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Abstract—We define the routing capacity of a network to be the
supremum of all possible fractional message throughputs achiev-
able by routing. We prove that the routing capacity of every net-
work is achievable and rational, we present an algorithm for its
computation, and we prove that every rational number in (0, 1] is
the routing capacity of some solvable network. We also determine
the routing capacity for various example networks. Finally, we dis-
cuss the extension of routing capacity to fractional coding solutions
and show that the coding capacity of a network is independent of
the alphabet used.

Index Terms—Network coding, capacity, switching, flow.

I. INTRODUCTION

ACOMMUNICATIONS network isafinite, directed, acyclic
multigraph over which messages can be transmitted from

source nodes to sink nodes. The messages are drawn from a
specified alphabet, and the edges over which they are trans-
mitted are taken to be error-free, cost-free, and of zero-delay.
Traditionally, network messages are treated as physical com-
modities, which are routed throughout the network without
replication or alteration. However, the emerging field of net-
work coding views the messages as information, which can
be copied and transformed by any node within the network.
Network coding permits each outgoing edge from a node to
carry some function of the data received on the incoming
edges of the node. A goal in using network coding is to
determine a set of edge functions that allow all of the sink
node demands to be satisfied. If such a set of functions exists,
then the network is said to be solvable, and the functions
are called a solution. Otherwise, the network is said to be
unsolvable.

A solution to a network is said to be a routing solution if the
output of every edge function equals a particular one of its in-
puts. A solution to a network is said to be a linear solution if the
output of every edge function is a linear combination of its in-
puts, where linearity is defined with respect to some underlying
algebraic structure on the alphabet, usually a finite field or ring.
Clearly, a routing solution is also a linear solution.
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Network messages are fundamentally scalar quantities, but
it is also useful to consider blocks of multiple scalar messages
from a common alphabet as message vectors. Such vectors may
correspond to multiple time units in a network. Likewise, the
data transmitted on each network edge can also be considered
as vectors. Fractional coding refers to the general case where
message vectors differ in dimension from edge data vectors (e.g.,
see [2]). The coding functions performed at nodes take vectors
as input on each in-edge and produce vectors as output on each
out-edge. A vector linear solution has edge functions which are
linear combinations of vectors carried on in-edges to a node,
where the linear combination coefficients are matrices over the
same alphabet as the input vector components. In a vector routing
solution, each edge function copies a collection of components
from input edges into a single output edge vector.

For any set of vector functions which satisfies the demands
of the sinks, there is a corresponding scalar solution (by using
a Cartesian product alphabet). However, it is known that if a
network has a vector routing solution, then it does not neces-
sarily have a scalar routing solution. Similarly, if a network has
a vector linear solution, then it does not necessarily have a scalar
linear solution [16].

Ahlswede, Cai, Li, and Yeung [1] demonstrated that there
exist networks with (linear) coding solutions but with no routing
solutions, and they gave necessary conditions for solvability of
multicast networks (networks with one source and all messages
demanded by all sink nodes).

Li, Yeung, and Cai [15] proved that any solvable multicast
network has a scalar linear solution over some sufficiently large
finite-field alphabet.

For multicast networks, it is known that solvability over
a particular alphabet does not necessarily imply scalar linear
solvability over the same alphabet (see examples in [4], [18],
[16], [20]). For non-multicast networks, it has recently been
shown that solvability does not necessarily imply vector linear
solvability [5].

Rasala Lehman and Lehman [19] have noted that for some
networks, the size of the alphabet needed for a solution can be
significantly reduced if the solution does not operate at the full
capacity of the network. In particular, they demonstrated that,
for certain networks, fractional coding can achieve a solution
where the ratio of edge capacity to message vector dimension

is an arbitrarily small amount above one. The observations
in [19] suggest many important questions regarding network
solvability using fractional coding.

In the present paper, we focus on such fractional coding
for networks in the special case of routing.1 We refer to such

1Whereas the present paper studies networks with directed edges, some
results on fractional coding were obtained by Li et al. [13], [14] for networks
with undirected (i.e., bidirectional) edges.
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coding as fractional routing. Specifically, we consider message
vectors whose dimension may differ from the dimension of
the vectors carried on edges. Only routing is considered, so
that at any node, any set of components of the node’s input
vectors may be sent on the out-edges, provided the edges’
capacities are not exceeded.

We define a quantity called the routing capacity of a net-
work, which characterizes the highest possible capacity obtain-
able from a fractional routing solution to a network.2 The routing
capacity is the supremum of ratios of message dimension to
edge capacity for which a routing solution exists. Analogous
definitions can be made of the (general) coding capacity over all
(linear and nonlinear) network codes and the linear coding ca-
pacity over all linear network codes. These definitions are with
respect to the specified alphabet and are for general networks
(e.g., they are not restricted to multicast networks).

It is known that the linear coding capacity (with respect to a
finite field alphabet) can depend on the alphabet size [5] whereas
the routing capacity is trivially independent of the alphabet. We
prove here, however, that the general coding capacity is inde-
pendent of the alphabet used.

It is not presently known whether the coding capacity or the
linear coding capacity of a network must be rational numbers.
Also, it is not presently known if the linear coding capacity of a
network is always achievable. It has recently been shown, how-
ever, that the (general) coding capacity of a network need not be
achievable [6]. We prove here that the routing capacity of every
network is achievable (and therefore is also rational). We also
show that every rational number in is the routing capacity
of some solvable network.

The computability of coding capacities is in general an un-
solved problem. For example, it is presently not known whether
there exists an algorithm for determining the coding capacity or
the linear coding capacity (with respect to a given alphabet size)
of a network. We prove here that the routing capacity is indeed
computable, by explicitly demonstrating a linear program solu-
tion. We do not attempt to give a low complexity or efficient
algorithm, as our intent is only to establish the computability of
routing capacity.

Section II gives formal definitions of the routing capacity and
related network concepts. Section III determines the routing ca-
pacity of a variety of sample networks in a semi-tutorial fashion.
Section IV proves various properties of the routing capacity, in-
cluding the result that the routing capacity is achievable and
rational. Section V gives the construction of a network with a
specified routing capacity. Finally, Section VI defines the coding
capacity of a network and shows that it is independent of the al-
phabet used.

2Determining the routing capacity of a (directed) network relates to the max-
imum throughput problem in an undirected network in which multiple multicast
sessions exist (see Li et al. [13], [14]), with each demanded message being rep-
resented by a multicast group. In the case where only a single multicast session
is present in the network, determining the routing capacity corresponds to frac-
tional directed Steiner tree packing, as considered by Wu, Chou, and Jain [23]
and, in the undirected case, by Li et al. [13], [14]. In the case where the (directed)
network has disjoint demands (i.e., when each message is only demanded by a
single sink), determining the routing capacity resembles the maximum concur-
rent multicommodity flow problem [22].

II. DEFINITIONS

A network is a finite directed, acyclic multigraph, together
with nonempty sets of source nodes, sink3 nodes, source node
messages, and sink node demands. Each message is an arbitrary
element of a fixed finite alphabet and is associated with exactly
one source node, and each demand at a sink node is a specifica-
tion of a specific source message that needs to be obtainable at
the sink. A network is degenerate if there exists a source mes-
sage demanded at a particular sink, but with no directed path
through the graph from the source to the sink.

Each edge in a network carries a vector of symbols from some
alphabet. The maximum allowable dimension of these vectors
is called the edge capacity. (If an edge carries no alphabet sym-
bols, it is viewed as carrying a vector of dimension zero.) Note
that a network with nonuniform, rational-valued edge capacities
can always be equivalently modeled as a network with uniform
edge capacities by introducing parallel edges. For a given finite
alphabet, an edge function is a mapping, associated with a par-
ticular edge , which takes as inputs the edge vector carried
on each in-edge to the node and the source messages gener-
ated at node , and produces an output vector to be carried on
the edge . A decoding function is a mapping, associated
with a message demanded at a sink, which takes as inputs the
edge vector carried on each in-edge to the sink and the source
messages generated at the sink, and produces an output vector
hopefully equal to the demanded message.

A solution to a network for a given alphabet is an assignment
of edge functions to a subset of edges and an assignment of
decoding functions to all sinks in the network, such that each
sink node obtains all of its demands. A network is solvable
if it has a solution for some alphabet. A network solution is
a vector routing solution if every edge function is defined so
that each component of its output is copied from a (fixed)
component of one of its inputs. (So, in particular, no “source
coding” can occur when generating the outputs of source
nodes.) It is clear that vector routing solutions do not depend
on the chosen alphabet. A solution is reducible if it has at
least one edge function which, when removed, still yields
a solution. A vector solution is reducible if it has at least
one component of at least one edge function which, when
removed, still yields a vector solution.

A fractional routing solution of a network is a vector
routing solution that uses messages with components and
edges with capacity , with . Note that if a network is
solvable then it must have a (coding) solution with .
A fractional routing solution is minimal if it is not
reducible and if no fractional routing solution exists for
any . Solvable networks may or may not have routing
solutions. However, every nondegenerate network has a
fractional routing solution for some and . In fact, it is easy
to construct such a solution by choosing and equal to
the total number of messages in the network, since then every
edge has enough capacity to carry every message that can reach
it from the sources.

3Although the terminology “sink” in graph theory indicated a node with no
out-edges, we do not make that restriction here. We merely refer to a node which
demands at least one message as a sink.
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The ratio in a fractional routing solution quantifies
the capacity of the solution and the rational number is said
to be an achievable routing rate of the network. Define the set

is an achievable routing rate

The routing capacity of a network is the quantity

If a network has no achievable routing rate then we make the
convention that . It is clear that if and only if the
network is degenerate. Also, (e.g., since is triv-
ially upper-bounded by the number of edges in the network).
Note that the supremum in the definition of can be restricted
to achievable routing rates associated with minimal routing so-
lutions. The routing capacity is said to be achievable if it is an
achievable routing rate. Note that an achievable routing capacity
must be rational. A fractional routing solution is said to achieve
the routing capacity if the routing rate of the solution is equal to
the routing capacity.

Intuitively, for a given network edge capacity, the routing
capacity bounds the largest message dimension for which a
routing solution exists. If , then at least one sink has
an unsatisfied demand, which implies that no path between
the sink and the source emitting the desired message exists. If

, then the edge capacities need to be inflated with
respect to the message dimension to satisfy the demands of the
sinks. If , then it will follow from results in this paper
that a fractional routing solution exists where the message
dimensions and edge capacities are identical. If , then
the edge capacities need not even be as large as the message
dimension to satisfy the demands of the sinks. Finally, if a
network has a routing solution, then the routing capacity of the
network satisfies .

III. ROUTING CAPACITY OF EXAMPLE NETWORKS

To illustrate the concept of the routing capacity, a number of
examples are now considered. For each example in this section,
let be the dimension of the messages and let be the capacity
of the edges. All figures in this section have graph nodes labeled
by positive integers. Any node labeled by integer is referred to
as . Also, any edge connecting nodes and is referred to as

(instead of the usual notation ), as is the message vector
carried by the edge. The distinction between the two meanings
of is made clear in each such instance.

Example III.1: (See Fig. 1.)
The single source produces two messages which are both de-

manded by the two sinks. The network has no routing solution
but does have a linear coding solution [1]. The routing capacity
of this multicast network is .

Proof: In order to meet the sink node demands, each of
the message components must be carried on at least two of
the three edges and (because deleting any two
of these three edges would make at least one of the sinks un-
reachable from the source). Hence, we have the requirement

, for arbitrary and . Hence, .

Fig. 1. The multicast networkN whose routing capacity is 3=4.

Fig. 2. The network N whose routing capacity is 1=2.

Now, let and , and route the messages as follows:

This is a fractional routing solution to . Thus, is an
achievable routing rate of , so .

Example III.2: (See Fig. 2.)
Each of the two sources emits a message and both messages

are demanded by the two sinks. The network has no routing so-
lution but does have a linear coding solution (similar to Example
III.1). The routing capacity of this network is .

Proof: The only path over which message can be trans-
mitted from source to sink is . Similarly, the
only path feasible for the transmission of message from source

to sink is . Thus, there must be sufficient
capacity along the edge to accommodate both messages.
Hence, we have the requirement , yielding
for arbitrary and . Thus, .

Now, let and , and route the messages as follows:
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Fig. 3. The multicast network N whose routing capacity is N=(N + 1).

This is a fractional routing solution to . Thus, is an
achievable routing rate of , so .

Example III.3: (See Fig. 3.)
The network contains a single source with two mes-

sages, and . The second layer consists of two nodes, and
. The third and fourth layers each contain nodes. The

bottom layer contains sink nodes, where each such node
is connected to a distinct set of nodes from the fourth layer.
Each of these sink nodes demands both source messages. The
network has no routing solution but does have a linear coding
solution for (since the network is multicast and the min-
imum cut size is for each sink node [15]). The routing capacity
of this network is .

Proof: Let be a binary matrix satisfying
if and only if the th symbol in the concatenation of

messages and is present on the th vertical edge between
the third and fourth layers. Since the dimension of these vertical
edges is at most , each column of has weight at most .
Thus, there are at least zeros in each column of and,
therefore, at least zeros in the entire matrix.

Since each sink receives input from only fourth-layer
nodes and must be able to reconstruct all components of
the messages, every possible choice of columns must have
at least one in each row. Thus, each row in must have
weight at least , implying that each row in has at most

zeros. Thus, counting along the rows,
has at most zeros. Relating this upper bound

and the previously calculated lower bound on the number
of zeros yields or equivalently

, for arbitrary and . Thus, .
Now, let and , and route the messages as

follows:

Each node in the fourth layer simply passes to its out-edges
exactly what it receives on its in-edge. If a sink node in the
bottom layer is connected to nodes and where

and (i.e., a node in the left
half of the fourth layer and a node in the right half of the fourth
layer) then the sink receives all of message from and all
of message from . On the other hand, if a sink is connected
only to nodes in the left half of the fourth layer, then it receives
all of message from each such node, and receives a distinct
component of message from each of the fourth-layer nodes,
thus, giving all of . A similar situation occurs if a sink node is
only connected to fourth-layer nodes on the right half.

Thus, this assignment is a fractional routing solution to .
Therefore, is an achievable routing rate of , so

.

Example III.4: (See Fig. 4.)
The network contains a single source with mes-

sages. The second layer of the network consists of nodes,
each connected to the source via a single edge. The third layer
consists of nodes, each receiving a distinct set of in-edges
from the second layer. Each third-layer node demands all mes-
sages. The network is linearly solvable if and only if
(since the network is multicast and the minimum cut size is
for each sink node [15]). The routing capacity of this network
is .

Proof: In order to meet the demands of each node in the
bottom layer, every subset of nodes in layer-two must receive
all message components from the source. Thus, each of the

message components must appear at least times
on the out-edges of the source (otherwise, there would be
some set of of the layer-two nodes not containing some
message component). Since the total number of symbols on the

source out-edges is , we must have
or, equivalently, , for arbitrary

and . Hence, .
Now, let and and denote the

components of the messages (in some order) by .
Let be an matrix filled with message components
from left to right and from top to bottom, with each message
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Fig. 4. The multicast networkN whose routing capacity isN=(m(N � I +
1)).

component being repeated times in a row, i.e.,

with and .
Let the columns of the matrix determine the vectors car-

ried on the out-edges of the source. Since each message com-
ponent is placed in different columns of the ma-
trix, every set of layer-two nodes will receive all of the
message components. The components at
each layer-two node are then transmitted directly to all adjacent
layer-three nodes.

Thus, this assignment is a fractional routing solution to .
Therefore, is an achievable routing rate of

, so .

We next note several facts about the network shown in Fig. 4.

• The capacity of this network was independently obtained
(in a more lengthy argument) by Ngai and Yeung [17]. See
also Sanders, Egner, and Tolhuizen [21].

• Ahlswede and Riis [20] studied the case obtained by
using the parameters and ,
which we denote by . They showed that this network
has no binary scalar linear solution and yet it has a
nonlinear binary scalar solution based upon a
Nordstrom–Robinson error correcting code. We note
that, by our above calculation, the routing capacity of the
Ahlswede–Riis network is .

• Rasala Lehman and Lehman [18] studied the case ob-
tained by using the parameters and .
They proved that the network is solvable, provided that
the alphabet size is at least equal to the square root of the
number of sinks. We note that, by our above calculation,
the routing capacity of the Rasala Lehman–Lehman net-
work is .

• Using the parameters and illustrates
that the network’s routing capacity can be greater than .
In this case, the network consists of a single source, three
second-layer nodes, and a single third -layer node. The
routing capacity of this network is .

Example III.5: (See Fig. 5.)
This network, due to Koetter, was used by Médard et al. [16]

to demonstrate that there exists a network with no scalar linear
solution but with a vector linear solution. The network consists

Fig. 5. The network N whose routing capacity is 1.

of two sources, each emitting two messages, and four sinks, each
demanding two messages. The network has a vector routing so-
lution of dimension two. The routing capacity of this network is

.
Proof: Each source must emit at least components and

the total capacity of each source’s two out-edges is . Thus,
the relation must hold, for arbitrary and , yielding

.
Now let and , and route the messages as follows

(as given in [16]):

This is a fractional routing solution to . Thus, is an achiev-
able routing rate of , so .

Example III.6: (See Fig. 6.)
The network was demonstrated in [5] to have no linear

solution for any vector dimension over a finite field of odd car-
dinality. The network has three sources and emitting
messages and , respectively. The messages and are
demanded by sinks and , respectively. The network
has no routing solution but does have a coding solution. The
routing capacity of this network is .

Proof: First, note that the edges and
cannot have any effect on a fractional routing solution, so they
can be removed. Thus, edges and must carry all of the
information from the sources to the sinks. Therefore, ,
for arbitrary and , yielding an upper bound on the routing
capacity of .

Now, let and and route the messages as follows:



782 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 3, MARCH 2006

Fig. 6. The network N whose routing capacity is 2=3.

This is a fractional routing solution to . Thus, is an
achievable routing rate of , so .

Example III.7: (See Fig. 7.)
The network shown in Fig. 7 was given in [5] as a por-

tion of a larger network which was solvable but not vector-lin-
early solvable. This network piece consists of six sources,
through , emitting messages and respectively.
The network contains seven sinks, through , demanding
messages and , respectively. The network has no
routing solution but does have a coding solution. The routing
capacity of this network is .

Proof: A number of edges in the network do not affect
any fractional routing solution and can be removed, yielding the
reduced network shown in Fig. 8. Clearly, the demands of node

are easily met. The remaining portion of the network can
be divided into two disjoint, symmetric portions. In each case,
all symbols of information must flow across a single edge
(either or ), implying that for arbitrary
and . Thus, .

Now, let and and route the messages as follows:

This is a fractional routing solution to . Thus, is an
achievable routing rate of , so .

By combining networks and (i.e., by adding shared
sources and ) a network was created which established
that linear vector codes are not sufficient for all solvable net-
works [5]. In the combined network, the two pieces effectively
operate independently, and thus the routing capacity of the en-
tire network is limited by the second portion, namely, .

Fig. 7. The network N whose routing capacity is 1=3.

Fig. 8. Reduced form of the network N given in Fig. 7.

IV. ROUTING CAPACITY ACHIEVABILITY

The examples of the previous section have illustrated various
techniques to determine the routing capacity of a network. In
this section, some properties of the routing capacity are devel-
oped and a concrete method is given, by which the routing ca-
pacity of a network can be found.

Tobegin,asetofinequalitieswhicharesatisfiedbyanyminimal
fractional routing solution is formulated. These inequalities are
then used to prove that the routing capacity of any network is
achievable. To facilitate the construction of these inequalities,
a variety of subgraphs for a given network are first defined.

Consider a network and its associated graph, ,
sources , messages , and sinks . For each message

, we say that a directed subgraph of is an -tree if
the subgraphhas exactly one directed path from the source
emitting to each destination node which demands , and
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Fig. 9. All of the xxx-trees and yyy-trees of the network N .

the subgraph is minimal with respect to this property. 4 (Note
that such a subgraph can be both an -tree and a -tree for
distinct messages and .) For each message , let
denote the number of -trees. For a given network and for
each message , let be an enumeration of
all the -trees in the network. Fig. 9 depicts all of the -trees
and -trees for the network shown in Fig. 2.

If is a message and is the unique index in a minimal
fractional routing solution such that every edge carrying a com-
ponent appears in , then we say the -tree carries
the message component . Such a tree is guaranteed to exist
since in the supposed solution each message component must
be routed from its source to every destination node demanding
the message, and the minimality of the solution ensures that the
edges carrying the message form an -tree.

Note that we consider and to be distinct when ,
even if they are topologically the same directed subgraph of the
network. That is, such trees are determined by their topology
together with their associated message.

Denote by the th tree in some fixed ordering of the set

4The definition of an xxx-tree is similar to that of a directed Steiner tree
(also known as a Steiner arborescence). Given a directed, edge-weighted
graph, a subset of the nodes in the graph, and a root node, a directed
Steiner tree is a minimum-weight subgraph which includes a directed path
from the root to every other node in the subset [9]. Thus, an xxx-tree
is a directed Steiner tree where the source node is the root node, the
subset contains the source and all sinks demanding xxx, the edge weights
are taken to be 0, and with the additional restrictions that only one
directed path from the root to each sink is present, and edges not along
these directed paths are not included in the subgraph. In the undirected
case, the first additional restriction coupled with the 0-edge-weight case
corresponds to the requirement that the subgraph be a tree, which is
occasionally incorporated in the definition of a Steiner tree [11].

and define the following index sets:

is an -tree

contains edge

Note that the sets and are determined by the network,
rather than by any particular solution to the network. Denote the
total number of trees by

For any given minimal fractional routing solution, and for
each , let denote the number of message compo-
nents carried by tree in the given solution.

Lemma IV.1: For any given minimal fractional routing
solution to a nondegenerate network, the following inequalities
hold:

a)

b)

c)
d) .

Proof:

a) Follows from the fact that all components of every message
must be sent to every destination node demanding them.

b) Follows from the fact that every edge can carry at most
message components.

c) Follows from that fact that each message has components.
d) Since the routing solution is minimal, it must be the case that

, since edge capacities of size suffice to carry
every component of every message. Also, clearly ,
since the network is nondegenerate.

Lemma IV.2: For any given minimal fractional routing
solution to a nondegenerate network, the following inequalities,
over the real variables , have a rational solution5:

(1)

(2)

(3)

(4)

by choosing and .
Proof: Inequalities (1)–(4) follow immediately from

Lemma IV.1 a)–d), respectively, by division by .

We refer to (1)–(4) as the network inequalities associated with
a given network.6 Note that the routing rate in the given
fractional routing solution in Lemma IV.2 is .

5If a solution (d ; . . . ; d ; �) to these inequalities has all rational compo-
nents, then it is said to be a rational solution.

6Similar inequalities are well known for undirected network flow problems
(e.g., see [11] for the case of single-source networks).
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For convenience, define the sets

is a solution to the

network inequalities for some

Lemma IV.3: If the network inequalities corresponding to a
nondegenerate network have a rational solution with ,
then there exists a fractional routing solution to the network with
achievable routing rate .

Proof: Let be a rational solution to the net-
work inequalities with . To construct a fractional routing
solution, let the dimension of the messages be equal to the
least common multiple of the denominators of the nonzero com-
ponents of . Also, let the capacity of the edges be

, which is an integer. Now, for each , let
, each of which is an integer. A fractional routing

solution can be constructed by, for each message , arbitrarily
partitioning the components of the message over all -trees
such that exactly components are sent along each associated
tree .

The following corollary shows that the set (defined in Sec-
tion II) of achievable routing rates of any network is the same as
the set of reciprocals of rational that satisfy the corresponding
network inequalities.

Corollary IV.4: For any nondegenerate network, .
Proof: Lemma IV.2 implies that and Lemma

IV.3 implies that .

We next use the network inequalities to prove that the routing
capacity of a network is achievable. To prove this property, the
network inequalities are viewed as a set of inequalities in
variables, , which one can attempt to solve. By for-
mulating a linear programming problem, it is possible to deter-
mine a fractional routing solution to the network which achieves
the routing capacity. As a consequence, the routing capacity of
every network is rational and the routing capacity of every non-
degenerate network is achievable. The following theorem gives
the latter result in more detail.

Theorem IV.5: The routing capacity of every nondegenerate
network is achievable.

Proof: We first demonstrate that the network inequalities
can be used to determine the routing capacity of a network. Let

the network inequalities

are satisfied

and define the linear function

Note that is nonempty since a rational solution to the network
inequalities can be found for any network by setting
and . Also, since is compact (i.e., a closed and bounded
polytope), the restriction of to achieves its infimum on

. Thus, there exist such that

. In fact, a linear program can be used to minimize on ,
yielding . Furthermore, since the variables in

Fig. 10. A network N that has routing capacity r = u=v � 0.

the network inequalities have rational coefficients, we can as-
sume without loss of generality that . Now,
by Corollary IV.4, we have

Thus, the network inequalities can be used to determine the
routing capacity of a network.

Furthermore, the fractional routing solution induced by the
solution to the network inequalities has achiev-
able routing rate . Thus, the routing capacity of any
network is achievable.

Corollary IV.6: The routing capacity of every network is ra-
tional.

Proof: If a network is degenerate, then its capacity is zero,
which is rational. Otherwise, Theorem IV.5 guarantees that there
exists a fractional routing solution such that the routing
capacity equals , which is rational.

Since any linear programming algorithm (e.g., the simplex
method) will work in the proof of Theorem IV.5, we also obtain
the following corollary.

Corollary IV.7: There exists an algorithm for determining
the routing capacity of a network.

We note that the results in Section IV can be generalized to
networks whose edge capacities are arbitrary rational numbers.
In such case, the term in (2) of the network inequalities would
be multiplied by the capacity of the edge , and the term in (4)
would be multiplied by the maximum edge capacity.

V. NETWORK CONSTRUCTION FOR SPECIFIED

ROUTING CAPACITY

Given any rational number , it is possible to form a net-
work whose routing capacity is . The following two theo-
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Fig. 11. A solvable network N that has routing capacity r = p=m 2 (0; 1]. All edges in the network point downward.

rems demonstrate how to construct such networks. The first the-
orem considers the general case when , but the resulting
network is unsolvable (i.e., for ) for . The second
theorem considers the case when and yields a solv-
able network.

Theorem V.1: For each rational , there exists a network
whose routing capacity is .

Proof: If , then any degenerate network suffices.
Thus, assume and let where and are positive
integers. Consider a network with a single source and a single
sink connected by edges, as shown in Fig. 10. The source emits
messages and all messages are demanded by
the sink. Let denote the message dimension and denote the
edge capacity.

In a fractional routing solution, the full components must
be transferred along the edges of capacity . Thus, for a frac-
tional routing solution to exist, we require , and hence
the routing capacity is upper-bounded by .

If and , then message components
can be sent arbitrarily along the edges since the cumulative
capacity of all the edges is . Thus, the routing capacity
upper bound is achievable.

Thus, for each rational , a single-source, single-sink
network can be constructed which has routing capacity .

The network discussed in Theorem V.1 is unsolvable for
, since the min-cut across the network does not

have the required transmission capacity. However, the network
is indeed solvable for using a routing solution.

Theorem V.2: For each rational there exists a solv-
able network whose routing capacity is .

Proof: Let where . Consider a net-
work with four layers, as shown in Fig. 11, where all edges
point downward. The network contains sources, all in the
first layer. Each source emits a unique message, yielding mes-

sages in the network. The second layer of the
network contains nodes, each of which is connected to all
sources, forming a complete connection between the first and
second layers. The third layer also contains nodes and each
is connected in a straight through fashion to a corresponding
node in the second layer. The fourth layer consists of sinks,
each demanding all messages. The third and fourth layers are
also completely connected. Finally, each sink is connected to a
unique set of sources, forming a complete connection
except the straight through edges between the first and fourth
layers. Thus, the network can be thought of as containing both
a direct and an indirect route between the sources and sinks.

The routing capacity of this network is now shown to be
. Let be the dimension of the messages and

let be the capacity of the edges. To begin, the routing capacity
is demonstrated to be upper-bounded by . First, note that
since each sink is directly connected to all but one of the sources
and since , each sink can receive all but one of
the messages directly. Furthermore, in each case, the missing
message must be transmitted to the sink along the indirect route
(from the source through the second and third layers to the sink).
Since each of the messages is missing from one of the sinks, a
total of message components must be transmitted along the
indirect paths. The cumulative capacity of the indirect paths is

, as clearly seen by considering the straight through connec-
tions between layers two and three. Thus, the relation
must hold, yielding for arbitrary and . Thus,

.
To prove that this upper bound on the routing capacity is

achievable, consider a solution which sets and .
As noted previously, direct transmission of of the mes-
sages to each sink is clearly possible. Now, each second-layer
node receives all components of all messages, for a total
of components. The cumulative capacity of the
links from the second to third layers is . Thus, since
the sinks receive all data received by the third-layer nodes, the
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message components can be assigned arbitrarily to the
straight-through slots, allowing each sink to receive the correct
missing message. Hence, this assignment is a fractional routing
solution. Therefore, is an achievable routing rate of the net-
work, so .

Now, the network is shown to be solvable by presenting a so-
lution. Let the alphabet from which the components of the mes-
sages are drawn be an Abelian group. As previously, all but one
message is received by each source along the direct links from
the sources to the sinks. Now, note that node receives all

messages from the sources. Thus, it is possible to send the
combination along edge .
Node then passes this combination along to each of the
sinks. Since each sink possesses all but one message, it can ex-
tract the missing message from the combination received from
node . Thus, the demands of each sink are met.

Hence, the generalized network shown in Fig. 11 represents
a solvable network whose routing capacity is the rational

.

In the network , a routing solution (with ) would
require all messages to be transmitted along the straight-
through paths in the indirect portion of the network. However,
for we have , hence no routing solution exists.
Thus, the network requires coding to achieve a solution. Also,
note that if the network is specialized to the case
and , then it becomes the network in Fig. 2.

VI. CODING CAPACITY

This section briefly considers the coding capacity of a net-
work, which is a generalization of the routing capacity. The
coding capacity is first defined and two examples are then dis-
cussed. Finally, it is shown that the coding capacity is indepen-
dent of the chosen alphabet.

A fractional coding solution of a network is a coding
solution that uses messages with components and edges with
capacity . If a network has a fractional coding solution,
then the rational number is said to be an achievable coding
rate. The coding capacity is then given by

is an achievable coding rate

If a fractional coding solution uses only linear coding,
then is an achievable linear coding rate and we define the
linear coding capacity to be

is an achievable linear coding rate

Note that unlike fractional routing solutions, fractional coding
solutions must be considered in the context of a specific al-
phabet. Indeed, the linear coding capacity in general depends on
the alphabet [5]. However, it will be shown in Theorem VI.5 that
the coding capacity of a network is independent of the chosen
alphabet.

Clearly, for a given alphabet, the coding capacity of a net-
work is always greater than or equal to the linear coding ca-
pacity. Also, if a network is solvable (i.e., with ), then the
coding capacity is greater than or equal to , since
is an achievable coding rate. Similarly, if a network is linearly

solvable, then the linear coding capacity is greater than or equal
to .

The following examples illustrate the difference between the
routing capacity and coding capacity of a network.

Example VI.1: The special case of the network shown in
Fig. 4 has routing capacity , as discussed in the note
following Example III.4. Using a cut argument, it is clear that
the coding capacity of the network is upper-bounded by ,
since each sink demands message components and has a total
capacity of on its incoming edges. Lemmas VI.2 and VI.3
will, respectively, prove that this network has a scalar linear so-
lution for every finite field other than GF and has a vector
linear solution for GF . Consequently, the linear coding ca-
pacity for any finite-field alphabet is at least , which is strictly
greater than the routing capacity.

Lemma VI.2: Network has a scalar linear solution for
every finite field alphabet other than GF .

Proof: Let and be the messages at the source.
Let the alphabet be a finite field with . Let

. Define the following sets ( is a multiset):

Then . Let the symbols carried on the 12 edges ema-
nating from the source correspond to a specific permutation of
the 12 elements of . We will show that the demands of all
sinks are satisfied by showing that all of the messages
and can be recovered (linearly) from every multiset
satisfying .

If , then the recovery is trivial.
If , then without loss of generality assume .

If , then can clearly be recovered.
If , then , in which case

, and thus can be recovered.
If , then , so the remaining four elements

of can be recovered.
If , then , so the remaining three

elements of can be recovered.
If , then . If , then

the remaining two elements of can be recovered, so assume
, in which case . Due to

the symmetries of the elements in , we assume without loss
of generality that . First consider
the case when . Then can be recovered.
If , then we can solve for and since . If

, then , so either can be
recovered from and or can be recovered from and

. Then the remaining term is recoverable from . Now
consider the case when . Then can be
recovered. If , then can be recovered
from either and or and . If ,
then , so can be recovered from either

and or and . Finally, the remaining term can
be recovered from .
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Lemma VI.3: Network has a binary linear solution for
vector dimension .

Proof: Consider a scalar linear solution over GF
(which is known to exist by Lemma VI.2). The elements of
GF can be viewed as the following four matrices
over GF :

Then, using the GF solution from Lemma VI.2 and substi-
tuting in the matrix representation yields the following 12 linear
functions of dimension for the second layer of the network:

It is straightforward to verify that from any 8 of these 12 vector
linear functions, one can linearly obtain the five message vectors

.

Example VI.4: As considered in Example III.1, the network
has routing capacity . We now show that both the

coding and linear coding capacities are equal to , which is
strictly greater than the routing capacity.

Proof: Network has a well-known scalar linear solu-
tion [1] given by

Thus, and .
To upper-bound the coding and linear coding capacities, note

that each sink demands both messages but only possesses two
incoming edges. Thus, we have the requirement , for
arbitrary and . Hence, and .

Theorem VI.5: The coding capacity of any network is inde-
pendent of the alphabet used.

Proof: Suppose a network has a fractional coding
solution over an alphabet , and let be any other alphabet of
cardinality at least two. Let and let

There is clearly a fractional coding solution over the
alphabet obtained by independently applying the solu-
tion times. Define the quantities

and notice by some computation that

(5)

(6)

(7)

For each edge , let and , respectively, be the number of
relevant in-edges and messages originating at the starting node
of , and, for each node let and , respectively, be the
number of relevant in-edges and messages originating at . For
each edge , denote the edge encoding function for by

and for each node , and each message demanded by denote
the corresponding node decoding function by

The function determines the vector carried on the out-edge
of a node based upon the vectors carried on the in-edges and

the message vectors originating at the same node. The function
attempts to produce the message vector as a function

of the vectors carried on the in-edges of the node , and the
message vectors originating at . Let and

be any injections (they exist by (5) and (6)). Define
such that for all and

is arbitrary otherwise. Also, define such that
for all and is arbitrary otherwise.

Define for each edge the mapping

by

for all and for all . Simi-
larly, define for each node and each message demanded at

the mapping

by

for all and for all .
Now consider the fractional network code over the al-

phabet obtained by using the edge functions and decoding
functions . For each edge in the network, the vector car-
ried on the edge in the solution over the alphabet and
the vector carried on the edge in the fractional network
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code over can each be obtained from the other using and ,
and likewise for the vectors obtained at sink nodes from the de-
coding functions for the alphabets and (using and ).
Thus, the set of edge functions and decoding functions
gives a fractional routing solution of the network over
alphabet , since the vector on every edge in the solution over

can be determined (using , and ) from the vector
on the same edge in the solution over . The solution
achieves a rate of , which by (7) is at least . Since

was chosen as an arbitrary positive number, the supremum of
achievable rates of the network over the alphabet is at least

. Thus, if a coding rate is achievable by one alphabet, then
that rate is a lower bound to the coding capacity for all alpha-
bets. This implies the network coding capacity (the supremum
of achievable rates) is the same for all alphabets.

There are numerous interesting open questions regarding
coding capacity, some of which we now mention. Is the coding
capacity (resp., linear coding capacity) achievable and/or
rational for every network? For which networks is the linear
coding capacity smaller than the coding capacity, and for which
networks is the routing capacity smaller than the linear coding
capacity? Do there exist algorithms for computing the coding
capacity and linear coding capacity of networks?

VII. CONCLUSION

This paper formally defined the concept of the routing ca-
pacity of a network and proved a variety of related properties.
When fractional routing is used to solve a network, the dimen-
sion of the messages need not be the same as the capacity of the
edges. The routing capacity provides an indication of the largest
possible fractional usage of the edges for which a fractional
routing solution exits. A variety of sample networks were con-
sidered to illustrate the notion of the routing capacity. Through
a constructive procedure, the routing capacity of any network
was shown to be achievable and rational. Furthermore, it was
demonstrated that every rational number in is the routing
capacity of some solvable network. Finally, the coding capacity
of a network was also defined and was proven to be independent
of the alphabet used.

The results in this paper straightforwardly generalize to (not
necessarily acyclic) undirected networks and to directed net-
works with cycles as well. Also, the results can be generalized
to networks with nonuniform (but rational) edge capacities; in
such case, some extra coefficients are required in the network
inequalities. An interesting future problem would be to find a
more efficient algorithm for computing the routing capacity of
a network.
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