
5564 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 8, NO. 11, NOVEMBER 2009

An Algorithm for Wireless Relay Placement
Jillian Cannons, Member, IEEE, Laurence B. Milstein, Fellow, IEEE, and Kenneth Zeger, Fellow, IEEE

Abstract—An algorithm is given for placing relays at spatial
positions to improve the reliability of communicated data in a
sensor network. The network consists of many power-limited
sensors, a small set of relays, and a receiver. For each sensor, the
receiver receives a direct signal as well as an indirect signal
from one of the available relays. The relays rebroadcast the
transmissions in order to achieve diversity at the receiver. Both
amplify-and-forward and decode-and-forward relay networks are
considered. Channels are modeled with Rayleigh fading, path
loss, and additive white Gaussian noise. Performance analysis
and numerical results are given.

Index Terms—Sensor network, cooperative communication,
relay placement.

I. INTRODUCTION

W IRELESS sensor networks typically consist of a large
number of small, power-limited sensors distributed

over a planar geographic area. In some scenarios, the sensors
collect information which is transmitted to a single receiver
for further analysis. A small number of radio relays with
additional processing and communications capabilities can
be strategically placed to help improve system performance.
Two important problems we consider here are to position the
relays and to determine, for each sensor, which relay should
rebroadcast its signal.

Previous studies of relay placement have considered various
optimization criteria and communication models. Some have
focused on the coverage of the network (e.g., Balam and
Gibson [2]; Chen, Wang, and Liang [4]; Cortés, Martiínez,
Karataş, and Bullo [7]; Koutsopoulos, Toumpis, and Tas-
siulas [13]; Liu and Mohapatra [14]; Mao and Wu [15];
Suomela [22]; Tan, Lozano, Xi, and Sheng [23]). In [13]
communication errors are modeled by a fixed probability of
error without incorporating physical considerations; otherwise,
communications are assumed to be error-free. Such studies
often directly use the source coding technique known as the
Lloyd algorithm (e.g., see [9]), which is sub-optimal for relay
placement. Two other optimization criteria are network life-
time and energy usage, with energy modeled as an increasing
function of distance and with error-free communications (e.g.,
Ergen and Varaiya [8]; Hou, Shi, Sherali, and Midkiff [11];
Iranli, Maleki, and Pedram [12]; Pan, Cai, Hou, Shi, and Shen
[17]). Models incorporating fading and/or path loss have been
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used with criteria such as error probability, outage probability,
and throughput, typically with simplifications such as single-
sensor or single-relay networks (e.g., Cho and Yang [5]; So
and Liang [21]; Sadek, Han, and Liu [20]). The majority of
the above approaches do not include diversity. Those that do
often do not focus on optimal relay location and use restricted
networks with only a single source and/or a single relay (e.g.,
Ong and Motani [16]; Chen and Laneman [3]). These previous
studies offer valuable insight; however, the communication
and/or network models used are typically simplified.

In this work, we attempt to position the relays and determine
which relay should rebroadcast each sensor’s transmissions
in order to minimize the average probability of error. We
use a more elaborate communications model which includes
path loss, fading, additive white Gaussian noise, and diversity.
We use a network model in which all relays either use
amplify-and-forward or decode-and-forward communications.
Each sensor in the network transmits information to the
receiver both directly and through a single-hop relay path.
The receiver uses the two received signals to achieve diversity.
Sensors identify themselves in transmissions and relays know
for which sensors they are responsible. We assume TDMA
communications by sensors and relays so that there is (ideally)
no transmission interference. While such interference, due to
effects such as multipath and imperfect frame synchronization,
can be incorporated into our model, it is out of the scope of
this paper.

We present an algorithm that determines relay placement
and assigns each sensor to a relay. We refer to this algorithm
as the relay placement algorithm. The algorithm has some
similarity to the Lloyd algorithm. We describe geometrically,
with respect to fixed relay positions, the sets of locations in the
plane in which sensors are (optimally) assigned to the same
relay, and give performance results based on these analyses
and using numerical computations.

In Section II, we specify communications models and
determine error probabilities. In Section III, we present our
relay placement algorithm. In Section IV, we give analytic
descriptions of optimal sensor regions (with respect to fixed
relay positions). In Section V, we present numerical results.
In Section VI, we summarize our work and provide ideas for
future consideration.

II. COMMUNICATIONS MODEL AND PERFORMANCE

MEASURE

A. Signal, Channel, and Receiver Models

In a sensor network, we refer to sensors, relays, and the re-
ceiver as nodes. We assume that transmission of 𝑏𝑖 ∈ {−1, 1}
by node 𝑖 uses the binary phase shift keyed (BPSK) signal
𝑠𝑖(𝑡), and we denote the transmission energy per bit by 𝐸𝑖.
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In particular, we assume all sensor nodes transmit at the
same energy per bit, denoted by 𝐸Tx. The communications
channel model includes path loss, additive white Gaussian
noise (AWGN), and fading. Let 𝐿𝑖,𝑗 denote the far field path
loss between two nodes 𝑖 and 𝑗 that are separated by a distance
𝑑𝑖,𝑗 (in meters). We consider the free-space law model (e.g.,
see [19, pp. 70 – 73]) for which1

𝐿𝑖,𝑗 =
𝐹2
𝑑2𝑖,𝑗

(1)

where:
𝐹2 = 𝜆2

16𝜋2 (in meters2)

𝜆 = 𝑐/𝑓0 is the wavelength of the carrier wave (in
meters)

𝑐 = 3 ⋅ 108 is the speed of light (in meters/second)

𝑓0 is the frequency of the carrier wave (in Hz).
The formula in (1) is impractical in the near field, since 𝐿𝑖,𝑗 →
∞ as 𝑑𝑖,𝑗 → 0. Comaniciu and Poor [6] addressed this issue
by not allowing transmissions at distances less than 𝜆. Ong
and Motani [16] allow near field transmissions by proposing
a modified model with path loss

𝐿𝑖,𝑗 =
𝐹2

(1 + 𝑑𝑖,𝑗)2
. (2)

We assume additive white Gaussian noise 𝑛𝑗(𝑡) at the re-
ceiving antenna of node 𝑗. The noise has one-sided power
spectral density 𝑁0 (in W/Hz). We assume the channel fading
(excluding path loss) between nodes 𝑖 and 𝑗 is a random
variable ℎ𝑖,𝑗 with Rayleigh density

𝑝ℎ𝑖,𝑗 (ℎ) = (ℎ/𝜎2)𝑒−ℎ2/(2𝜎2) (ℎ ≥ 0). (3)

We also consider AWGN channels (which is equivalent to
assuming ℎ𝑖,𝑗 = 1 for all 𝑖, 𝑗).

Let the signal received after transmission from node 𝑖 to
node 𝑗 be denoted by 𝑟𝑖,𝑗(𝑡). Combining the signal and
channel models, we have

𝑟𝑖,𝑗(𝑡) =
√
𝐿𝑖,𝑗 ℎ𝑖,𝑗𝑠𝑖(𝑡) + 𝑛𝑗(𝑡).

The received energy per bit without fading is

𝐸𝑗 = 𝐸𝑖𝐿𝑖,𝑗 .

We assume demodulation at a receiving node is performed by
applying a matched filter to obtain the test statistic. Diversity
is achieved at the receiver by making a decision based on
the test statistic that combines the two received versions (i.e.,
direct and relayed) of the transmission from a given sensor.
We assume the receiver uses selection combining, in which
only the better of the two incoming signals (determined by a
measurable quantity such as the received signal-to-noise-ratio
(SNR)) is used to detect the transmitted bit.

B. Path Probability of Error

For each sensor, we determine the probability of error along
the direct path from the sensor to the receiver and along single-
hop2 relay paths, for both amplify-and-forward and decode-

1Much of the material of this paper can be generalized by replacing the
path loss exponent 2 by any positive, even integer, and 𝐹2 by a corresponding
constant.

2Computing the probabilities of error for the more general case of multi-
hop relay paths is straightforward.

and-forward protocols. Let x ∈ ℝ
2 denote a transmitter posi-

tion and let Rx denote the receiver. We consider transmission
paths of the forms (x,Rx), (x, 𝑖), (𝑖,Rx), and (x, 𝑖,Rx),
where 𝑖 denotes a relay index. For each such path 𝑞, let:

SNR𝑞
𝐻 = end-to-end SNR, conditioned on fades (4)

𝑃 𝑞
𝑒∣𝐻 = end-to-end error probability, conditioned on fades

(5)

SNR𝑞 = end-to-end SNR (6)

𝑃 𝑞
𝑒 = end-to-end error probability. (7)

For AWGN channels, we take SNR𝑞 and 𝑃 𝑞
𝑒 to be the SNR

and error probability, respectively, when the signal is degraded
only by path loss and receiver antenna noise. For fading
channels, we assume SNR𝑞 and 𝑃 𝑞

𝑒 to be averaged over the
fades. Note that the signal-to-noise ratios only apply to direct
paths and paths using amplify-and-forward relays. Finally,
denote the Gaussian error function by

𝑄(𝑥) =
1√
2𝜋

∫ ∞

𝑥

𝑒−𝑦2/2𝑑𝑦.

1) Direct Path (i.e., unrelayed): For Rayleigh fading, we
have (e.g., see [18, pp. 817 – 818])

SNR(x,Rx) =
4𝜎2𝐸Tx𝐿x,Rx

𝑁0

SNR(x,𝑖) =
4𝜎2𝐸Tx𝐿x,𝑖

𝑁0

SNR(𝑖,Rx) =
4𝜎2𝐸𝑖𝐿𝑖,Rx

𝑁0
; (8)

𝑃 (x,Rx)
𝑒 =

1

2

(
1−
(
1 +

2

SNR(x,Rx)

)−1/2
)
. (9)

For AWGN channels, we have (e.g., see [18, pp. 255 – 256])

SNR(x,Rx) =
2𝐸Tx𝐿x,Rx

𝑁0

SNR(x,𝑖) =
2𝐸Tx𝐿x,𝑖

𝑁0

SNR(𝑖,Rx) =
2𝐸𝑖𝐿𝑖,Rx

𝑁0
; (10)

𝑃 (x,Rx)
𝑒 = 𝑄

(√
SNR(x,Rx)

)
. (11)

Note that analogous formulas to those in (9) and (11) can
be given for 𝑃 (x,𝑖)

𝑒 and 𝑃 (𝑖,Rx)
𝑒 .

2) Relay Path with Amplify-and-Forward: For amplify-and-
forward relays,3 the system is linear. Denote the gain by 𝐺.
Conditioning on the fading values, we have (e.g., see [10])

SNR
(x,𝑖,Rx)
𝐻 =

ℎ2x,𝑖ℎ
2
𝑖,Rx𝐸Tx/𝑁0

𝐵𝑖ℎ2𝑖,Rx +𝐷𝑖
(12)

𝑃
(x,𝑖,Rx)
𝑒∣𝐻 = 𝑄

(√
SNR

(x,𝑖,Rx)
ℎ

)
(13)

where 𝐵𝑖 =
1

2𝐿x,𝑖
; 𝐷𝑖 =

1

2𝐺2𝐿x,𝑖𝐿𝑖,Rx
. (14)

3By amplify-and-forward relays we specifically mean that a received signal
is multiplied by a constant gain factor and then transmitted.
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Then, the end-to-end probability of error, averaged over the
fades, is

𝑃 (x,𝑖,Rx)
𝑒

=

∫ ∞

0

∫ ∞

0

𝑃
(x,𝑖,Rx)
𝑒∣𝐻 𝑝𝐻 (ℎx,𝑖) 𝑝𝐻 (ℎ𝑖,Rx) 𝑑ℎx,𝑖 𝑑ℎ𝑖,Rx

=

∫ ∞

0

∫ ∞

0

𝑄

(√
ℎ2x,𝑖ℎ

2
𝑖,Rx𝐸Tx/𝑁0

𝐵𝑖ℎ2𝑖,Rx +𝐷𝑖

)
ℎx,𝑖
𝜎2

⋅ exp
{
−ℎ

2
x,𝑖

2𝜎2

}
ℎ𝑖,Rx

𝜎2

⋅ exp
{
−ℎ

2
𝑖,Rx

2𝜎2

}
𝑑ℎx,𝑖 𝑑ℎ𝑖,Rx

[from (13), (12), (3)]

=
1

2
− 𝐷𝑖𝑁0/𝐸Tx

4𝜎 (𝜎2 +𝐵𝑖𝑁0/𝐸Tx)
3/2

[∫ ∞

0

√
𝑡

𝑡+ 1

⋅ exp
{
−𝑡
(

𝐷𝑖𝑁0/𝐸Tx

2𝜎2 (𝜎2 +𝐵𝑖𝑁0/𝐸Tx)

)}
𝑑𝑡

]

=
1

2
− 𝐷𝑖

√
𝜋𝑁0/𝐸Tx

8𝜎 (𝜎2 +𝐵𝑖𝑁0/𝐸Tx)
3/2

⋅ 𝑈
(
3

2
, 2,

𝐷𝑖𝑁0/𝐸Tx

2𝜎2 (𝜎2 +𝐵𝑖𝑁0/𝐸Tx)

)
(15)

where 𝑈(𝑎, 𝑏, 𝑧) denotes the confluent hypergeometric func-
tion of the second kind [1, p. 505] (also known as Kummer’s
function of the second kind), i.e.,

𝑈(𝑎, 𝑏, 𝑧) =
1

Γ(𝑎)

∫ ∞

0

𝑒−𝑧𝑡𝑡𝑎−1 (1 + 𝑡)
𝑏−𝑎−1

𝑑𝑡.

For AWGN channels, we have

SNR(x,𝑖,Rx) =
𝐸Tx/𝑁0

𝐵𝑖 +𝐷𝑖
[from (12)] (16)

𝑃 (x,𝑖,Rx)
𝑒 = 𝑄

(√
SNR(x,𝑖,Rx)

)
. (17)

3) Relay Path with Decode-and-Forward: For decode-and-
forward relays,4 the signal at the receiver is not a linear
function of the transmitted signal (i.e., the system is not
linear), as the relay makes a hard decision based on its
incoming data. A decoding error occurs at the receiver if and
only if exactly one decoding error is made along the relay
path, i.e.,

𝑃 (x,𝑖,Rx)
𝑒 = 𝑃 (x,𝑖)

𝑒

(
1− 𝑃 (𝑖,Rx)

𝑒

)
+ 𝑃 (𝑖,Rx)

𝑒

(
1− 𝑃 (x,𝑖)

𝑒

)
.

(18)

In particular, for Rayleigh fading,

4By decode-and-forward relays we specifically mean that a single symbol
is demodulated and then remodulated; no additional decoding is performed
(e.g., of channel codes).

𝑃 (x,𝑖,Rx)
𝑒 =

1

4

(
1−
(
1 +

2

SNR(x,𝑖)

)−1/2
)

⋅
(
1 +

(
1 +

2

SNR(𝑖,Rx)

)−1/2
)

+
1

4

(
1−
(
1 +

2

SNR(𝑖,Rx)

)−1/2
)

⋅
(
1 +

(
1 +

2

SNR(x,𝑖)

)−1/2
)
.

[from (9)] (19)

Similarly, one can substitute (11) into (18) for AWGN chan-
nels.

III. PATH SELECTION AND RELAY PLACEMENT

ALGORITHM

A. Definitions

We define a sensor network with relays to be a collection
of sensors and relays in ℝ

2, together with a single receiver at
the origin, where each sensor transmits to the receiver both
directly and through some predesignated relay for the sensor,
and the system performance is evaluated using the measure
given in (20). Specifically, let x1, . . . ,x𝑀 ∈ ℝ

2 be the sensor
positions and let y1, . . . ,y𝑁 ∈ ℝ

2 be the relay positions.
Typically, 𝑁 ≪𝑀 . Let

𝑝 : ℝ2 → {1, . . . , 𝑁}
be a sensor-relay assignment, where 𝑝 (x) = 𝑖 means that if a
sensor were located at position x, then it would be assigned
to relay y𝑖. Let 𝒮 be a bounded subset of ℝ

2. Throughout
both this section and Section IV we will consider sensor-
relay assignments whose domains are restricted to 𝒮 (since
the number of sensors is finite). Let the sensor-averaged
probability of error be given by

1

𝑀

𝑀∑
𝑠=1

𝑃 (x𝑠,𝑝(x𝑠),Rx)
𝑒 . (20)

Note that (20) depends on the relay locations through the
sensor-relay assignment 𝑝.

B. Overview of the Proposed Algorithm

The proposed iterative algorithm attempts to minimize the
sensor-averaged probability of error5 over all choices of relay
positions y1, . . . ,y𝑁 and sensor-relay assignments 𝑝. The
algorithm operates in two phases. First, the relay positions
are fixed and the best sensor-relay assignment is determined;
second, the sensor-relay assignment is fixed and the best relay
positions are determined. An initial placement of the relays is
made either randomly or using some heuristic. The two phases
are repeated until the quantity in (20) has converged within
some threshold.

5Here we minimize (20); however, the algorithm can be adapted to
minimize other performance measures.
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C. Phase 1: Optimal Sensor-Relay Assignment

In the first phase, we assume the relay positions y1, . . . ,y𝑁

are fixed and choose an optimal6 sensor-relay assignment 𝑝∗,
in the sense of minimizing (20). This choice can be made
using an exhaustive search in which all possible sensor-relay
assignments are examined. A sensor-relay assignment induces
a partition of 𝒮 into subsets for which all sensors in any such
subset are assigned to the same relay. For each relay y𝑖, let
𝜎𝑖 be the set of all points x ∈ 𝒮 such that if a sensor were
located at position x, then the optimally assigned relay that
rebroadcasts its transmissions would be y𝑖, i.e.,

𝜎𝑖 = {x ∈ 𝒮 : 𝑝∗ (x) = 𝑖} .
We call 𝜎𝑖 the 𝑖th optimal sensor region (with respect to the
fixed relay positions).

D. Phase 2: Optimal Relay Placement

In the second phase, we assume the sensor-relay assignment
is fixed and choose optimal7 relay positions in the sense
of minimizing (20). Numerical techniques can be used to
determine such optimal relay positions. For the first three
invocations of phase 2 in the iterative algorithm, we used
an efficient (but slightly sub-optimal) numerical approach that
quantizes a bounded subset of ℝ2 into gridpoints. For a given
relay, the best gridpoint was selected as the new location for
the relay. For subsequent invocations of phase 2, the restriction
of lying on a gridpoint was removed and a steepest descent
technique was used to refine the relay locations.

IV. GEOMETRIC DESCRIPTIONS OF PHASE 1 OPTIMAL

SENSOR REGIONS

We now geometrically describe the optimal sensor regions
used in Phase 1 of the algorithm by considering specific relay
protocols and channel models. In particular, we examine am-
plify-and-forward and decode-and-forward relaying protocols
in conjunction with either AWGN channels or Rayleigh fading
channels. We define the internal boundary of any optimal
sensor region 𝜎𝑖 to be the portion of the boundary of 𝜎𝑖 that
does not lie on the boundary of 𝒮. For amplify-and-forward
and AWGN channels, we show that the internal boundary of
each optimal sensor region consists only of circular arcs. For
the other three combinations of relay protocol and channel
type, we show that as the transmission energies of sensors
and relays grow, the internal boundary of each optimal sensor
region converges to finite combinations of circular arcs and/or
line segments.

For each pair of relays (y𝑖,y𝑗), let 𝜎𝑖,𝑗 be the set of all
points x ∈ 𝒮 such that if a sensor were located at position x,
then its average probability of error using relay y𝑖 would be
smaller than that using relay y𝑗 , i.e.,

𝜎𝑖,𝑗 =
{
x ∈ 𝒮 : 𝑃 (x,𝑖,Rx)

𝑒 < 𝑃 (x,𝑗,Rx)
𝑒

}
. (21)

6This choice may not be unique, but we select one such minimizing
assignment here. Also, the optimality of 𝑝∗ here depends only on the values
𝑝∗ (x1) , . . . , 𝑝∗ (x𝑀 ).

7This choice may not be unique, but we select one such set of positions
here.

Note that 𝜎𝑖,𝑗 = 𝒮 − 𝜎𝑗,𝑖. Then, for the given set of relay
positions, we have

𝜎𝑖 =

𝑁∩
𝑗 = 1
𝑗 ∕=𝑖

𝜎𝑖,𝑗 (22)

since
𝑝∗ (x) = argmin

𝑗∈{1,...,𝑁}
𝑃 (x,𝑗,Rx)
𝑒 .

Furthermore, for a suitably chosen constant 𝐶 > 0, in order
to facilitate analysis, we modify (2) to8

𝐿𝑖,𝑗 =
𝐹2

𝐶 + 𝑑2𝑖,𝑗
. (23)

A. Amplify-and-Forward with AWGN Channels

Theorem IV.1. Consider a sensor network with amplify-
and-forward relays and AWGN channels. Then, the internal
boundary of each optimal sensor region consists of circular
arcs.

Proof: See Appendix A.
Figure 1a shows the optimal sensor regions 𝜎1, 𝜎2, 𝜎3, and

𝜎4, for 𝑁 = 4 randomly placed amplify-and-forward relays
with AWGN channels and system parameter values

𝐺 = 65 dB

𝑓0 = 900 MHz

𝐶 = 1.

B. Decode-and-Forward with AWGN Channels

Theorem IV.2. Consider a sensor network with decode-
and-forward relays and AWGN channels, and, for all re-
lays 𝑖, let 𝐸𝑖/𝑁0 → ∞ and 𝐸Tx/𝑁0 → ∞ such that
(𝐸𝑖/𝑁0)/(𝐸Tx/𝑁0) has a limit. Then, the internal bound-
ary of each optimal sensor region consists asymptotically of
circular arcs and line segments.

Proof: See Appendix B.
Figure 1b shows the asymptotically-optimal sensor regions

𝜎1, 𝜎2, 𝜎3, and 𝜎4, for 𝑁 = 4 randomly placed decode-and-
forward relays with AWGN channels and system parameter
values

𝐶 = 1

𝐸Rx/𝑁0∣𝑑=50 m = 5 dB

𝐸𝑖/𝑁0 = 2𝐸Tx/𝑁0 for all relays y𝑖.

C. Amplify-and-Forward with Rayleigh Fading Channels

We define the nearest-neighbor region of a relay y𝑖 to be

{x ∈ 𝒮 : ∀𝑗, ∥x− y𝑖∥ < ∥x− y𝑗∥}
where ties (i.e., ∥x− y𝑖∥ = ∥x− y𝑗∥) are broken arbitrarily.
The interiors of these regions are convex polygons intersected
with 𝒮.

8Numerical results confirm that (23) is a close approximation of (2) for
our parameters of interest.
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(a) (b)

(c) (d)

Fig. 1. Sensor regions 𝜎1, 𝜎2, 𝜎3, and 𝜎4 for 4 randomly placed relays. Each relay 𝑖 ∈ {1, 2, 3, 4} is denoted by a filled square labeled 𝑖, while the receiver
is denoted by a filled circle labeled Rx. Sensors are distributed as a square grid over ±100 meters in each dimension. The sensor regions are either optimal
or asymptotically-optimal as described in (a) Theorem IV.1 (amplify-and-forward relays and AWGN channels), (b) Theorem IV.2 (decode-and-forward relays
and AWGN channels with high 𝐸Tx/𝑁0 and 𝐸𝑖/𝑁0), (c) Theorem IV.3 (amplify-and-forward relays and Rayleigh fading channels with high 𝐸Tx/𝑁0),
and (d) Theorem IV.4 (decode-and-forward relays and Rayleigh fading channels) with high 𝐸Tx/𝑁0 and 𝐸𝑖/𝑁0).

Theorem IV.3. Consider a sensor network with amplify-
and-forward relays and Rayleigh fading channels, and let
𝐸Tx/𝑁0 → ∞. Then, each optimal sensor region is asymp-
totically equal to the corresponding relay’s nearest-neighbor
region.

Proof: See Appendix C.
Figure 1c shows the asymptotically-optimal sensor regions

𝜎1, 𝜎2, 𝜎3, and 𝜎4, for 𝑁 = 4 randomly placed amplify-and-
forward relays with Rayleigh fading channels.

D. Decode-and-Forward with Rayleigh Fading Channels

Theorem IV.4. Consider a sensor network with decode-and-
forward relays and Rayleigh fading channels, and, for all
relays 𝑖, let 𝐸𝑖/𝑁0 → ∞ and 𝐸Tx/𝑁0 → ∞ such that
(𝐸𝑖/𝑁0)/(𝐸Tx/𝑁0) has a limit. Then, the internal boundary
of each optimal sensor region is asymptotically piecewise
linear.

Proof: See Appendix D.

Note that if, for all relays y𝑖, 𝐸𝑖 is a constant and 𝐺𝑖 = ∞,
then each optimal sensor region is asymptotically equal to
the corresponding relay’s nearest-neighbor regions, as was the
case for amplify-and-forward relays and Rayleigh fading chan-
nels. In addition, we note that, while Theorem IV.4 considers
the asymptotic case, we have empirically observed that the
internal boundary of each optimal sensor region consists of
line segments for a wide range of moderate parameter values.

Figure 1d shows the asymptotically-optimal sensor regions
𝜎1, 𝜎2, 𝜎3, and 𝜎4, for 𝑁 = 4 randomly placed decode-
and-forward relays with Rayleigh fading channels and system
parameter values

𝐶 = 1

𝐸Rx/𝑁0∣𝑑=50 m = 5 dB

𝐸𝑖/𝑁0 = 2𝐸Tx/𝑁0 for all relays y𝑖.
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(a) (b)

(c)
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Fig. 2. Optimal sensor regions output by the algorithm for decode-and-forward relays and fading channels with 𝐸𝑖 = 100𝐸Tx, and 𝐸Rx/𝑁0∣𝑑=50 m = 10
dB. Relays are denoted by squares and the receiver is located at (0, 0). Sensors are distributed as a square grid over ±100 meters in each dimension. The
number of relays is (a) 𝑁 = 2, (b) 𝑁 = 3, (c) 𝑁 = 4, and (d) 𝑁 = 12.

V. NUMERICAL RESULTS FOR THE RELAY PLACEMENT

ALGORITHM

The relay placement algorithm was implemented for both
amplify-and-forward and decode-and-forward relays. The sen-
sors were placed uniformly in a square of sidelength 100 m.
For decode-and-forward and all relays y𝑖, the energy 𝐸𝑖 was
set to a constant which equalized the total output power of all
relays for both amplify-and-forward and decode-and-forward.
Specific numerical values for system variables were

𝑓0 = 900 MHz

𝜎 =
√
2/2

𝑀 = 10000

𝐶 = 1.

In order to use the relay placement algorithm to produce
good relay locations and sensor-relay assignments, we ran
the algorithm 10 times. Each such run was initiated with a
different random set of relay locations (uniformly distributed
on the square 𝒮) and used the sensor-averaged probability
of error given in (20). For each of the 10 runs completed,

1000 simulations were performed with Rayleigh fading and
diversity (selection combining) at the receiver. Different re-
alizations of the fade values for the sensor network channels
were chosen for each of the 1000 simulations. Of the 10 runs,
the relay locations and sensor-relay assignments of the run
with the lowest average probability of error over the 1000
simulations was chosen.

Figure 2 gives the algorithm output for 2, 3, 4, and 12
decode-and-forward relays with

𝐸Rx/𝑁0∣𝑑=50 m = 10 dB

𝐸𝑖 = 100𝐸Tx

and using the exact error probability expressions. Relays are
denoted by squares and the receiver is denoted by a circle
at the origin. Boundaries between the optimal sensor regions
are shown. For 2, 3, and 4 relays a symmetry is present,
with each relay being responsible for approximately the same
number of sensors. A symmetry is also present for 12 relays;
here, however, eight relays are responsible for approximately
the same number of sensors, and the remaining four relays
are located near the corners of 𝒮 to assist in transmissions
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Fig. 3. Optimal sensor regions 𝜎1, . . . , 𝜎12 output by the algorithm for de-
code-and-forward relays and fading channels with 𝑁 = 12, 𝐸𝑖 = 1.26𝐸Tx,
and 𝐸Rx/𝑁0∣𝑑=50 m = 5 dB.

experiencing the largest path loss due to distance. Such
symmetries reflect the use of relay positions which attempt
to balance the performance of individual sensors in order
to minimize the overall average probability of error. Since
the relays transmit at higher energies than the sensors, the
probability of detection error is reduced by reducing path
loss before a relay rebroadcasts a sensor’s signal, rather than
after the relay rebroadcasts the signal (even at the expense
of possibly greater path loss from the relay to the receiver).
Thus, some sensors actually transmit “away” from the receiver
to their associated relay. The asymptotically-optimal sensor
regions closely matched those for the exact error probability
expressions, which is expected due to the large value selected
for 𝐸𝑖. In addition, the results for amplify-and-forward relays
were quite similar, with the relays lying closer to the corners of
𝒮 for the 2 and 3 relay cases, and the corner regions displaying
slightly curved boundaries for 12 relays. With the exception of
this curvature, the asymptotic regions closely matched those
from the exact error probability expressions. This similarity
between decode-and-forward and amplify-and-forward relays
is expected due to the large value selected for 𝐸𝑖.

Figures 3 and 4 give the algorithm output for 12 decode-
and-forward and amplify-and-forward relays, respectively,
with

𝐸Rx/𝑁0∣𝑑=50 m = 5 dB

𝐸𝑖 = 1.26𝐸Tx

and using the exact error probability expressions. For de-
code-and-forward relays, the results are similar to those in
Figure 2d; however the relays are located much closer to
the receiver due to their decreased transmission energy, and
the corner regions of 𝒮 exhibit slightly curved boundaries.
For amplify-and-forward relays, the relays are located much
closer to the corners since, with lower gain, the relays are
less effective and thus primarily assist those sensors with the
largest path loss.

The maximum, average, and median of the sensor prob-

Fig. 4. Optimal sensor regions 𝜎1, . . . , 𝜎12 output by the algorithm for
amplify-and-forward relays and fading channels with 𝑁 = 12, 𝐺 = 56 dB,
and 𝐸Rx/𝑁0∣𝑑=50 m = 5 dB.

TABLE I
SENSOR PROBABILITY OF ERROR VALUES.

Figure Max. 𝑃𝑒 Avg. 𝑃𝑒 Median 𝑃𝑒

2a 7.3 ⋅ 10−2 1.8 ⋅ 10−2 1.2 ⋅ 10−2

2b 6.9 ⋅ 10−2 1.2 ⋅ 10−2 7.2 ⋅ 10−3

2c 3.3 ⋅ 10−2 7.0 ⋅ 10−3 5.1 ⋅ 10−3

2d 1.4 ⋅ 10−2 2.8 ⋅ 10−3 2.3 ⋅ 10−3

3 2.0 ⋅ 10−1 6.2 ⋅ 10−2 5.6 ⋅ 10−2

4 1.7 ⋅ 10−1 9.9 ⋅ 10−2 1.1 ⋅ 10−1

abilities of error for all of the above figures are given in
Table I. The sensor error probability is lowest for sensors that
are closest to the relays, and increases with distance.

VI. CONCLUSIONS

This paper presented an algorithm for amplify-and-forward
and decode-and-forward relay placement and sensor assign-
ment in wireless sensor networks that attempts to minimize the
average probability of error. Communications were modeled
using path loss, fading, AWGN, and diversity combining. We
determined the geometric shapes of regions for which sensors
would be optimally assigned to the same relay (for a given
set of relay locations), in some instances for the asymptotic
case of the ratios of the transmission energies to the noise
power spectral density growing without bound. Numerical
results showing the algorithm output were presented. The
asymptotic regions were seen to closely match the regions
obtained using exact expressions. The complexity of the
implemented relay placement algorithm is roughly as follows:
determining sensor-relay assignments (Phase 1) is proportional
to the number of sensors times the number of relays, and
relay placement (Phase 2) using the gridpoint approach is
proportional to the number of gridpoints times the sum of
the number of relays and sensors. Reducing this complexity
would be an interesting topic for future research.

A number of extensions to the relay placement algorithm
could be incorporated to enhance the system model. Some
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such enhancements are multi-hop relay paths, more sophisti-
cated diversity combining, power constraints, sensor priorities,
and sensor information correlation.

APPENDIX A: PROOF OF THEOREM IV.1

For any distinct relays y𝑖 and y𝑗 , let

𝐾𝑖 =
1

𝐺2𝐹2 + 𝐶 + ∥y𝑖∥2
; 𝛾𝑖,𝑗 =

𝐾𝑖

𝐾𝑖 −𝐾𝑗
. (24)

Note that for fixed gain 𝐺, 𝐾𝑖 ∕= 𝐾𝑗 since we assume y𝑖 ∕=
y𝑗 . Then, we have

𝜎𝑖,𝑗 =
{
x ∈ 𝒮 : 𝑃 (x,𝑖,Rx)

𝑒 < 𝑃 (x,𝑗,Rx)
𝑒

}

=

{
x ∈ 𝒮 :

𝐾𝑖

𝐶 + ∥x− y𝑖∥2
>

𝐾𝑗

𝐶 + ∥x− y𝑗∥2
}

[from (17),(16),(14),(23),(24)] (25)

=

⎧⎨
⎩x ∈ 𝒮 : ∥x− (1− 𝛾𝑖,𝑗)y𝑖 − 𝛾𝑖,𝑗y𝑗∥2

𝐾𝑖−𝐾𝑗>0

>
<

𝐾𝑖−𝐾𝑗<0

𝛾𝑖,𝑗 (𝛾𝑖,𝑗 − 1) ∥y𝑖 − y𝑗∥2 − 𝐶

⎫⎬
⎭

[from (24)] (26)

where the notation
𝐾𝑖−𝐾𝑗>0

>
<

𝐾𝑖−𝐾𝑗<0

indicates that “>” should be used if 𝐾𝑖 −𝐾𝑗 > 0, and “<”
if 𝐾𝑖 −𝐾𝑗 < 0. By (26), the set 𝜎𝑖,𝑗 is either the interior or
the exterior of a circle (depending on the sign of 𝐾𝑖 −𝐾𝑗).
Applying (22) completes the proof.

APPENDIX B: PROOF OF THEOREM IV.2

Lemma B.1 (e.g., see [25, pp. 82 – 83], [24, pp. 37 – 39]).
For all 𝑥 > 0,(

1− 1

𝑥2

)(
𝑒−𝑥2/2

√
2𝜋𝑥

)
≤ 𝑄(𝑥) ≤ 𝑒−𝑥2/2

√
2𝜋𝑥

.

Lemma B.2. Let 𝜖 > 0 and

𝐿𝑥,𝑦 =
𝑄 (

√
𝑥) +𝑄

(√
𝑦
)− 2𝑄 (

√
𝑥)𝑄

(√
𝑦
)

max
(

𝑒−𝑥/2√
2𝜋𝑥
, 𝑒

−𝑦/2√
2𝜋𝑦

) .

Then, 1− 𝜖 ≤ 𝐿𝑥,𝑦 ≤ 2 for 𝑥 and 𝑦 sufficiently large.

Proof: For the lower bound, we have

𝐿𝑥,𝑦 ≥
𝑒−𝑥/2√
2𝜋𝑥

+ 𝑒−𝑦/2√
2𝜋𝑦

𝑒−𝑥/2√
2𝜋𝑥

+ 𝑒−𝑦/2√
2𝜋𝑦

−
𝑒−𝑥/2

𝑥
√
2𝜋𝑥

+ 𝑒−𝑦/2

𝑦
√
2𝜋𝑦

max
(

𝑒−𝑥/2√
2𝜋𝑥
, 𝑒

−𝑦/2√
2𝜋𝑦

)
− 2min

(
𝑒−𝑥/2

√
2𝜋𝑥

,
𝑒−𝑦/2

√
2𝜋𝑦

)
[from Lemma B.1]

≥ 1− 1

min(𝑥, 𝑦)

−
(

𝑒−max(𝑥,𝑦)/2

max(𝑥, 𝑦)
√

max(𝑥, 𝑦)

)(√
min(𝑥, 𝑦)

𝑒−min(𝑥,𝑦)/2

)

− 2min

(
𝑒−𝑥/2

√
2𝜋𝑥

,
𝑒−𝑦/2

√
2𝜋𝑦

)
[for 𝑥, 𝑦 > 1]

≥ 1− 𝜖. [for 𝑥, 𝑦 sufficiently large]

For the upper bound, we have

𝐿𝑥,𝑦

≤
(

𝑒−𝑥/2√
2𝜋𝑥

)
+
(

𝑒−𝑦/2√
2𝜋𝑦

)
− 2

(
1− 1

𝑥

) (
𝑒−𝑥/2√

2𝜋𝑥

)(
1− 1

𝑦

)(
𝑒−𝑦/2√

2𝜋𝑦

)
max

(
𝑒−2/𝑥√

2𝜋𝑥
, 𝑒−𝑦/2√

2𝜋𝑦

)
[from Lemma B.1]

≤
𝑒−𝑥/2√

2𝜋𝑥
+ 𝑒−𝑦/2√

2𝜋𝑦

max
(

𝑒−2/𝑥√
2𝜋𝑥

, 𝑒−𝑦/2√
2𝜋𝑦

) [for 𝑥, 𝑦 > 1]

≤ 2.

Proof of Theorem IV.2: As an approximation to 𝑃 (x,𝑖,Rx)
𝑒

given in (18), define

𝑃 (x,𝑖,Rx)
𝑒

=
1√
2𝜋

⋅max

(
1√

SNR(x,𝑖)
exp

{
−𝑆𝑁𝑅

(x,𝑖)

2

}
,

1√
SNR(𝑖,Rx)

exp

{
−𝑆𝑁𝑅

(𝑖,Rx)

2

})
. (27)

For any relay y𝑖, let

𝛼𝑖 =
𝑃

(x,𝑖,Rx)
𝑒

𝑃
(x,𝑖,Rx)
𝑒

.

Let 𝜖 > 0. Then, using Lemma B.2, it can be shown that

1− 𝜖 ≤ 𝛼𝑖 ≤ 2. (28)

We will now show that 𝜎𝑖,𝑗 , given by (21), is a finite
intersection of unions of certain sets 𝜌(𝑘)𝑖,𝑗 for 𝑘 = 1, . . . , 4,
where each such set has circular and/or linear boundaries.

For each pair of relays (y𝑖,y𝑗) with 𝑖 ∕= 𝑗, define

𝜌
(1)
𝑖,𝑗 =

{
x ∈ 𝒮 : SNR(x,𝑖) − 2 ln𝛼𝑖 + ln SNR(x,𝑖) >

SNR(x,𝑗) − 2 ln𝛼𝑗 + ln SNR(x,𝑗)
}

=

{
x ∈ 𝒮 :

2𝐹2

𝐶 + ∥x− y𝑖∥2
+
𝑁0

𝐸Tx
ln

(
𝛼𝑗
𝛼𝑖

)

+
𝑁0

𝐸Tx
ln

(
𝐶 + ∥x− y𝑗∥2
𝐶 + ∥x− y𝑖∥2

)

>
2𝐹2

𝐶 + ∥x− y𝑗∥2
}
.

[from (10), (23)]

The set 𝒮 is bounded, so, using (28), as 𝐸Tx/𝑁0 → ∞,
𝐸𝑖/𝑁0 → ∞, and 𝐸𝑗/𝑁0 → ∞, we have

𝜌
(1)
𝑖,𝑗 →

{
x ∈ 𝒮 : ∥x− y𝑗∥2 > ∥x− y𝑖∥2

}
which has a linear internal boundary.

Also, for each pair of relays (y𝑖,y𝑗) with 𝑖 ∕= 𝑗, define

𝜌
(2)
𝑖,𝑗 =

{
x ∈ 𝒮 : SNR(x,𝑖) − 2 ln𝛼𝑖 + ln SNR(x,𝑖)
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> SNR(𝑗,Rx) − 2 ln𝛼𝑗 + ln SNR(𝑗,Rx)
}

=

{
x ∈ 𝒮 :

2𝐹2

𝐶 + ∥x− y𝑖∥2

>
2𝐹2

𝐶 + ∥y𝑗∥2
⋅ 𝐸𝑗/𝑁0

𝐸Tx/𝑁0

+
𝑁0

𝐸Tx
ln

(
𝐶 + ∥x− y𝑖∥2
𝐶 + ∥y𝑗∥2

⋅ 𝐸𝑗/𝑁0

𝐸Tx/𝑁0

)

+
𝑁0

𝐸Tx
ln

(
𝛼𝑖
𝛼𝑗

)}
. [from (10),(23)]

(29)

In the cases that follow, we will show that, asymptotically,
𝜌
(2)
𝑖,𝑗 either contains all of the sensors, none of the sensors, or

the subset of sensors in the interior of a circle.
Case 1: (𝐸𝑗/𝑁0)/(𝐸Tx/𝑁0) → ∞.

The set 𝒮 is bounded and, by (28), ln(𝛼𝑖/𝛼𝑗) is asymptot-
ically bounded. Therefore, the limit of the right-hand side of
the inequality in (29) is infinity. Thus, 𝜌(2)𝑖,𝑗 → ∅.
Case 2: (𝐸𝑗/𝑁0)/(𝐸Tx/𝑁0) → 𝐺𝑗 for some 𝐺𝑗 ∈ (0,∞).

Since 𝒮 is bounded and ln(𝛼𝑖/𝛼𝑗) is asymptotically
bounded, we have

𝜌
(2)
𝑖,𝑗 →

{
x ∈ 𝒮 : ∥x− y𝑖∥2 < 𝐶 + ∥y𝑗∥2

𝐺𝑗
− 𝐶

}

which has a circular internal boundary.
Case 3: (𝐸𝑗/𝑁0)/(𝐸Tx/𝑁0) → 0.

Since 𝒮 is bounded and ln(𝛼𝑖/𝛼𝑗) is asymptotically
bounded, the limit of the right-hand side of the inequality
in (29) is 0. Thus, since 𝐹2 > 0, we have 𝜌(2)𝑖,𝑗 → 𝒮.

Also, for each pair of relays (y𝑖,y𝑗) with 𝑖 ∕= 𝑗, define

𝜌
(3)
𝑖,𝑗 =

{
x ∈ 𝒮 : SNR(𝑖,Rx) − 2 ln𝛼𝑖 + ln SNR(𝑖,Rx)

> SNR(x,𝑗) − 2 ln𝛼𝑗 + ln SNR(x,𝑗)
}
.

Observing the symmetry between 𝜌(3)𝑖,𝑗 and 𝜌(2)𝑖,𝑗 , we have that
as 𝐸Tx/𝑁0 → ∞, 𝐸𝑖/𝑁0 → ∞, and 𝐸𝑗/𝑁0 → ∞, the set
𝜌
(3)
𝑖,𝑗 becomes either empty, all of 𝒮, or the exterior of a circle.
Also, for each pair of relays (y𝑖,y𝑗) with 𝑖 ∕= 𝑗, define

𝜌
(4)
𝑖,𝑗 =

{
x ∈ 𝒮 : SNR(𝑖,Rx) − 2 ln𝛼𝑖 + ln SNR(𝑖,Rx)

> SNR(𝑗,Rx) − 2 ln𝛼𝑗 + ln SNR(𝑗,Rx)
}

=

⎧⎨
⎩x ∈ 𝒮 :

2𝐸𝑖𝐹2

𝑁0

(
𝐶 + ∥y𝑖∥2

) − ln𝛼𝑖

+ ln

⎛
⎝ 2𝐸𝑖𝐹2

𝑁0

(
𝐶 + ∥y𝑖∥2

)
⎞
⎠

>
2𝐸𝑗𝐹2

𝑁0

(
𝐶 + ∥y𝑗∥2

) − ln𝛼𝑗

+ ln

⎛
⎝ 2𝐸𝑗𝐹2

𝑁0

(
𝐶 + ∥y𝑗∥2

)
⎞
⎠
⎫⎬
⎭ .

[from (10),(23)]

Using (28), as 𝐸Tx/𝑁0 → ∞, 𝐸𝑖/𝑁0 → ∞, and 𝐸𝑗/𝑁0 →
∞, we have 𝜌(4)𝑖,𝑗 → 𝒮 or 𝜌(4)𝑖,𝑗 → ∅.

Then, we have

𝜎𝑖,𝑗 =
{
x ∈ 𝒮 : 𝑃 (x,𝑖,Rx)

𝑒 < 𝑃 (x,𝑗,Rx)
𝑒

}
=
{
x ∈ 𝒮 : 𝛼𝑖𝑃

(x,𝑖,Rx)
𝑒 < 𝛼𝑗𝑃

(x,𝑗,Rx)
𝑒

}
=
{
x ∈ 𝒮 : min

(
SNR(x,𝑖) − 2 ln𝛼𝑖 + ln SNR(x,𝑖),

SNR(𝑖,Rx) − 2 ln𝛼𝑖 + ln SNR(𝑖,Rx)
)

> min
(
SNR(x,𝑗) − 2 ln𝛼𝑗 + ln SNR(x,𝑗),

SNR(𝑗,Rx) − 2 ln𝛼𝑗 + ln SNR(𝑗,Rx)
)}

[for 𝐸Tx/𝑁0, 𝐸𝑖/𝑁0, 𝐸𝑗/𝑁0 sufficiently large]
[from (27)]

=
(
𝜌
(1)
𝑖,𝑗 ∪ 𝜌(2)𝑖,𝑗

)
∩
(
𝜌
(3)
𝑖,𝑗 ∪ 𝜌(4)𝑖,𝑗

)
. (30)

Thus, combining the asymptotic results for 𝜌(1)𝑖,𝑗 , 𝜌
(2)
𝑖,𝑗 , 𝜌

(3)
𝑖,𝑗 ,

and 𝜌(4)𝑖,𝑗 , as 𝐸Tx/𝑁0 → ∞, 𝐸𝑖/𝑁0 → ∞, and 𝐸𝑗/𝑁0 → ∞,
the internal boundary of 𝜎𝑖,𝑗 consists of circular arcs and line
segments. Applying (22) completes the proof.

APPENDIX C: PROOF OF THEOREM IV.3

Lemma C.1. For 0 < 𝑧 < 1,(
1

𝑧Γ
(
3
2

)
) (

1−√
𝑧
)
exp

{
−
√
𝑧 (1−√

𝑧)
2

2−√
𝑧

}
≤ 𝑈

(
3

2
, 2, 𝑧

)

≤ 1

𝑧Γ
(
3
2

) .
Proof: For the upper bound, we have

𝑈

(
3

2
, 2, 𝑧

)
=

1

Γ
(
3
2

) ∫ ∞

0

√
𝑡

1 + 𝑡
⋅ 𝑒−𝑧𝑡𝑑𝑡

≤ 1

Γ
(
3
2

) ∫ ∞

0

𝑒−𝑧𝑡𝑑𝑡

=
1

𝑧Γ
(
3
2

) .
For the lower bound, we have

𝑈

(
3

2
, 2, 𝑧

)

≥ 1

Γ
(
3
2

) ∫ ∞

(1−√
𝑧)2√

𝑧(2−√
𝑧)

√
𝑡

1 + 𝑡
⋅ 𝑒−𝑧𝑡𝑑𝑡 [since 0 < 𝑧 < 1]

≥ 1

Γ
(
3
2

) ∫ ∞

(1−√
𝑧)2√

𝑧(2−√
𝑧)

(1−√
𝑧)𝑒−𝑧𝑡𝑑𝑡 [since 0 < 𝑧 < 1]

=
1

𝑧Γ
(
3
2

) (1−√
𝑧
)
exp

{
−
√
𝑧(1−√

𝑧)2

2−√
𝑧

}
.

Proof of Theorem IV.3: As an approximation to 𝑃 (x,𝑖,Rx)
𝑒

given in (15), define

𝑃 (x,𝑖,Rx)
𝑒 =

1

2
−
(

𝐷𝑖
√
𝜋𝑁0/𝐸Tx

8𝜎 (𝜎2 +𝐵𝑖𝑁0/𝐸Tx)
3/2

)

⋅
(
2𝜎2
(
𝜎2 +𝐵𝑖𝑁0/𝐸Tx

)
Γ(3/2) ⋅𝐷𝑖𝑁0/𝐸Tx

)
(31)
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=
1

2
− 1

2

(
1 +

1

2𝜎2𝐿x,𝑖𝐸Tx/𝑁0

)−1/2

.

[from (14)] (32)

For any relay y𝑖, let 𝛼𝑖 =
𝑃

(x,𝑖,Rx)
𝑒

𝑃
(x,𝑖,Rx)
𝑒

. Using Lemma C.1, it

can be shown that

lim
𝐸Tx/𝑁0→∞

𝛼𝑖 = 1. (33)

Let

𝑍𝑘 =
1

2𝜎2𝐿x,𝑘

𝑔𝑘

(
𝑁0

𝐸Tx

)
=

√
1 +

𝑍𝑘𝑁0

𝐸Tx
− 1

=

(
𝑍𝑘

2

)
𝑁0

𝐸Tx
+𝒪

((
𝑁0

𝐸Tx

)2
)

(34)

where the second equality in the expression for 𝑔𝑘 is obtained
using a Taylor series. Then,

𝜎𝑖,𝑗

=
{
x ∈ 𝒮 : 𝑃 (x,𝑖,Rx)

𝑒 < 𝑃 (x,𝑗,Rx)
𝑒

}
=
{
x ∈ 𝒮 : 𝛼𝑖𝑃

(x,𝑖,Rx)
𝑒 < 𝛼𝑗𝑃

(x,𝑗,Rx)
𝑒

}

=

⎧⎨
⎩x ∈ 𝒮 :

𝛼𝑖

(√
1 + 𝑍𝑖𝑁0

𝐸Tx
− 1
)√

1 +
𝑍𝑗𝑁0

𝐸Tx

𝛼𝑗

(√
1 +

𝑍𝑗𝑁0

𝐸Tx
− 1

)√
1 + 𝑍𝑖𝑁0

𝐸Tx

< 1

⎫⎬
⎭

[from (32), (34)]

=

⎧⎨
⎩x ∈ 𝒮 :

𝛼𝑖
𝛼𝑗

⋅
1

4𝜎2𝐿x,𝑖
+𝒪

(
𝑁0

𝐸Tx

)
1

4𝜎2𝐿x,𝑗
+𝒪

(
𝑁0

𝐸Tx

) ⋅
√√√⎷1 + 𝑁0/𝐸Tx

2𝜎2𝐿x,𝑗

1 + 𝑁0/𝐸Tx

2𝜎2𝐿x,𝑖

< 1

⎫⎬
⎭ .

[from (34)] (35)

Since 𝒮 is bounded, we have, for 𝐸Tx/𝑁0 → ∞, that

𝜎𝑖,𝑗 → {x ∈ 𝒮 : ∥x− y𝑗∥ > ∥x− y𝑖∥} .
[from (35),(33),(23)] (36)

Thus, for 𝐸Tx/𝑁0 → ∞, the internal boundary of 𝜎𝑖,𝑗
becomes the line equidistant from y𝑖 and y𝑗 . Applying (22)
completes the proof.

APPENDIX D: PROOF OF THEOREM IV.4

Lemma D.1. Let

𝐿𝑥,𝑦 =
1− (1 + 2

𝑥

)−1/2
(
1 + 2

𝑦

)−1/2

1
𝑥 + 1

𝑦

.

Then, lim
𝑥,𝑦→∞𝐿𝑥,𝑦 = 1.

Proof: We have

1 +
1

2
𝜖− 1

8
𝜖2 ≤ (1 + 𝜖)1/2 ≤ 1 +

1

2
𝜖

[from a Taylor series]

∴
(
𝑥𝑦

𝑥+ 𝑦

) (
𝑥− 1

2

) (
𝑦2 + 𝑦 − 1

2

)
+ 𝑥2

(
𝑦 − 1

2

)(
𝑥2 + 𝑥− 1

2

) (
𝑦2 + 𝑦 − 1

2

)

≤ 𝐿𝑥,𝑦 ≤(
𝑥+ 𝑦 + 1

𝑥+ 𝑦

)(
𝑥

𝑥+ 1

)(
𝑦

𝑦 + 1

)

∴
(
𝑥− 1

𝑥+ 1

)(
𝑦 − 1

𝑦 + 1

)(
𝑥+ 𝑦 + 3

𝑥+ 𝑦

)
≤ 𝐿𝑥,𝑦 ≤(

𝑥+ 𝑦 + 1

𝑥+ 𝑦

)(
𝑥

𝑥+ 1

)(
𝑦

𝑦 + 1

)
.

[for 𝑥, 𝑦 sufficiently large]

Now taking the limit as 𝑥→ ∞ and 𝑦 → ∞ (in any manner)
gives 𝐿𝑥,𝑦 → 1.

Proof of Theorem IV.4: As an approximation to 𝑃 (x,𝑖,Rx)
𝑒

given in (19), define

𝑃 (x,𝑖,Rx)
𝑒 =

1/2

SNR(x,𝑖)
+

1/2

SNR(𝑖,Rx)
. (37)

For any relay y𝑖, let

𝛼𝑖 =
𝑃

(x,𝑖,Rx)
𝑒

𝑃
(x,𝑖,Rx)
𝑒

.

Using Lemma D.1, it can be shown that

lim
𝐸Tx/𝑁0 → ∞,
𝐸𝑖/𝑁0→∞

𝛼𝑖 = 1. (38)

Let ⟨ , ⟩ denote the inner product operator. Then, we have

𝜎𝑖,𝑗 =
{
x ∈ 𝒮 : 𝑃 (x,𝑖,Rx)

𝑒 < 𝑃 (x,𝑗,Rx)
𝑒

}
=
{
x ∈ 𝒮 : 𝛼𝑖𝑃

(x,𝑖,Rx)
𝑒 < 𝛼𝑗𝑃

(x,𝑗,Rx)
𝑒

}

=

{
x ∈ 𝒮 : 2 ⟨x, 𝛼𝑗y𝑗 − 𝛼𝑖y𝑖⟩

< 𝛼𝑗

(
𝐶 + ∥y𝑗∥2

)
⋅ 𝐸Tx/𝑁0

𝐸𝑗/𝑁0

−𝛼𝑖
(
𝐶 + ∥y𝑖∥2

)
⋅ 𝐸Tx/𝑁0

𝐸𝑖/𝑁0

+(𝛼𝑗 − 𝛼𝑖) ∥x∥2 + 𝛼𝑗 ∥y𝑗∥2 − 𝛼𝑖 ∥y𝑖∥2
}
.

[from (37),(8),(23)] (39)

Now, for any relay y𝑘, let

𝐺𝑘 = lim
𝐸Tx/𝑁0 → ∞,
𝐸𝑘/𝑁0→∞

𝐸𝑘/𝑁0

𝐸Tx/𝑁0
.

Using (38), Table II considers the cases of 𝐺𝑖 and 𝐺𝑗 being
zero, infinite, or finite non-zero; for all such possibilities, the
internal boundary of 𝜎𝑖,𝑗 is linear.

Applying (22) completes the proof.
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