)

Equating message components at Rx yields:

1R =
m
∑

i=1

dx,i ci,0 [from (24), (27)]

= −
m
∑

i=1

dx,i d−1
i di,e c0 [from (28)] (29)

and for each j = 1, 2, . . . ,m,

0R =
m
∑

i=0
i 
= j

dx,i ci, j [from (24), (27)]

= −

⎛

⎜

⎜

⎝

m
∑

i=0
i 
= j

dx,i d−1
i di,e

⎞

⎟

⎟

⎠

c j [from (28)] . (30)

For each j = 1, 2, . . . ,m, right multiplying (30) by c−1
j c0

yields

0R =
m
∑

i=0
i 
= j

dx,i d−1
i di,e c0. [from (30)] . (31)

By summing (31) over j = 1, 2, . . . ,m and subtracting (29),
we get

−1R =
m
∑

j=0

m
∑

i=0
i 
= j

dx,i d−1
i di,e c0 [from (29), (31)]

= m
m
∑

i=0

dx,i d−1
i di,e c0.

Therefore, m is invertible in R.
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To prove the converse, let G be a standard R-module such
that m is invertible in R. Define a linear code over G by:

ei =
m
⊕

j=0
j 
=i

x j (i = 0, 1, . . . ,m)

e =
m
⊕

j=0

x j .

Receiver Ri can linearly recover xi from its received edge
symbols e and ei by:

Ri : e 	 ei = xi (i = 0, 1, . . . ,m)

and receiver Rx can linearly recover x0 from its received edge
symbols e0, e1, . . . , em by:

Rx :
(

m−1 ·
m
⊕

i=0

ei

)

	 e0 =

⎛

⎜

⎜

⎝

m−1 ·
m
⊕

i=0

m
⊕

j=0
j 
=i

x j

⎞

⎟

⎟

⎠

	
m
⊕

j=1

x j

=
m
⊕

j=0

x j 	
m
⊕

j=1

x j = x0.

Thus the code is a linear solution for N1(m).
Proof of Lemma III.4: Since a scalar linear solution over

a finite-field alphabet is a special case of a linear solution
over a standard module, by Lemma III.3, N1(m) is scalar
linearly solvable over any finite-field alphabet whose charac-
teristic does not divide m, so the network’s linear capacity
for such finite-field alphabets is at least 1. By Lemma II.4,
network N0(m) has capacity equal to 1, and since N1(m)
contains N0(m), the capacity of N1(m) is at most 1. Thus, both
the capacity of N1(m) and its linear capacity for field alphabets
whose characteristic does not divide m are equal to 1.

To prove part (c), consider a (k, n) fractional linear solution
for N1(m) over a finite field F whose characteristic divides m.
Since char(F)

∣

∣m, we have m = 0 in F.
We have xi ∈ F

k and e, ei ∈ F
n , with n ≥ k, since the

capacity is one. There exist n × k coding matrices M j ,Mi, j

with entries in F, such that the edge vectors can be written as:

ei =
m
∑

j=0
j 
=i

Mi, j x j (i = 0, 1, . . . ,m) (32)

e =
m
∑

j=0

M j x j (33)

and there exist k × n decoding matrices Di,e, Di with entries
in F, such that each xi can be linearly decoded at Ri from the
two n-vectors e and ei by:

Ri : xi = Di,e e + Di ei (i = 0, 1, . . . ,m). (34)

Since receiver Rx linearly recovers x0 from e0, e1, . . . , em ,
we can write

e0, e1, . . . , em −→ x0. (35)

We also have

x0,

m
∑

j=1

M j x j −→ e [from (33)] . (36)

For each i = 0, 1 . . . ,m, if we set xi = 0 in (34), then we
get the following relationship among the remaining m message
vectors (since ei does not depend on xi ):

0 = Di,e

m
∑

j=0
j 
=i

M j x j + Di ei [from (32), (33), (34)] , (37)

and thus, for each i = 1, 2, . . . ,m,

ei −→ Di,e

m
∑

j=0
j 
=i

M j x j [from (37)] (38)

m
∑

j=1

M j x j −→ D0 e0 [from (37)] . (39)

For each i = 1, 2, . . . ,m, let Qi,e be the matrix Q in
Lemma A.5 corresponding to when Di,e is the matrix A in
Lemma A.5. Similarly, let Q0 be the matrix Q in Lemma A.5
corresponding to taking A to be D0.

Let L be the following list of 2m + 1 vector functions of
x0, x1, . . . , xm :

Q0 e0,

ei , (i = 1, 2, . . . ,m)

Qi,e

m
∑

j=0
j 
=i

M j x j (i = 1, 2, . . . ,m).

For each i = 1, 2, . . . ,m, we have

L −→ Di,e

m
∑

j=0
j 
=i

M j x j [from (38)] (40)

L −→
m
∑

j=0
j 
=i

M j x j [from Lemma A.5, (40)] , (41)

and
⎧

⎪
⎪
⎨

⎪
⎪
⎩

m
∑

j=0
j 
=i

M j x j : i = 1, 2, . . . ,m

⎫

⎪
⎪
⎬

⎪
⎪
⎭

−→
m
∑

i=1

m
∑

j=0
j 
=i

M j x j

= m M0 x0 + (m − 1)
m
∑

j=1

M j x j

= −
m
∑

j=1

M j x j
[

from char(F)
∣

∣m
]

. (42)

Thus we have

L −→
m
∑

j=1

M j x j [from (41), (42)] (43)

L −→ D0 e0 [from (39), (43)] (44)
L −→ e0 [from Lemma A.5, (44)] (45)
L −→ x0 [from (35), (45)] (46)
L −→ e [from (36), (43), (46)] (47)
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and for each i = 1, 2, . . . ,m,

L −→ xi [from (34), (47)] . (48)

We will now bound the number of independent entries in
the list L. By equating message components in equation (34),
for each i = 0, 1, . . . ,m, we have:

Ik = Di,e Mi [from (32), (33), (34)] . (49)

Since each Di,e and Mi have dimensions k × n and n × k,
respectively, and k ≤ n, the rank of each matrix is at most k,
but we also have

min
(

rank
(

Di,e
)

, rank (Mi )
)

≥ rank
(

Di,e Mi
)

[from (22)]

= rank (Ik) = k [from (49)] ,

and so rank
(

Di,e
) = rank (Mi ) = k, which, by Lemma A.5,

implies

rank
(

Qi,e
) = n − k (i = 1, 2, . . . ,m). (50)

Since rank (M0) = k, by Lemma A.4, there exists an n × n
nonsingular matrix W over F such that

W M0 =
[

Ik

0(n−k)×k

]

. (51)

Partition each of the k × n matrix products Di,eW−1 into a
k × k block Ti to the left of a k × (n − k) block Ui :

Di,eW−1 = [Ti Ui ] (52)

and then let V be the following n × n matrix over F:

V =
[

Ik U0
0(n−k)×k In−k

]

. (53)

It is easy to verify that

V −1 =
[

Ik −U0
0(n−k)×k In−k

]

. (54)

For each i = 0, 1, . . . ,m, change the network encoding and
decoding matrices from Mi and Di,e , respectively, to

M ′
i = V W Mi (55)

D′
i,e = Di,eW−1V −1. (56)

We have

T0 = D0,eW−1W M0 = Ik [from (49), (51), (52)] (57)

and therefore

M ′
0 =

[

Ik

0

]

[from (51), (53), (55)]

D′
0,e = [Ik 0] [from (52), (54), (56), (57)] . (58)

In this case,

e′ =
m
∑

j=0

M ′
j x j

and for each i = 0, 1, . . . ,m, the message vectors can be
recovered by:

D′
i,ee′ + Di ei

= Di,eW−1V −1
m
∑

j=0

V W M j x j + Di ei [from (55), (56)]

= Di,ee + Di ei = xi [from (33), (34)] .

Thus, this linear code still provides a (k, n) solution.
Partition each of the matrices Mi into a k × k block Ri on

top of a (n − k)× k block Si :

Mi =
[

Ri

Si

]

(59)

and let

ρ = rank ([R1 · · · Rm ])

where [R1 · · · Rm ] is the concatenation of the matrices
Ri into a k × mk matrix.

Clearly ρ ≤ k. We have

D0

m
∑

j=1

M0, j x j = D0 e0 [from (32)]

= −D0,e

m
∑

j=1

M j x j [from (37)]

= −
m
∑

j=1

R j x j [from (58), (59)] .

This gives us

D0 [M0,1 · · · M0,m ] = − [R1 · · · Rm] ,

which implies

rank (D0) ≥ rank ([R1 · · · Rm]) = ρ [from (22)]

∴ rank (Q0) = n − rank (D0) ≤ n − ρ. (60)

Since the matrix

[R1 · · · Rm ]

has rank ρ, there exists a k × k permutation matrix P such
that the first ρ rows of

P [R1 · · · Rm ]

are linearly independent and the remaining k − ρ rows are
linear combinations of those first ρ rows. Thus, there exists a
(k − ρ)× k matrix X , whose right-most k − ρ columns form
Ik−ρ , and such that

X P [R1 · · · Rm ] = 0(k−ρ)×mk . (61)

X and P are (k −ρ)×k and k ×k respectively, thus the rank
of X is at most (k−ρ) and the rank of P is at most k. Since the
right-most columns of X form Ik−ρ , we have rank (X) = k−ρ,
and since P is a permutation matrix, we have rank (P) = k.
Since X P has dimensions (k − ρ)× k, we have

k − ρ ≥ rank (X P)
≥ rank (X)+ rank (P)− k [from (21)]
= (k − ρ)+ k − k = k − ρ

and thus rank (X P) = k − ρ.
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Define a (k −ρ)×n matrix Y by concatenating the product
X P with an all-zero matrix as follows:

Y = [X P 0(k−ρ)×(n−k)
]

.

For each i = 1, 2, . . . ,m we have

Y Mi = [

X P 0(k−ρ)×(n−k)
]

[

Ri

Si

]

= 0(k−ρ)×k [from (59), (61)] . (62)

Since, for each i = 1, 2, . . . ,m, we have

Y Mi = 0(k−ρ)×k

and by (49),

Di,e Mi = Ik,

the rows of Y and the rows of Di,e are linearly independent.
(If v is a nontrivial linear combination of rows of Di,e , then
vMi 
= 0; if v ′ is a nontrivial linear combination of rows of Y ,
then v ′Mi = 0, so v 
= v ′). Therefore, by Lemma A.5, we may
choose Qi,e such that its first k − ρ rows are the rows of Y .
By (50), each vector function

Qi,e

m
∑

j=0
j 
=i

M j x j

in the list L has dimension n−k, but the first k−ρ components
of each such vector function can be written as

Y
m
∑

j=0
j 
=i

M j x j = Y M0 x0 [from (62)] . (63)

If we view the message vectors x0, x1, . . . , xm as random
variables, each of whose k components are independent and
uniformly distributed over the field F, then we have the
following entropy (using logarithms with base |F|) upper
bounds:

H (Q0e0) ≤ n − ρ [from (60)]
H (e1, . . . , em) ≤ mn

[

from ei ∈ F
n
]

and

H

⎛

⎜

⎜

⎝

Qi,e

m
∑

j=0
j 
=i

M j x j : i = 1, 2, . . . ,m

⎞

⎟

⎟

⎠

≤ m (n − k)− (m − 1) (k − ρ) [from (50), (63)] .

Therefore, the entropy of all of the vector functions in the
list L is bounded by summing these bounds:

H (L) ≤ (2m + 1)n − (m + 1)k − (k − ρ)(m − 2)
≤ (2m + 1)n − (m + 1)k (64)

where the final inequality follows from the fact ρ ≤ k and
m ≥ 2. However, then we have:

(m + 1)k = H (x0, x1, . . . , xm)
[

from xi ∈ F
k
]

≤ H (L) [from (46), (48)]

≤ (2m + 1) n − (m + 1) k [from (64)]

∴ k

n
≤ 2m + 1

2m + 2
.

Thus the linear capacity of N1(m) for any finite-field alphabet
whose characteristic divides m is upper bounded by

1 − 1

2m + 2
.

For each y ∈ F
m , let [y]i denote the i th component of y.

To show the upper bound on the linear capacity is tight,
consider a (2m + 1, 2m + 2) fractional linear code for N1(m)
over any finite-field alphabet whose characteristic divides m,
given by:

[e0]l =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

m
∑

j=1
j 
=l

[x j ]l (l = 1, 2, . . . ,m)

m
∑

j=1

[x j ]l (l = m + 1, . . . , 2m + 1)

m
∑

j=2

[x j ] j (l = 2m + 2)

[e]l =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

m
∑

j=0
j 
=l

[x j ]l (l = 1, 2, . . . ,m)

m
∑

j=0

[x j ]l (l = m + 1, . . . , 2m + 1)

[x0]m+1 +
m
∑

j=1

[x j ] j (l = 2m + 2)

and for each i = 1, 2, . . . ,m,

[ei ]l =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

m
∑

j=0
j 
=i
j 
=l

[x j ]l (l = 1, 2, . . . ,m and l 
= i)

[x0]m+1 +
m
∑

j=1
j 
=i

[x j ] j (l = i)

m
∑

j=0
j 
=i

[x j ]l (l = m + 1, . . . , 2m + 1)

[x0]m+1+i (l = 2m + 2).

For each l = 1, 2, . . . ,m, we have

m
∑

i=0
i 
=l

[ei ]l =
m
∑

i=0
i 
=l

m
∑

j=0
j 
=i
j 
=l

[x j ]l = (m − 1)
m
∑

j=0
j 
=l

[x j ]l

= −
m
∑

j=0
j 
=l

[x j ]l
[

from char(F)
∣

∣m
]

. (65)
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For each i = 1, 2, . . . ,m, the receivers within B(m) can
linearly recover all 2m + 1 components of their respective
demands by:

R0 : [e]l − [e0]l = [x0]l (l = 1, 2, . . . , 2m + 1)

Ri : [e]l − [ei ]l = [xi ]l (l = 1, . . . , 2m + 1 and l 
= i)

[e]2m+2 − [ei ]i = [xi ]i

and the additional receiver can linearly recover all components
of x0 by:

Rx : −[e0]l −
m
∑

i=0
i 
=l

[ei ]l (l = 1, 2, . . . ,m)

= [x0]l [from (65)]

[e1]1 − [e0]2m+2 = [x0]m+1

[el−m−1]2m+2 = [x0]l (l = m + 2, . . . , 2m + 1).

Thus, the code is in fact a solution for N1(m).

C. Proofs of Lemmas in Section IV

Proof of Lemma IV.2: Assume w = 1 and let ψ and π1 be
identity permutations. For each a ∈ Zmw we have

ψ(wπ1(a)) = ψ(a) = a.

Assume w > 1. By the Euclidean Division Theorem, for
each integer y, there exist unique integers qy, ry such that
y = qym + ry and 0 ≤ ry < m. We have wy = w(qym + ry),
which implies

wy = wry (mod mw) . (66)

For all integers x, y we have

wx = wy (mod mw)

⇐⇒ wrx = wry (mod mw) [from (66)]

⇐⇒ rx = ry
[

from 0 ≤ rx , ry < m
]

. (67)

For each a = qam + ra ∈ Zmw such that 0 ≤ ra < m, let
r̂a be the unique integer in {0, 1, . . . ,m − 1} such that

r̂a = ra + 1 (mod m) ,

and for each l = 1, 2, . . . , w− 1, define permutations of Zmw

as follows:

πl(a) =
{

qam + r̂a if qa = l
qam + ra otherwise

(68)

πw(a) = a = qam + ra. (69)

Note that for all l = 1, 2, . . . , w − 1, the (non-linear)
permutation πl modifies the remainder ra if qa = l and
otherwise acts as the identity permutation. Also, πw is the
identity permutation. Since a ∈ Zmw , we have 0 ≤ qa < w.

For each a ∈ Zmw , we will now show the mapping given by

a �−→ (wπ1(a), . . . , wπw(a))

is injective. For each a, b ∈ Zmw , suppose

wπl (a) = wπl(b) (mod mw) (l = 1, 2, . . . , w), (70)

where

a = qam + ra and b = qbm + rb,

with

0 ≤ ra, rb < m and 0 ≤ qa, qb < w.

Then we have

wπw(a) = wπw(b) (mod mw) [from (70)] (71)

wra = wrb (mod mw) [from (66), (69), (71)]

∴ ra = rb [from (67)] . (72)

Let r̂b be the unique integer in {0, 1, . . . ,m − 1} such that

r̂b = rb + 1 (mod m) .

If qa 
= qb, then without loss of generality, qb 
= 0, so we
have:

wπqb (a) = wπqb(b) (mod mw) [from (70)] (73)

∴ wra = wr̂b (mod mw) [from (66), (68), (73)]

∴ ra = ra + 1 (mod m) [from (67), (72)] ,

which is a contradiction, so we must have qa = qb. Thus
a = b.

We have shown wπl (a) = wπl(b) (mod mw) for all l if
and only if a = b. Thus a can be uniquely determined from
the w-tuple

(wπ1(a),wπ2(a), . . . , wπw(a)).

This implies the existence of the claimed mapping.
Proof of Lemma IV.5: Assume N2(m, w) is solvable over

A. For each l = 1, 2, . . . , w, the block B(l)(m + 1) together
with source nodes Sz , S(l)1 , S(l)2 , . . . , S(l)m+1 forms a copy of
N0(m + 1), so by Lemma II.2, the edge functions within
block B(l)(m + 1) must satisfy Property P(m + 1). Thus,
for each l, there exists an Abelian group (A,⊕l ), with

identity 0l ∈ A, and permutations π(l)0 , π
(l)
1 , . . . , π

(l)
m+1 and

σ
(l)
0 , σ

(l)
1 , . . . , σ

(l)
m+1 of A, such that for each i = 1, . . . ,m+1,

the edges carry the symbols:

e(l)0 = σ
(l)
0

⎛

⎝

m+1
⊕

j=1

π
(l)
j

(

x (l)j

)

⎞

⎠

e(l)i = σ
(l)
i

⎛

⎜

⎜

⎝

π
(l)
0 (z)⊕l

m+1
⊕

j=1
j 
=i

π
(l)
j

(

x (l)j

)

⎞

⎟

⎟

⎠

(74)

e(l) = π
(l)
0 (z)⊕l

m+1
⊕

j=1

π
(l)
j

(

x (l)j

)

,

where
⊕

in each of the previous three equations denotes ⊕l .
Now suppose to the contrary that m and |A| are relatively

prime. Then by Cauchy’s Theorem, for each l = 1, 2, . . . , w,
the group (A,⊕l ) contains no non-identity elements whose
order divides m. That is, for each a ∈ A, we have

a ⊕l · · · ⊕l a
︸ ︷︷ ︸

m adds

= 0l
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if and only if a = 0l . Let a, b ∈ A. Then we have

a ⊕l · · · ⊕l a
︸ ︷︷ ︸

m adds

= b ⊕l · · · ⊕l b
︸ ︷︷ ︸

m adds

if and only if:

(a 	l b)⊕l · · · ⊕l (a 	l b)
︸ ︷︷ ︸

m adds

= 0l [from (A,⊕l ) Abelian]

⇐⇒ a = b [from gcd(m, |A|) = 1] .

Thus, for each l the mapping

a �−→ a ⊕l · · · ⊕l a
︸ ︷︷ ︸

m adds

is injective on the finite set A and therefore is bijective, and
its inverse φl : A → A satisfies

φl(a)⊕l · · · ⊕l φl(a)
︸ ︷︷ ︸

m adds

= a (l = 1, 2, . . . , w). (75)

For each a ∈ A such that a 
= 01 and each l = 2, . . . , w, let

fl (a) = π
(l)
0

(

π
(1)−1

0 (01)
)

	l π
(l)
0

(

π
(1)−1

0 (a)
)

. (76)

Define two collections of messages as follows:
⎧

⎪
⎪
⎨

⎪
⎪
⎩

x (1)j = π
(1)−1

j (φ1(a)))

x (l)j = π
(l)−1

j (0l)

z = π
(1)−1

0 (01)

and

⎧

⎪
⎪
⎨

⎪
⎪
⎩

x̂ (1)j = π
(1)−1

j (01)

x̂ (l)j = π
(l)−1

j (φl( fl (a)))

ẑ = π
(1)−1

0 (a),

where l = 2, . . . , w and j = 1, 2, . . . ,m + 1. Since a 
= 01

and π(1)0 is bijective, it follows that z 
= ẑ.
By Property P(m+1) and (74), for each i = 1, 2, . . . ,m+1

and each l = 2, . . . , w, we have:

e(1)i = σ
(1)
i

⎛

⎝φ1(a)⊕1 · · · ⊕1 φ1(a)
︸ ︷︷ ︸

m adds

⎞

⎠= σ
(1)
i (a) [from (75)]

e(l)i = σ
(l)
i

(

π
(l)
0

(

π
(1)−1

0 (01)
))

for the messages x (l)j , z, and

e(1)i = σ (1)i (a)

e(l)i = σ (l)i

⎛

⎝π
(l)
0

(

π
(1)−1

0 (a)
)

⊕l φl( fl(a))⊕l · · · ⊕l φl( fl (a))
︸ ︷︷ ︸

m adds

⎞

⎠

= σ
(l)
i

(

π
(l)
0

(

π
(1)−1

0 (a)
)

⊕l fl(a)
)

[from (75)]

= σ
(l)
i

(

π
(l)
0

(

π
(1)−1

0 (01)
))

[from (76)]

for the messages x̂ (l)j , ẑ. For both collections of messages,

the edge symbols e(l)i are the same for all l = 1, 2, . . . , w
and i = 1, 2, . . . ,m + 1, and therefore the decoded value z
at Rz must be the same. However, this contradicts the fact
that z 
= ẑ.

Proof of Lemma IV.6: For any ring R with multiplicative
identity 1R , the characteristic of R divides m if and only if
m = m 1R = 0R , so it suffices to show that for each m, w
and each standard R-module G, network N2(m, w) is linearly
solvable over G if and only if m = 0R .

Assume network N2(m, w) is linearly solvable over the
standard R-module G. The messages are drawn from G, and
there exist c(l)i, j , c(l)j ∈ R, such that for each l = 1, 2, . . . , w and
each i = 1, 2, . . . ,m + 1, the edge symbols can be written as:

e(l)0 =
m+1
⊕

j=1

(

c(l)0, j · x (l)j

)

(77)

e(l)i =
(

c(l)i,0 · z
)

⊕
m+1
⊕

j=1
j 
=i

(

c(l)i, j · x (l)j

)

(78)

e(l) =
(

c(l)0 · z
)

⊕
m+1
⊕

j=1

(

c(l)j · x (l)j

)

(79)

and there exist d(l)i,e , d(l)i ∈ R, such that each receiver within
B(l)(m + 1) can linearly recover its respective demands from
its received edge symbols by:

R(l)0 : z =
(

d(l)0,e · e(l)
)

⊕
(

d(l)0 · e(l)0

)

(80)

R(l)i : x (l)i =
(

d(l)i,e · e(l)
)

⊕
(

d(l)i · e(l)i

)

. (81)

Since Rz linearly recovers z from its inputs, there exists
d(l)z,i ∈ R such that

Rz : z =
w
⊕

l=1

m+1
⊕

i=1

(

d(l)z,i · e(l)i

)

. (82)

For each l = 1, 2, . . . , w, the block B(l)(m + 1) together
with source nodes Sz , S(l)1 , S(l)2 , . . . , S(l)m+1 forms a copy of
network N0(m + 1), so by Lemma II.3 and (77) – (81), each
c(l)i and each d(l)i is invertible in R, and for each distinct
i, j ∈ {0, 1, . . . ,m + 1}, we have

c(l)i, j = −
(

d(l)i

)−1
d(l)i,e c(l)j . (83)

Equating message components at Rz yields:

1R =
w
∑

l=1

m+1
∑

i=1

d(l)z,i c(l)i,0 [from (78), (82)]

= −
w
∑

l=1

m+1
∑

i=1

d(l)z,i

(

d(l)i

)−1
d(l)i,e c(l)0 [from (83)] (84)

and for each l = 1, 2, . . . , w and each j = 1, 2, . . . ,m + 1,

0R =
m+1
∑

i=1
i 
= j

d(l)z,i c(l)i, j [from (78), (82)]

= −

⎛

⎜

⎜

⎝

m+1
∑

i=1
i 
= j

d(l)z,i

(

d(l)i

)−1
d(l)i,e

⎞

⎟

⎟

⎠

c(l)j [from (83)] . (85)

By right multiplying (85) by
(

c(l)j

)−1
c(l)0 , we have

0R =
m+1
∑

i=1
i 
= j

d(l)z,i

(

d(l)i

)−1
d(l)i,e c(l)0 [from (85)] (86)
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and by summing (86) over j = 1, 2, . . . ,m + 1, we have

0R =
m+1
∑

j=1

m+1
∑

i=1
i 
= j

d(l)z,i

(

d(l)i

)−1
d(l)i,e c(l)0

= m
m+1
∑

i=1

d(l)z,i

(

d(l)i

)−1
d(l)i,e c(l)0 . (87)

By summing (87) over l = 1, 2, . . . , w, we have

0R = m
w
∑

i=1

m+1
∑

i=1

d(l)z,i

(

d(l)i

)−1
d(l)i,e c(l)0 [from (87)]

∴ 0R = m [from (84)] .

To prove the converse, let G be a standard R-module such
that m 1R = 0R . Define a linear code over G such that for
each l = 1, 2, . . . , w, we have

e(l)0 =
m+1
⊕

j=1

x (l)j

e(l)i = z ⊕
m+1
⊕

j=1
j 
=i

x (l)j (i = 1, 2, . . . ,m + 1)

e(l) = z ⊕
m+1
⊕

j=1

x (l)j .

For each l = 1, 2, . . . , w, the receivers within each block
B(l)(m + 1) can linearly recover their respective demands as
follows:

R(l)0 : e(l) 	 e(l)0 = z

R(l)i : e(l) 	 e(l)i = x (l)i (i = 1, 2, . . . ,m + 1).

Receiver Rz can linearly recover z as follows:

Rz :
m+1
⊕

i=1

e(1)i = z ⊕ (m z)⊕
⎛

⎝m
m+1
⊕

j=1

x (1)j

⎞

⎠

= z [from m = 0R] .

Thus the code is a linear solution for N2(m, w).
Proof of Lemma IV.7: Since a scalar linear solution over a

finite-field alphabet is a special case of a linear solution over a
standard module, by Lemma IV.6, N2(m, w) is scalar linearly
solvable over any finite-field alphabet whose characteristic
divides m, so the linear capacity for such finite-field alphabets
is at least 1. By Lemma II.4, network N0(m + 1) has capacity
equal to 1, and the block B(1)(m +1) together with the source
nodes Sz, S(1)1 , S(1)2 , . . . , S(1)m+1 forms a copy of N0(m + 1),
so the capacity of N2(m, w) is at most 1. Thus both the
capacity of N2(m, w) and its linear capacity over any finite-
field alphabet whose characteristic divides m are 1.

To prove part (c), consider a (k, n) fractional linear solution
for N2(m, w) over a finite field F whose characteristic does
not divide m. Since char(F) � m, the integer m is invertible in
F.

We have x (l)j , z ∈ F
k and e(l)i , e(l) ∈ F

n , with n ≥ k,
since the capacity is one. There exist n × k coding matrices

M(l)
j , M(l)

i, j over F, such that for each l = 1, 2, . . . , w the edge
vectors can be written as:

e(l)0 =
m+1
∑

j=1

M(l)
0, j x (l)j

e(l)i = M(l)
i,0 z +

m+1
∑

j=1
j 
=i

M(l)
i, j x (l)j (i = 1, 2, . . . ,m + 1) (88)

e(l) = M(l)
0 z +

m+1
∑

j=1

M(l)
j x (l)j (89)

and there exist k × n decoding matrices D(l)
i,e and D(l)

i over F,
such that for each l = 1, 2, . . . , w and each i = 1, 2, . . . ,
m + 1, the message vector x (l)i can be linearly decoded
at R(l)i from the n-vectors e(l)i and e(l) by:

R(l)i : x (l)i = D(l)
i,e e(l) + D(l)

i e(l)i . (90)

Since receiver Rz linearly recovers z from its incoming edge
vectors, we have

{

e(l)i : l = 1, 2, . . . , w
i = 1, 2, . . . ,m + 1

}

−→ z. (91)

For each l = 1, 2, . . . , w and each i = 1, 2, . . . ,m + 1,
by (88) and (89), if we set x (l)i = 0 in (90), then, since e(l)i
does not depend on x (l)i , we get the following relationship
among the remaining message vectors:

0 = D(l)
i,e

⎛

⎜

⎜

⎝

M(l)
0 z +

m+1
∑

j=1
j 
=i

M(l)
j x (l)j

⎞

⎟

⎟

⎠

+ D(l)
i e(l)i (92)

and therefore

e(l)i −→ D(l)
i,e

⎛

⎜

⎜

⎝

M(l)
0 z +

m+1
∑

j=1
j 
=i

M(l)
j x (l)j

⎞

⎟

⎟

⎠

[from (92)] . (93)

For each l = 1, 2, . . . , w and each i = 1, 2, . . . ,m + 1, let
Q(l)

i,e be the matrix Q in Lemma A.5 corresponding to when

the matrix A is D(l)
i,e .

For each l = 1, 2, . . . , w, let L(l) be the following list of
2(m + 1) vector functions of z, x (l)1 , x (l)2 , . . . , x (l)m+1:

Q(l)
i,e

⎛

⎜

⎜

⎝

M(l)
0 z +

m+1
∑

j=1
j 
=i

M(l)
j x (l)j

⎞

⎟

⎟

⎠

(i = 1, 2, . . . ,m + 1)

e(l)i (i = 1, 2, . . . ,m + 1).

For each l = 1, 2, . . . , w and each i = 1, 2, . . . ,m + 1, we
have

L(l) −→ D(l)
i,e

⎛

⎜

⎜

⎝

M(l)
0 z +

m+1
∑

j=1
j 
=i

M(l)
j x (l)j

⎞

⎟

⎟

⎠

[from (93)] ,
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which, along with Lemma A.5, implies

L(l) −→ M(l)
0 z +

m+1
∑

j=1
j 
=i

M(l)
j x (l)j . (94)

We also have

z,

⎧

⎪
⎪
⎨

⎪
⎪
⎩

M(l)
0 z +

m+1
∑

j=1
j 
=i

M(l)
j x (l)j : i = 1, 2, . . . ,m + 1

⎫

⎪
⎪
⎬

⎪
⎪
⎭

−→
m+1
∑

i=1

⎛

⎜

⎜

⎝

M(l)
0 z +

m+1
∑

j=1
j 
=i

M(l)
j x (l)j

⎞

⎟

⎟

⎠

− M(l)
0 z

= (m + 1)M(l)
0 z + m

m+1
∑

j=1

M(l)
j x (l)j − M(l)

0 z

= m e(l) −→ e(l)
[

from (89) and char(F) � m
]

(95)

and

L(1), . . . , L(w) −→ z [from (91)] (96)

For each l = 1, 2, . . . , w and each i = 1, 2, . . . ,m + 1,
we have

L(l), z −→ e(l) [from (94), (95)] (97)

L(l), z −→ x (l)i [from (90), (97)] . (98)

Thus it follows from (96) and (98) that

L(1), . . . , L(w) −→ z,

{

x (l)i : l = 1, 2, . . . , w
i = 1, 2, . . . ,m + 1

}

. (99)

We will now bound the number of independent entries in
each list L(l).

By equating message components in equation (90), for each
l = 1, 2, . . . , w and each i = 1, 2, . . . ,m + 1, we have:

Ik = D(l)
i,e M(l)

i [from (88), (89), (90)] (100)

Since each D(l)
i,e is k × n and k ≤ n, the rank of each matrix

is at most k, but we also have

rank
(

D(l)
i,e

)

≥ rank
(

D(l)
i,e M(l)

i

)

[from (22)]

= rank (Ik) = k [from (100)] .

Hence rank
(

D(l)
i,e

)

= k, which by Lemma (A.5), implies

rank
(

Q(l)
i,e

)

= n − k. Therefore each vector function

Q(l)
i,e

⎛

⎜

⎜

⎝

M(l)
0 z +

m+1
∑

j=1
j 
=i

M(l)
j x (l)j

⎞

⎟

⎟

⎠

(l = 1, 2, . . . , w)
(i = 1, 2, . . . ,m + 1)

in the list L(l) has dimension n − k.

If we view the message vectors as random variables, each
of whose k components are independent and uniformly dis-
tributed over the field F, then we have the following entropy
(using logarithms base |F|) upper bounds:

H

⎛

⎜

⎜

⎝

Q(l)
i,e

⎛

⎜

⎜

⎝

M(l)
0 z +

m+1
∑

j=1
j 
=i

M(l)
j x (l)j

⎞

⎟

⎟

⎠

: l = 1, 2, . . . , w
i = 1, 2, . . . ,m + 1

⎞

⎟

⎟

⎠

≤ w(m + 1) (n − k) (101)

and

H

(

e(l)i : l = 1, 2, . . . , w
i = 1, 2, . . . ,m + 1

)

≤ w(m + 1) n. (102)

Therefore, the entropy of all of the vector functions in the
list of lists L(1), . . . , L(w) is bounded by summing the bounds
in (101) and (102):

H
(

L(1), . . . , L(w)
)

≤ w(m + 1) n −w(m + 1) k. (103)

But since each message is independent and uniformly
distributed over F and z, x (l)i ∈ F

k , we have

(w(m + 1)+ 1) k = H

(

z,

{

x (l)i : l = 1, 2, . . . , w
i = 1, 2, . . . ,m + 1

})

.

However, (99) implies this quantity is upper bounded by:

H
(

L(1), . . . , L(w)
)

≤ 2w(m + 1) n −w(m + 1) k [from (103)] ,

which implies

k

n
≤ 2w(m + 1)

2w(m + 1)+ 1
.

Thus the linear capacity of N2(m, w) for finite-field alphabets
whose characteristic does not divide m is upper bounded by

1 − 1

2mw + 2w + 1
.

D. Proofs of Lemmas in Section V

Proof of Lemma V.2: Define permutations π1, π2 of Zmα+1

as follows. For each a ∈ Zmα+1 , let

α
∑

i=0

mi ai

denote the base m representation of a. We define

π1(a) = mαa0 +
α
∑

i=1

mi−1ai (104)

π2(a) = a =
α
∑

i=0

mi ai . (105)

The (non-linear) permutation π1 performs a right-cyclic shift
of the base-m digits of a, and π2 is the identity permutation.
For each a ∈ Zmα+1 , we will show that the mapping given by

a �−→ (mπ1(a), smαπ2(a))
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is injective. For each a, b ∈ Zmα+1 , suppose

mπ1(a) = mπ1(b)
(

mod mα+1
)

(106)

smαπ2(a) = smαπ2(b)
(

mod mα+1
)

(107)

where a =
α
∑

i=0

mi ai and b =
α
∑

i=0

mi bi . Then we have

α
∑

i=1

mi ai =
α
∑

i=1

mi bi

(

mod mα+1
)

[from (104), (106)] .

Therefore

ai = bi (i = 1, 2, . . . , α) [from 0 ≤ ai , bi < m]

and

smαa0 = smαb0

(

mod mα+1
)

[from (105), (107)]

∴ mαa0 = mαb0

(

mod mα+1
)

[from gcd(m, s) = 1]

∴ a0 = b0 [from 0 ≤ a0, b0 < m] .

Thus a = b.
We have shown that a = b if and only if mπ1(a) =

mπ1(b) and smαπ2(a) = smαπ2(b). Thus a can be uniquely
determined from mπ1(a) and smαπ2(a). This implies the
existence of the claimed mapping.

Proof of Lemma V.5:
Assume N3(m1,m2) is solvable over the alphabet A. For

each l = 1, 2 the block B(l)(ml) together with the source
nodes Sz, S(l)1 , S(l)2 , . . . , S(l)ml forms a copy of N0(ml), so by
Lemma II.2, the edge functions within B(1)(m1) and B(2)(m2)
must satisfy Property P(m1) and Property P(m2), respec-
tively. Thus there exist Abelian groups (A,⊕1) and (A,⊕2)
with identity elements 01 and 02 for the left-hand side and
right-hand side of the network, respectively, and permutations

π
(l)
0 , π

(l)
1 , . . . , π

(l)
ml and σ (l)0 , σ

(l)
1 , . . . , σ

(l)
ml of A, such that for

each l = 1, 2 and each i = 1, 2, . . . ,ml , the edges carry the
symbols:

e(l)0 = σ
(l)
0

⎛

⎝

ml
⊕

j=1

π
(l)
j

(

x (l)j

)

⎞

⎠ (108)

e(l)i = σ
(l)
i

⎛

⎜

⎜

⎝

π
(l)
0 (z)⊕l

ml
⊕

j=1
j 
=i

π
(l)
j

(

x (l)j

)

⎞

⎟

⎟

⎠

(109)

e(l) = π
(l)
0 (z)⊕l

ml
⊕

j=1

π
(l)
j

(

x (l)j

)

where
⊕

in each of the previous three equations denotes ⊕l .
Now suppose to the contrary that m1 and |A| are not

relatively prime and |A| divides m2. Then, since (A,⊕2) is a
finite group, for all a ∈ A, we have

a ⊕2 · · · ⊕2 a
︸ ︷︷ ︸

m2 adds

= 02
[

from |A| ∣∣m2
]

. (110)

Since m1 and |A| are not relatively prime, m1 and |A| share
a common factor p. Since p

∣

∣ |A|, by Cauchy’s Theorem, there

exists a ∈ A\{01} such that the order of a is p, and since p
divides m1 we have

a ⊕1 · · · ⊕1 a
︸ ︷︷ ︸

m1 adds

= 01.

Define two collections of messages as follows:

x (1)j = π
(1)−1

j (01) ( j = 1, 2, . . . ,m1)

x (2)j = π
(2)−1

j

(

π
(2)
0

(

π
(1)−1

0 (01)
))

( j = 1, 2, . . . ,m2)

z = π
(1)−1

0 (01)

and

x̂ (1)j = π
(1)−1

j (a) ( j = 1, 2, . . . ,m1)

x̂ (2)j = π
(2)−1

j

(

π
(2)
0

(

π
(1)−1

0 (a)
))

( j = 1, 2, . . . ,m2)

ẑ = π
(1)−1

0 (a).

Since a 
= 01 and π(1)0 is bijective, it follows that z 
= ẑ.
By Properties P(m1) and P(m2) and (108) and (109),

we have

e(1)i = σ
(1)
i

⎛

⎜

⎝01 ⊕1 · · · ⊕1 01
︸ ︷︷ ︸

m1 adds

⎞

⎟

⎠= σ
(1)
i (01) (i = 0, 1, . . . ,m1)

e(2)i = σ
(2)
i

⎛

⎜

⎜

⎝

π
(2)
0

(

π
(1)−1

0 (01)
)

⊕2 · · · ⊕2 π
(2)
0

(

π
(1)−1

0 (01)
)

︸ ︷︷ ︸

m2 adds

⎞

⎟

⎟

⎠

= σ
(2)
i (02) (i = 0, 1, . . . ,m2) [from (110)]

for the messages x (l)j , z, and

e(1)i = σ
(1)
i

⎛

⎜

⎝a ⊕1 · · · ⊕1 a
︸ ︷︷ ︸

m1 adds

⎞

⎟

⎠= σ
(1)
i (01) (i = 0, 1, . . . ,m1)

e(2)i = σ
(2)
i

⎛

⎜

⎜

⎝

π
(2)
0

(

π
(1)−1

0 (a)
)

⊕2 · · · ⊕2 π
(2)
0

(

π
(1)−1

0 (a)
)

︸ ︷︷ ︸

m2 adds

⎞

⎟

⎟

⎠

= σ
(2)
i (02) (i = 0, 1, . . . ,m2) [from (110)]

for the messages x̂ (l)j , ẑ. For both collections of messages, the

edge symbols e(1)0 , e(1)1 , . . . , e(1)m1 and e(2)0 , e(2)1 , . . . , e(2)m2 are the
same, and therefore the decoded value z at Rz must be the
same. However, this contradicts the fact that z 
= ẑ.

Proof of Lemma V.6:
For any integers a, b, c ≥ 1, we have

gcd(a, b, c) = gcd(gcd(a, b) , c) ,

so by Lemma A.1 the integer gcd(m1,m2) is invertible in the
ring R if and only if

gcd(m1,m2, char(R)) = 1.

Thus it suffices to show that for each m1,m2 and each
standard R-module G, network N3(m1,m2) is linearly solv-
able over G if and only if gcd(m1,m2) is invertible in R.
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Assume network N3(m1,m2) is linearly solvable over
standard R-module G. The messages are drawn from G, and
there exist c(l)i, j , c(l)j ∈ R, such that for each l = 1, 2 and each
i = 1, 2, . . . ,ml , the edge symbols can be written as:

e(l)0 =
ml
⊕

j=1

(

c(l)0, j · x (l)j

)

(111)

e(l)i =
(

c(l)i,0 · z
)

⊕
ml
⊕

j=1
j 
=i

(

c(l)i, j · x (l)j

)

(112)

e(l) =
(

c(l)0 · z
)

⊕
ml
⊕

j=1

(

c(l)j · x (l)j

)

(113)

and there exist d(l)i,e , d(l)i ∈ R, such that each receiver within
B(l)(ml) can linearly recover its respective demand from its
received edge symbols by:

R(l)0 : z =
(

d(l)0,e · e(l)
)

⊕
(

d(l)0 · e(l)0

)

(114)

R(l)i : x (l)i =
(

d(l)i,e · e(l)
)

⊕
(

d(l)i · e(l)i

)

. (115)

Since Rz linearly recovers z from its inputs, there exists
d(l)z,i ∈ R such that

Rz : z =
2
⊕

l=1

ml
⊕

i=0

(

d(l)z,i · e(l)i

)

. (116)

For each l = 1, 2 the block B(l)(ml) together with the
source nodes Sz, S(l)1 , S(l)2 , . . . , S(l)ml forms a copy of N0(ml),
so by Lemma II.3 and (111) – (115), each c(l)i and each d(l)i
is invertible in R, and for each distinct i, j ∈ {0, 1, . . . ,ml},
we have

c(l)i, j = −
(

d(l)i

)−1
d(l)i,e c(l)j . (117)

Equating message components at Rz yields:

1R =
2
∑

l=1

ml
∑

i=1

d(l)z,i c(l)i,0 [from (111), (112), (116)]

= −
2
∑

l=1

ml
∑

i=1

d(l)z,i

(

d(l)i

)−1
d(l)i,e c(l)0 [from (117)] (118)

and for each l = 1, 2 and each j = 1, 2, . . . ,ml , we have

0R =
ml
∑

i=0
i 
= j

d(l)z,i c(l)i, j [from (111), (112), (116)]

= −

⎛

⎜

⎜

⎝

ml
∑

i=0
i 
= j

d(l)z,i

(

d(l)i

)−1
d(l)i,e

⎞

⎟

⎟

⎠

c(l)j [from (117)] . (119)

For each l = 1, 2, by right multiplying (119) by
(

c(l)j

)−1
c(l)0 ,

we have

0R =
ml
∑

i=0
i 
= j

d(l)z,i

(

d(l)i

)−1
d(l)i,e c(l)0 ( j = 1, 2, . . . ,ml). (120)

Summing (120) over l = 1, 2 and j = 1, 2, . . . ,ml and
subtracting (118), yields

−1R =
2
∑

l=1

ml
∑

j=0

ml
∑

i=0
i 
= j

d(l)z,i

(

d(l)i

)−1
d(l)i,e c(l)0

=
2
∑

l=1

ml

ml
∑

i=0

d(l)z,i

(

d(l)i

)−1
d(l)i,e c(l)0 . (121)

Equation (121) implies there exist r1, r2 ∈ R such that

1R = m1 r1 + m2 r2. (122)

Since gcd(m1,m2) can be factored out of both terms on
the right-hand side of equation (122), the ring element
gcd(m1,m2) is invertible.

To prove the converse, let G be a standard R-module, such
that gcd(m1,m2) is invertible in R. Define a linear code over
G for N3(m1,m2), for each l = 1, 2, by:

e(l)0 =
ml
⊕

j=1

x (l)j

e(l)i = z ⊕
ml
⊕

j=1
j 
=i

x (l)j (i = 1, 2, . . . ,ml)

e(l) = z ⊕
ml
⊕

j=1

x (l)j .

For each l = 1, 2, the receivers within B(l)(ml) can linearly
recover their respective demands by:

R(l)0 : e(l) 	 e(l)0 = z

R(l)i : e(l) 	 e(l)i = x (l)i (i = 1, 2, . . . ,ml).

Let

m′
1 = m1/gcd(m1,m2) and m′

2 = m2/gcd(m1,m2) .

Then m′
1 and m′

2 are relatively prime, so there exist n1, n2 ∈ Z
such that n1m′

1 + n2m′
2 = 1. Thus in R we have

(n1m′
1) 1R + (n2m′

2) 1R = 1R .

Receiver Rz can linearly recover message z as follows:

Rz :
2
⊕

l=1

(

(

nl gcd(m1,m2)
−1
)

·
( ml
⊕

i=0

e(l)i 	
(

mle
(l)
0

)

))

=
2
⊕

l=1

((

nl gcd(m1,m2)
−1
)

· (ml z)
)

= (n1m′
1 z)⊕ (n2m′

2 z)

= (

(n1m′
1) 1R + (n2m′

2) 1R
)

z = z.

Thus the code is a linear solution for N3(m1,m2).
Proof of Lemma V.8: By Lemma V.6, the network

N3(m1,m2) is scalar linearly solvable over any finite-field
alphabet whose characteristic is relatively prime to m1 or m2,
so the network’s linear capacity for such finite-field alphabets
is at least 1. By Lemma II.4, network N0(m1) has capacity
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equal to 1, the block B(1)(m1) together with the source
nodes Sz, S(1)1 , S(1)2 , . . . , S(1)m1 forms a copy of N0(m1), so the
capacity of N3(m1,m2) is at most 1. Thus both the capacity
of N3(m1,m2) and its linear capacity over any finite-field
alphabet whose characteristic is relatively prime to m1 or m2
are 1.

To prove part (c), consider a (k, n) fractional linear solution
for N3(m1,m2) over a finite field F whose characteristic
divides both m1 and m2. Since char(F)

∣

∣m1 and char(F)
∣

∣m2,
we have m1 = m2 = 0 in F.

We have x (l)j , z ∈ F
k and e(l)i , e(l) ∈ F

n , with n ≥ k,
since the capacity is one. There exist n × k coding matrices
M(l)

j ,M(l)
i, j with entries in F, such that for each l = 1, 2 the

edge vectors can be written as:

e(l)0 =
ml
∑

j=1

M(l)
0, j x (l)j (123)

e(l)i = M(l)
0 z +

ml
∑

j=1
j 
=i

M(l)
i, j x (l)j (i = 1, 2, . . . ,ml) (124)

e(l) = M(l)
0 z +

ml
∑

j=1

M(l)
j x (l)j (125)

and there exist k ×n decoding matrices D(l)
i,e, D(l)

i with entries
in F, such that for each l = 1, 2 the receivers within the
block B(l)(ml) can recover their respective demands from their
received edge vectors by:

R(l)0 : z = D(l)
0,e e(l) + D(l)

0 e(l)0 (126)

R(l)i : x (l)i = D(l)
i,e e(l) + D(l)

i e(l)i (i = 1, 2, . . . ,ml). (127)

Since the receiver Rz recovers message vector z linearly
from its incoming edge vectors, we have

{

e(l)i : l = 1, 2
i = 0, 1, . . . ,ml

}

−→ z. (128)

For each l = 1, 2, by (123) and (125), if we set z = 0
in (126), we have

0 = D(l)
0,e

ml
∑

j=1

M(l)
j x (l)j + D(l)

0 e(l)0

∴
ml
∑

j=1

M(l)
j x (l)j −→ D(l)

0 e(l)0 , (129)

and similarly, for each i = 1, 2, . . . ,ml , by (124) and (125),
if we set x (l)i = 0 in (127), we have

0 = D(l)
i,e

⎛

⎜

⎜

⎝

M(l)
0 z +

ml
∑

j=1
j 
=i

M(l)
j x (l)j

⎞

⎟

⎟

⎠

+ D(l)
i e(l)i

∴ e(l)i −→ D(l)
i,e

⎛

⎜

⎜

⎝

M(l)
0 z +

ml
∑

j=1
j 
=i

M(l)
j x (l)j

⎞

⎟

⎟

⎠

. (130)

As in Lemma III.4, for each l = 1, 2 and i = 1, 2, . . . ,ml ,
let Q(l)

0 be the matrix Q in Lemma A.5 corresponding to when
D(l)

0 is the matrix A in the lemma, and let Q(l)
i,e be the matrix

Q corresponding to when D(l)
i,e is the matrix A.

Let L(1) and L(2) be the lists from Lemma III.4 (where z
plays the role of x0), corresponding to the left-hand side and
right-hand side of the network, respectively. Specifically, for
each l = 1, 2, let L(l) be the list

Q(l)
0 e(l)0

e(l)i (i = 1, 2, . . . ,ml)

Q(l)
i,e

⎛

⎜

⎜

⎝

M(l)
0 z +

ml
∑

j=1
j 
=i

M(l)
j x (l)j

⎞

⎟

⎟

⎠

(i = 1, 2, . . . ,ml).

For each l = 1, 2, we have

L(l) −→ D(l)
i,e

⎛

⎜

⎜

⎝

M(l)
0 z +

ml
∑

j=1
j 
=i

M(l)
j x (l)j

⎞

⎟

⎟

⎠

[from (130)]

which, along with Lemma A.5, implies

L(l) −→ M(l)
0 z +

ml
∑

j=1
j 
=i

M(l)
j x (l)j . (131)

For each l = 1, 2, we also have
⎧

⎪
⎪
⎨

⎪
⎪
⎩

M(l)
0 z +

ml
∑

j=1
j 
=i

M(l)
j x (l)j : i = 1, 2, . . . ,ml

⎫

⎪
⎪
⎬

⎪
⎪
⎭

−→
ml
∑

i=1

⎛

⎜

⎜

⎝

M(l)
0 z +

ml
∑

j=1
j 
=i

M(l)
j x (l)j

⎞

⎟

⎟

⎠

= ml M(l)
0 z + (m1 − 1)

ml
∑

j=1

M(l)
j x (l)j

= −
ml
∑

j=1

M(l)
j x (l)j

[

from char(F)
∣

∣ml
]

, (132)

and so

L(l) −→
ml
∑

j=1

M(l)
j x (l)j [from (131), (132)] (133)

L(l) −→ D(l)
0 e(l)0 [from (129), (133)] (134)

L(l) −→ e(l)0 [from Lemma A.5, (134)] . (135)

We have

L(1), L(2) −→ z [from (128), (135)] . (136)
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For each l = 1, 2, we also have

z,
ml
∑

j=1

M(l)
j x (l)j −→ e(l) [from (125)] (137)

L(l), z −→ e(l) [from (133), (137)] (138)

and for each i = 1, 2, . . . ,ml , we have

L(l), z −→ x (l)i [from (127), (138)] . (139)

Thus equations (136) and (139) imply

L(1), L(2) −→ z,

{

x (l)i : l = 1, 2
i = 1, 2, . . . ,ml

}

. (140)

We have L(l) corresponding to the same set of vector
functions as the list L for N1(ml) in Lemma III.4 (with a
slight change of labeling). Thus the bound on the entropy of
the list L in (64) in Lemma III.4 can be used to bound the
entropy of the list L(1), L(2):

H
(

L(1), L(2)
)

≤
2
∑

l=1

(2ml + 1) n − (ml + 1) k. (141)

But since each message is independent and uniformly
distributed over F and z, x (l)i ∈ F

k , we have

(m1 + m2 + 1) k = H

(

z,

{

x (l)i : l = 1, 2
i = 1, 2, . . . ,ml

})

.

However, (140) implies this quantity is upper bounded by

H (L1, L2)

≤ (2m1 + 2m2 + 2) n − (m1 + m2 + 2) k [from (141)] ,

which implies

k

n
≤ 2m1 + 2m2 + 2

2m1 + 2m2 + 3
.

Thus the linear capacity of N3(m1,m2) for finite-field
alphabets whose characteristic divides both m1 and m2 is upper
bounded by

1 − 1

2m1 + 2m2 + 3
.

Consider a

(k, n) = (2m1 + 2m2 + 2, 2m1 + 2m2 + 3)

fractional linear code for N3(m1,m2) over any finite-field
alphabet whose characteristic divides both m1 and m2,
described below.

Let the (k + 1)-dimensional edge vectors on the
left-hand-side of the network be given by

[

e(1)0

]

l
=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

m1
∑

j=1
j 
=l

[

x (1)j

]

l
(l = 1, 2, . . . ,m1)

m1
∑

j=1

[

x (1)j

]

l
(l = m1 + 1, . . . , k)

m1
∑

j=2

[

x (1)j

]

j
(l = k + 1)

[

e(1)
]

l
=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

[z]l +
m1
∑

j=1
j 
=l

[

x (1)j

]

l
(l = 1, 2, . . . ,m1)

[z]l +
m1
∑

j=1

[

x (1)j

]

l
(l = m1 + 1, . . . , k)

[z]m1+1 +
m1
∑

j=1

[

x (1)j

]

j
(l = k + 1)

and for each i = 1, 2, . . . ,m1, let

[

e(1)i

]

l
=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

[z]l +
m1
∑

j=1
j 
=i
j 
=l

[

x (1)j

]

l

(

l = 1, 2, . . . ,m1

and l 
= i

)

[z]m1+1 +
m1
∑

j=1
j 
=i

[

x (1)j

]

j
(l = i)

[z]l +
m1
∑

j=1
j 
=i

[

x (1)j

]

l
(l = m1 + 1, . . . , k)

[z]m1+i+1 (l = k + 1).

For brevity, let

δ = 2m1 + m2 + 2 = k − m2,

and let the (k+1)-dimensional edge vectors on the right-hand-
side of the network be given by

[

e(2)0

]

l
=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

m2
∑

j=1

[

x (2)j

]

l
(l = 1, 2, . . . , δ)

m2
∑

j=1
j 
=l−δ

[

x (2)j

]

l
(l = δ + 1, . . . , k)

m2
∑

j=2

[

x (2)j

]

δ+ j
(l = k + 1)
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[

e(2)
]

l
=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

[z]l +
m2
∑

j=1

[

x (2)j

]

l
(l = 1, 2, . . . , δ)

[z]l +
m2
∑

j=1
j 
=l−δ

[

x (2)j

]

l
(l = δ + 1, . . . , k)

[z]δ +
m2
∑

j=1

[

x (2)j

]

δ+ j
(l = k + 1)

and for each i = 1, 2, . . . ,m2, let

[

e(2)i

]

l
=

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

[z]l +
m2
∑

j=1
j 
=i

[

x (2)j

]

l
(l = 1, 2, . . . , δ)

[z]δ +
m2
∑

j=1
j 
=i

[

x (2)j

]

δ+ j
(l = δ + i)

[z]l +
m2
∑

j=1
j 
=i

j 
=l−δ

[

x (2)j

]

l

(

l = δ + 1, . . . , k

and l 
= δ + i

)

[z]2m1+1+i (l = k + 1).

For each l = 1, 2, . . . ,m1, we have

m1
∑

i=1
i 
=l

[

e(1)i

]

l
= (m1 − 1) [z]l + (m1 − 2)

m1
∑

j=1
j 
=l

[

x (1)j

]

l

= −[z]l − 2
[

e(1)0

]

l

[

from char(F)
∣

∣m1
]

.

(142)

Similarly, for each l = δ + 1, . . . , k, we have

m2
∑

i=1
i 
=l−δ

[

e(2)i

]

l
= (m2−1) [z]l + (m2−2)

m2
∑

j=1
j 
=l−δ

[

x (2)j

]

l

= −[z]l −2
[

e(2)0

]

l

[

from char(F)
∣

∣m2
]

. (143)

Each of the receivers can linearly recover each of the

k = 2m1 + 2m2 + 2

components of its demanded message vector as shown
below.

For each i = 1, 2, . . . ,m1, the left-hand-side receivers can
linearly recover their demands as follows:

R(1)0 :
[

e(1)
]

l
−
[

e(1)0

]

l
= [z]l (l = 1, 2, . . . , k)

R(1)i :
[

e(1)
]

k+1
−
[

e(1)i

]

i
=
[

x (1)i

]

i
[

e(1)
]

l
−
[

e(1)i

]

l
=
[

x (1)i

]

l

(

l = 1, 2, . . . , k
and l 
= i

)

.

For each i = 1, 2, . . . ,m2, the right-hand-side receivers can
linearly recover their demands as follows:

R(2)0 :
[

e(2)
]

l
−
[

e(2)0

]

l
= [z]l (l = 1, 2, . . . , k)

R(2)i :
[

e(2)
]

k+1
−
[

e(2)i

]

δ+i
=
[

x (2)i

]

δ+i
[

e(2)
]

l
−
[

e(2)i

]

l
=
[

x (2)i

]

l

(

l = 1, 2, . . . , k
and l 
= δ + i

)

.

The shared receiver can recover z as follows:

Rz : −2
[

e(1)0

]

l
−

m1
∑

i=1
i 
=l

[

e(1)i

]

l
(l = 1, 2, . . . ,m1)

= [z]l [from (142)]

[

e(1)1

]

1
−
[

e(1)0

]

k+1
= [z]m1+1

[

e(1)l−m1−1

]

k+1
= [z]l (l = m1 + 2, . . . , 2m1 + 1)

[

e(2)l−2m1−1

]

k+1
= [z]l (l = 2m1 + 2, . . . , δ − 1)

[

e(2)1

]

δ+1
−
[

e(2)0

]

k+1
= [z]δ

−2
[

e(2)0

]

l
−

m2
∑

i=1
i 
=l−δ

[

e(2)i

]

l
(l = δ + 1, . . . , k)

= [z]l [from (143)] .

Thus the code is, in fact, a linear solution for N3(m1,m2).
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