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Abstract—We study the use of linear codes for network com-
puting in single-receiver networks with various classes of target
functions of the source messages. Such classes include reducible,
semi-injective, and linear target functions over finite fields. Com-
puting capacity bounds and achievability are given with respect to
these target function classes for network codes that use routing,
linear coding, or nonlinear coding.

Index Terms—Capacity, cut-set bound, function computation,
information theory, network coding.

I. INTRODUCTION

N etwork coding [1] is concerned with networks where each
receiver demands a subset of messages generated by the

source nodes and the objective is to satisfy the receiver demands
at the maximum possible throughput rate. Accordingly, research
efforts have studied coding gains over routing [1], [10], [11],
whether linear codes are sufficient to achieve the capacity [6],
[7], [14], [16], and cut-set upper bounds on the capacity and the
tightness of such bounds [10], [11], [23].
Network computing, on the other hand, considers a more gen-

eral problem in which each receiver node demands a target func-
tion of the source messages [4], [8], [15], [17], [21], [22]. Most
problems in network coding are applicable to network com-
puting as well. Network computing problems arise in various
networks including sensor networks and vehicular networks.
In [4], a network computing model was proposed where the

network is modeled by a directed, acyclic graph with indepen-
dent, noiseless links. The sources generate independent mes-
sages and a single-receiver node computes a target function
of these messages. Analogous to coding capacity for network
coding, the notion of computing capacity was defined for net-
work computing as the supremum of achievable rates of com-
puting the network’s target function, i.e., the maximum number
of times can be computed per network usage. The objective
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was to characterize the computing capacity for any given net-
work and target function. Each node in the network sends out
symbols on its out-edges which are arbitrary, but fixed, func-
tions of the symbols received on its in-edges and any messages
generated at the node. Existing techniques for computing in net-
works use routing, where the codeword sent out by a node con-
sists of symbols either received by that node, or generated by
the node if it is a source (see, e.g., [19]).
In contrast to [4], this paper focuses on linear network com-

puting, where the encoding operations performed by the nodes in
the network are restricted to be linear. Specifically, we compare
the linear computing capacitywith the (nonlinear) computing ca-
pacity and the routing computing capacity for different classes
of target functions in single-receiver networks. Such classes in-
clude reducible, semi-injective, and linear target functions over
finite fields. Informally, a target function is semi-injective if it
uniquely maps at least one of its inputs, and a target function
is reducible if it can be computed using a linear transformation
followed by a function whose domain has a reduced dimension.
Computing capacity bounds and achievability are given with re-
spect to each of the above target function classes and for network
codes that use routing, linear coding, or nonlinear coding.
The performance of linear codes has been studied previously

in the context of network coding. For example, it is known that
linear codes are sufficient to achieve the coding capacity for
multicast networks [1], but they are not sufficient in general to
achieve the coding capacity for nonmulticast networks [6]. In
the context of network computing, it is known that when mul-
tiple receiver nodes demand a scalar linear target function of the
source messages, linear network codes may not be sufficient in
general for solvability [20]. However, it has been shown that
for single-receiver networks, linear coding is sufficient for solv-
ability when computing a scalar linear target function [3], [21].
Our specific contributions will be summarized next.

A. Contributions

Section II gives many of the formal definitions used in this
paper (e.g., target function classes and computing capacity
types). In Sections III and IV, we study the computing capacity
gain of using linear coding over routing, and nonlinear coding
over linear coding. In particular, we study various classes of
target functions, including semi-injective, reducible, and linear
functions. The relationships between these classes is illustrated
in Fig. 1. Throughout this paper, we emphasize the main results
as theorems, while the other results are stated as propositions.
Section III studies the performance of linear codes for net-

work computing. We show that if a target function is not re-
ducible, then the linear computing capacity and routing com-
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TABLE I
SUMMARY OF OUR MAIN RESULTS FOR CERTAIN CLASSES OF TARGET FUNCTIONS The quantities , and denote the
computing capacity, linear computing capacity, and routing computing capacity, respectively, for a network with sources and target function .

The columns labeled indicate constraints on the target function and the source alphabet , respectively.

Fig. 1. Decomposition of the space of all target functions into various classes.

puting capacity are equal whenever the source alphabet is a
finite field [see Theorem III.6(a)]; the same result also holds
for semi-injective target functions over rings. Conversely, if a
target function is reducible, then there always exists a network
where the linear computing capacity is larger than the routing
computing capacity [see Theorem III.6(b)]. Thus, the advan-
tage of linear coding over routing for network computing is
strongly influenced by whether the target function is reducible
or not. Propositions III.7 and III.8 investigate the benefit of
nonlinear codes over linear codes for computing reducible and
nonreducible target functions and show that in both cases, there
exist networks for which the (nonlinear) computing capacity is
greater than the linear computing capacity. In particular, Propo-
sition III.8 shows that even if the target function is reducible,
linear codes may not achieve the full (nonlinear) computing ca-
pacity of a network. However, as we show in the next section,
there are reducible target functions for which linear codes are
indeed optimal.
Section IV focuses on computing linear target functions over

finite fields, which form a subclass of reducible target functions.
Thus, fromTheorem III.6(b), theremay be a computing capacity
gain in using linear codes over routing. In this section, we show
that for linear target functions over finite fields, linear network
codes in fact achieve the full (nonlinear) computing capacity in
an arbitrary network (see Theorem IV.5).We note that this result
was obtained independently in [20] and [21].
In Section V, we study an example network that illustrates

various concepts discussed in the previous sections and also pro-
vides some interesting additional results for network computing.
Specifically, we study the reverse butterfly network—obtained
by reversing the direction of all the edges in the multicast but-
terfly network (the butterfly network studied in [1] illustrated

the capacity gain of network coding over routing). For this net-
work and the arithmetic sum target function, we evaluate the
routing and linear computing capacity (see Proposition V.1) and
the computing capacity (see Theorem V.2). We show that the
latter is strictly larger than the first two, which are equal to each
other. No network with such properties is presently known for
network coding.
Finally, in Appendix A, we demonstrate that the perfor-

mance of optimal linear codes may depend on how “linearity”
is defined (see Proposition VI.2). Specifically, we show that the
linear computing capacity of a network varies depending on
the particular ring over which linearity is defined on the source
alphabet.
Our main results are summarized in Table I.

II. NETWORK MODEL AND DEFINITIONS

In this paper, a network consists of a
finite, directed acyclic multigraph , a set

of distinct source nodes
and a single receiver . We assume that , and
that the graph1 contains a directed path from every node
in to the receiver . For each node , let and

denote the in-edges and out-edges of , respectively.
We assume (without loss of generality) that if a network node
has no in-edges, then it is a source node. If , we
will use the notation and .
An alphabet is a finite set of size at least two. Throughout this

paper, will denote a source alphabet and will denote a re-
ceiver alphabet. For any positive integer , any vector ,
and any , let denote the th component of
. For any index set
with , let denote the vector

. Sometimes we view as an
algebraic structure such as a ring, i.e., with multiplication and
addition. Throughout this paper, vectors will always be taken
to be row vectors. Let denote a finite field of order . A
superscript will denote the transpose for vectors and matrices.

A. Target Functions

A target function is a mapping

1Throughout the remainder of this paper, we use “graph” to mean a multi-
graph, and in the context of network computing, we use “network” to mean a
single-receiver network.
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TABLE II
DEFINITIONS OF SOME TARGET FUNCTIONS

The goal in network computing is to compute at the receiver
, as a function of the source messages.
We will assume that all target functions depend on all the net-

work sources (i.e., a target function cannot be a constant func-
tion of any one of its arguments). Some example target functions
that will be referenced are listed in Table II.
Definition II.1: Let alphabet be a ring. A target function

is said to be reducible if there exists an integer
satisfying , an matrix with elements in , and a
map such that for all ,

(1)

Reducible target functions are not injective, since, for ex-
ample, if and are distinct elements of the null-space of ,
then

Example II.2: Suppose the alphabet is and the target
function is

where

Then, by choosing ,

and , we get

Thus, the target function is reducible.
Example II.3: The notion of reducibility requires that for a

target function , the set must be a ring. If
we impose any ring structure to the domains of the identity,
arithmetic sum, maximum, and minimum target functions, then
these can be shown (via our Example III.2 and Lemma III.3) to
be nonreducible.

B. Network Computing and Capacity

Let and be positive integers. Given a network with
source set and alphabet , a message generator is any
mapping

For each source is called a message vector and
its individual components

are called messages.2

Definition II.4: A network code in a network con-
sists of the following:
(i) Encoding functions , for every out-edge
of every node , of the form:

(ii) A decoding function of the form:

Furthermore, given a network code, every edge
carries a vector of at most alphabet symbols,3 which is ob-
tained by evaluating the encoding function on the set of
vectors carried by the in-edges to the node and the node’s mes-
sage vector if the node is a source. The objective of the receiver
is to compute the target function of the source messages, for
any arbitrary message generator .
Definition II.5: Suppose in a network , the in-edges of the

receiver are . A network code is said
to compute in if for each , and for each
message generator , the decoding function satisfies

(2)

2For simplicity, we assume each source has associated with it exactly one
message vector, but all of the results in this paper can readily be extended to the
more general case.
3By default, we assume that edges carry exactly symbols.
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In words, the receiver constructs a vector of alphabet sym-
bols, such that for each , the th component
of the receiver’s computed vector equals4 the value of the de-
sired target function , applied to the th components of the
source message vectors, for any choice of message generator
. If there exists a code that computes in , then the
rational number is said to be an achievable computing rate.
In the network coding literature, one definition of the coding

capacity of a network is the supremum of all achievable coding
rates [5]. We use an analogous definition for the computing ca-
pacity.
Definition II.6: The computing capacity of a network with

respect to a target function is

The notion of linear codes in networks is most often studied
with respect to finite fields. Here, we will sometimes use more
general ring structures.
Definition II.7: Let alphabet be a ring. A network

code in a network is said to be a linear network code (over
) if the encoding functions are linear over .
Remark II.8: Note that Definition II.7 allows linear codes to

have nonlinear decoding functions. In fact, since the receiver
alphabet need not have any algebraic structure to it, linear
decoding functions would not make sense in general. We do,
however, examine a special case where and the target
function is linear, in which case we show that linear codes with
linear decoders can be just as good as linear codes with non-
linear decoders (see Theorem IV.5).
Definition II.9: The linear computing capacity of a network
with respect to target function is

Remark II.10: Whereas the size of a finite field character-
izes the field, there are, in general, different rings of the same
size. So onemust address whether the linear computing capacity
of a network might depend on which ring is chosen for the al-
phabet and over which the encoding operations are linear. In
Appendix A, we illustrate this possibility with a specific com-
puting problem.
The routing computing capacity is defined simi-

larly by restricting the encoding functions to routing, i.e., at each
node, the codeword sent over an out-edge consists of symbols
either received by the node, or generated by it if it is a source.
We call the quantity the computing ca-
pacity gain of using nonlinear coding over linear coding. Sim-
ilar “gains,” such as and

are defined.
Definition II.11: A set of edges in network is said to

separate sources from the receiver , if for each

4Note that the computation has to be performed with zero-error.

, every directed path from to contains at
least one edge in .
Define

The set is said to be a cut in if it separates at least one
source from the receiver (i.e., ).
We denote by the collection of all cuts in .
For network coding with a single-receiver node and multiple

sources (where the receiver demands all the source messages),
routing is known to be optimal [23]. Let denote the
routing capacity of the network , or equivalently the routing
computing capacity for computing the identity target function.
It was observed in [23, Theorem 4.2] that for any single-re-

ceiver network :

(3)

Remark II.12: Recall that depends on every source in the
network nontrivially. It is easy to see that if the intermediate
nodes in a network are restricted to perform routing, then every
component of every source message must be received by in
order to compute . Since any routing code that computes the
identity target function can also be used to compute any target
function , we have

(4)

This motivates the use of coding for computing functions in
networks.

III. LINEAR NETWORK CODES FOR COMPUTING
TARGET FUNCTIONS

Remark II.12 implies that if intermediate network nodes use
routing, then a network’s receiver learns all the source messages
irrespective of the target function it demands. In Section III-A,
we prove a similar result when the intermediate nodes use linear
network coding. It is shown that whenever a target function is
not reducible, the linear computing capacity coincides with the
routing computing capacity and the receiver must learn all the
source messages. We also show that there exists a network such
that the computing capacity is larger than the routing computing
capacity whenever the target function is noninjective. Hence,
if the target function is not reducible, such capacity gain must
be obtained from nonlinear coding. Section III-A also shows
that linear codes may provide a computing capacity gain over
routing for reducible target functions and that linear codes
may not suffice to obtain the full computing capacity gain over
routing.
Note that, in general, the linear computing capacity would de-

pend on the algebraic structure imposed on the alphabet. Propo-
sition VI.2 in the Appendix illustrates this through an example
where linear computing capacity is evaluated for computing the
same target function over a network for two different ring al-
phabets of cardinality 4. It is shown that the linear computing
capacity over one ring is strictly greater than the other.
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A. Reducible and Nonreducible Target Functions

Verifying whether or not a given target function is reducible
may not be easy. We now define a class of target functions that
are easily shown to not be reducible.
Definition III.1: A target function is said to be

semi-injective if there exists such that
.
Example III.2: All injective functions are semi-injective. If

is the arithmetic sum target function (recall the definition from
Table II), then is semi-injective (since implies

) but not injective (since ). Other
examples of semi-injective target functions include the identity,
maximum, and minimum functions.
The following lemma follows easily from the definition of

reducible functions in Definition II.1.
Lemma III.3: If alphabet is a ring, then semi-injective

target functions are not reducible.
Lemma III.4 states an alternative characterization of re-

ducible target functions when the source alphabet is a finite
field and will be used in Theorem III.6. A proof of the lemma
is relegated to Appendix C.
Lemma III.4: Let be a network with target function

and a finite field alphabet . The function is re-
ducible if and only if there exists a nonzero such that
for each and each

Note that if the alphabet is not a finite field, then the as-
sertion in Lemma III.4 may not be true; the following example
illustrates this point.
Example III.5: Let , let be the target

function defined by , and let . Then, for all
:

but, is not reducible, since .
Theorem III.6 establishes that for a network with a finite

field alphabet and a target function which is not reducible, the
linear computing capacity is equal to the routing computing
capacity, and therefore, if a linear network code is used, the
receiver ends up learning all the source messages even though
it only demands a function of these messages. For network
coding (i.e., when is the identity function), many multire-
ceiver networks have a larger linear capacity than their routing
capacity [1]. However, all single-receiver networks are known
to achieve their coding capacity with routing [23]. For network
computing, the next theorem shows that with nonreducible
target functions there is no advantage to using linear coding
over routing.5

5As a reminder, “network” here refers to single-receiver networks in the con-
text of computing.

Theorem III.6: Let be a target function.
(a) Let be a network with source alphabet . If is a finite

field and is not reducible, or is a ring with identity and
is semi-injective, then

(b) Let be a ring. If is reducible, then there exists a net-
work with source alphabet such that

Proof of : Since any routing code is, in particular, a
linear code

Now consider a linear code that computes the target
function in and let be a cut.Wewill show that for any two
collections of source messages, if the messages agree at sources
not separated from by and the vectors agree on edges in
, then there exist two other source message collections with

different target function values, such that the receiver cannot
distinguish this difference. In other words, the receiver cannot
properly compute the target function in the network.
For each , there exist matrices

such that the vector carried on is

For any matrix , denote its th column by . Let and
be different matrices over , whose th columns agree

for all .
Let us suppose that the vectors carried on the edges of ,

when the column vectors of are the source messages, are the
same as when the column vectors of are the source messages.
Then, for all :

(5)

We will show that this leads to a contradiction, namely, that
cannot compute .
Let be an integer such that if denotes the th row of
, then . For the case where is a field and is not

reducible, by Lemma III.4, there exist and such
that and

(6)

In the case where is a ring with identity and is semi-injec-
tive, there exists an such that

which, in turn, is true if and only if for each nonzero ,
we have . So (6) still holds with .
Let be any matrix over whose th row is and let

. From (6), the target function differs on the
th rows of and . Thus, the vectors on the in-edges of the
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receiver must differ between two cases: (1) when the source
messages are the columns of , and (2) when the source mes-
sages are the columns of . The vector carried by any in-edge of
the receiver is a function of each of the message vectors ,
for , and the vectors carried by the edges in the cut
. Furthermore, the th columns of and agree if .

Thus, at least one of the vectors on an edge in must change
when the set of source message vectors changes from to .
However, this is contradicted by the fact that for all ,
the vector carried on when the columns of are the source
messages is

(7)

which is also the vector carried on when the columns of are
the source messages.
Hence, for any two different matrices and whose th

columns agree for all , at least one vector carried by
an edge in the cut has to differ in value in the case where the
source messages are the columns of from the case where the
source messages are the columns of .
This fact implies that

and thus

Since the cut is arbitrary, we conclude [using (3)] that

Taking the supremum over all linear network codes
that compute in , we get

Proof of : Since is reducible, there exist , a
matrix , and a map such that

(8)

Let denote the network with alphabet and target
function .
Let , and let the decoding function be .

Since , we assume that all the source nodes transmit their
messages to node . For each source vector

node computes and sends it to the receiver. Having re-
ceived the -dimensional vector , the receiver computes

Thus, there exists a linear code that computes in with an
achievable computing rate of

which is sufficient to establish the claim.
Theorem III.6(a) showed that there cannot be linear com-

puting gain for networks whose target functions are not
reducible. Conversely, Theorem III.6(b) shows that if a target
function is reducible, then there exists a network in which the
linear computing capacity is larger than the routing computing
capacity. Next, Propositions III.7 and III.8 investigate the
benefit of nonlinear codes over linear codes for both classes of
target functions and show that there exist networks for which
the (nonlinear) computing capacity is greater than the linear
computing capacity.
Proposition III.7: Let be a finite field alphabet. Let

and let be a target function that is neither injective nor re-
ducible. Then, there exists a network such that

Proof: If is the network shown in Fig. 2 with al-
phabet , then

We note that the last inequality also follows from [4, Theorem
III.3] which characterizes the computing capacity for any target
function over a tree network.
The same proof as above also holds if the alphabet is a

ring with identity and the target function is semi-injective
but not injective. Note that the above result does not hold for
injective functions. This is easy to see since the problem of
computing injective functions is essentially equivalent to the
network coding problem of recovering all the source messages
at the receiver and, as mentioned before, all single-receiver
networks are known to achieve their coding capacity with just
routing [23].
Proposition III.8: There exists a network and a reducible

target function such that
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Fig. 2. Network has sources , each connected to the relay
by an edge and is connected to the receiver by an edge.

Proof: Let denote the network shown in Fig. 2
with , alphabet , and let be the target function
in Example II.3.
The routing computing capacity is given by

(9)

Let . Assume that the sources send their respective
messages to node . The target function can then be computed
at and sent to the receiver. Hence, is an achievable
computing rate and thus

(10)

Now consider any linear code that computes in .
Such a linear code immediately implies a linear code that
computes the target function in network
as follows. From the linear code that computes in ,
we get a matrix such that the node in network
computes

and the decoding function computes from the resulting vector.
Now, in , we let the node compute

and send it to the receiver. The receiver can compute the func-
tion from the received -dimensional vector using the relation

. Using the fact that the function is
not reducible (in fact, it is semi-injective),

Consequently

(11)

Now we will construct a linear code that computes in
. Let , and

Let the sources send their respective messages to while
computes

and transmits the result to the receiver from which is com-
putable. Since the above code achieves a computing rate of ,
combined with (11), we get

(12)

The claim of the theorem now follows from (9), (10), and(12).

The above proposition shows that, even if the target function
is reducible, linear codes may not achieve the full (nonlinear)
computing capacity of a network. However, as we will see in
the next section, there are reducible target functions for which
linear codes are indeed optimal.

IV. COMPUTING LINEAR TARGET FUNCTIONS

Recall from Table II that for any ring , a linear target func-
tion is defined as for any

, with for all and arithmetic over the ring. We
showed in the previous section that for reducible target func-
tions, there may be a computing capacity gain in using linear
codes over routing. In this section, we show that for a special
subclass of reducible target functions, namely linear target func-
tions over finite fields, linear network codes achieve the full
(nonlinear) computing capacity. As mentioned before, this re-
sult has been obtained independently in [20] and [21]. We now
describe a special class of linear codes over finite fields that suf-
fice for computing linear target functions over finite fields at the
maximum possible rate.
Throughout this section, let be a network and let , and
be positive integers such that . Each symbol mes-
sage vector generated by a source can be viewed as a
-dimensional vector

where for each . Likewise, the decoder gener-
ates a vector of symbols from , which can be viewed as a
-dimensional vector of symbols from . For each , the
edge vector is viewed as an element of .
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For every node , and every out-edge ,
we choose an encoding function whose output is:

(13)

for some and we use a decoding function
whose th component output is

(14)

for certain . Here, we view each as a function of
the in-edges to and the source messages generated by and
we view as a function of the inputs to the receiver. The chosen
encoder and decoder are seen to be linear.
Let us denote the edges in by . For each

source and each edge , let be
variables, and for each , let be vari-
ables. For every such that ,
let be a variable. Let be vectors containing all
the variables , and , respectively. We will use
the shorthand notation to mean the ring of polynomials

and similarly for .
Next, we define matrices , and .
1) For each , let be a matrix

, given by

(15)

2) Let be a matrix, given by

(16)
3) Let be a matrix, given by

(17)

Consider an linear code of the form in (13) and (14).
Since the graph associated with the network is acyclic,

we can assume that the edges are ordered such that
the matrix is strictly upper-triangular, and thus we can apply
Lemma IV.1. Let denote the identity matrix of suitable dimen-
sion.
Lemma IV.1. (see [14, Lemma 2]): The matrix is

invertible over the ring .
Lemma IV.2. (see [14, Theorem 3]): For and for all

, the decoder in (14) satisfies

Lemma IV.3. (see [2, Theorem 1.2]): Let be an ar-
bitrary field, and let be a polyno-
mial in . Suppose the degree of is

, where each is a nonnegative integer, and sup-
pose the coefficient of in is nonzero. Then,
if are subsets of with , there are

so that

For each , define the matrix

(18)

where the components of are viewed as lying in
.

Lemma IV.4: If for all ,

in the ring , then there exists an integer and
vectors over such that for all the
matrix is invertible in the ring of matrices with
components in .

Proof: The quantity

is a nonzero polynomial in and therefore also in
for any . Therefore, we can choose large

enough such that the degree of this polynomial is less than .
For such an , Lemma IV.3 implies there exist vectors
(whose components correspond to the components of the vector
variables ) over such that

(19)

and therefore, for all

Thus, each is invertible.
Theorem IV.5: Let the alphabet be the finite field . If

is a network with a linear target function over that depends
on every source nontrivially, then

Proof: We have

(20)

where the last inequality follows immediately from [4, Theorem
II.1] and by noting that the quantity , defined in [4, Def-
inition 1.5], is equal to for linear target functions. For a
lower bound, we will show that there exists an integer and
an linear code that computes with a computing rate of

.
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From Lemma IV.1, the matrix is invertible over
the ring and therefore also over . Since
any minimum cut between the source and the receiver
has at least edges, it follows from [14, Theorem 2]6 that

for every . From
Lemma IV.4, there exists an integer and vectors

over such that is invertible for every
.

Since is linear, we can write

For each , let

(21)

If a linear code corresponding to the matrices ,
and is used in network , then the -dimensional vector
over computed by the receiver is

which proves that the linear code achieves a computing rate
of . Along with (20), this lower bound proves the theorem
statement.
Theorem IV.5 proves the optimality of linear codes for com-

puting linear target functions in a single-receiver network. It
also shows that the computing capacity of a network for a given
target function cannot be larger than the number of network
sources times the routing computing capacity for the same target
function.

V. REVERSE BUTTERFLY NETWORK

In this section, we study an example network that illustrates
various concepts discussed previously in this paper and also pro-
vides some interesting additional results for network computing.
The network shown in Fig. 3(b) is called the reverse butterfly
network. It has , receiver node , and is obtained
by reversing the direction of all the edges of the multicast but-
terfly network shown in Fig. 3(a).
Proposition V.1: Let the alphabet be . The

routing computing capacity and the linear computing capacity

6Using the implication in [14, Theorem 2].

Fig. 3. Network where there is no benefit to using linear coding over routing
for computing .

(over the ring ) of the reverse butterfly network with the
arithmetic sum target function

are

Proof: Since is a nonreducible target function from Ex-
ample III.2 and Lemma III.3, we have

Theorem V.2: Let the alphabet be . The
computing capacity of the reverse butterfly network with the
arithmetic sum target function

is

Remark V.3: The computing capacity obtained
in Theorem V.2 is a function of the coding alphabet (i.e.,
the domain of the target function ). In contrast, for ordinary
network coding (i.e., when the target function is the identity
map), the coding capacity and routing computingcapacity are
known to be independent of the coding alphabet used [5].
For the reverse butterfly network, if, for example, ,
then is approximately equal to 1.26 and increases
asymptotically to 2 as .
Remark V.4: The ratio of the coding capacity to the routing

capacity for the multicast butterfly network with two messages
was computed in [5] to be (i.e., coding provides a gain of
about ). The corresponding ratio for the reverse butterfly
network increases as a function of from approximately 1.26
(i.e., ) when to 2 (i.e., ) when . Further-
more, in contrast to the multicast butterfly network, where the
coding capacity is equal to the linear coding capacity, in the re-
verse butterfly network the computing capacity is strictly greater
than the linear computing capacity. Thus, this is also an illustra-
tion of Proposition III.7.
Remark V.5: Recall that capacity is defined as the supremum

of the set of rational numbers such that a code that
computes the target function exists. It was pointed out in [5]
that it remains an open question whether the coding capacity
of a network can be irrational. Our Theorem V.2 demonstrates
that the computing capacity of a network (e.g., the reverse but-
terfly network) with unit capacity links can be irrational when
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Fig. 4. Butterfly network and its reverse .

the target function to be computed is the arithmetic sum target
function of the source messages.
The following lemma is used to prove TheoremV.2. The code

construction used below was obtained in [3] and is an instance
of the class of codes proposed in [20].
Lemma V.6: Let the alphabet be . The

computing capacity and the linear computing capacity (over the
ring ) of the reverse butterfly network with the mod sum
target function are

Proof: The upper bound of 2 on follows from
[4, Theorem II.1]. To establish the achievability part, we con-
struct a linear code over the ring . Let and .
Consider the code shown in Fig. 4, where “ ” indicates the

sum. The receiver node gets and
on its in-edges, from which

it can compute . This linear code achieves a rate
of 2.
Remark V.7: It follows from the definition of reducible

functions in Definition II.1 that the sum target function
above is reducible. Thus, Theorem III.6(b) applies and there
exist networks for which the linear computing capacity is
strictly greater than the routing computing capacity. In fact, it
is easy to check that the reverse butterfly network is one
such network since its routing computing capacity is 1 from
Proposition V.1, whereas the linear computing capacity is 2
from the above result.

Proof of Theorem V.2: We have

To establish the lower bound, we use the fact that the arith-
metic sum of two elements from is equal
to their sum. Let the reverse butterfly network
have alphabet . From Lemma V.6
(with alphabet ), the sum target function can
be computed in at rate 2. Indeed for every , there exists

Fig. 5. Reverse butterfly network with a linear code over that computes the
mod sum target function.

a network code that computes the mod sum
target function at rate 2. So for the remainder of this proof, let

. Furthermore, every such code using can be “simu-
lated” using by a corresponding code
for computing the mod sum target function, as follows.
Let be the smallest integer such that , i.e.,

. Let be an injection
(which exists since ) and let the function
denote the inverse of on it’s image .
Let denote the first and last, respectively, halves

of the message vector , where we view and
as lying in (since ). The corresponding vectors

for the source are similarly defined.
Fig. 5 illustrates a code for network using al-

phabet , where “ ” denotes the sum. Each
of the nodes in converts each of the received vectors over
into a vector over using the function , then performs

coding in Fig. 4 over , and finally converts the result back to
. Similarly, the receiver node computes the componentwise

arithmetic sum of the source message vectors and
using

For any , the above code computes the arithmetic sum
target function in at a rate of

Thus, for any , by choosing large enough, we obtain
a code that computes the arithmetic sum target function, and
which achieves a computing rate of at least
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TABLE III
DEFINITION OF THE 4-ARY MAP

APPENDIX

A. Linear Coding Over Different Ring Alphabets

Let and let be
as defined in Table III. We consider different rings of size 4
for and evaluate the linear computing capacity of the network
shown in Fig. 6 with respect to the target function . Specif-

ically, we let be either the ring of integers modulo 4 or the
product ring of 2-dimensional binary vectors. Denote
the linear computing capacity here by

The received vector at can be viewed as a function of the
source vectors generated at and . For any -linear
code, there exist matrices and such that can be
written as

(22)

Let denote the row vectors of , for
. Throughout this section, we will denote the zero vector

by to distinguish it from the scalar 0 and the length of the
vector will be clear from context.
Lemma VI.1: Let be the ring and let

be the target function shown in Table III, where ,
for each . If a linear code over computes in and
receives the zero vector , then .
Proof: If , then receives a by

(22) and must decode a 0 since (from Table III).
Thus, always decodes a 0 upon receiving the zero vector .
But if and only if (from Table III), so
whenever receives a , the source messages satisfy

.
Now suppose, contrary to the lemma’s assertion, that there

exist messages and such that
and for some . Since

is invertible in (it is either 1 or 3), we have from
(22) that

(23)

Fig. 6. Reverse butterfly network with a code that computes the arithmetic sum
target function. denotes addition.

Fig. 7. Network has two sources and and a receiver .

where and are -dimensional vectors defined by

(24)

Also, define the -dimensional vector by

if
if .

(25)

We have from (22) that , and from (22) and
(23) that .
Thus, in order for the code to compute , we must have

But and

a contradiction. Thus, .
Proposition VI.2: The network in Fig. 6 with alphabet

and target function
shown in Table III satisfies
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(For , we identify , for each , and for
, we identify each with the 2-bit binary representation

of .)
Proof: Consider a -linear code that computes

. From (22), we have whenever . Since
(whenever ), it must therefore be

the case that only when , or in other words, the
rows of must be independent, so . Thus

(26)

Now suppose that is the ring where,
, and

and let denote addition over . For any , the value
, as defined in Table III, is seen to be the Hamming dis-

tance between and . If and
(i.e., the 1 1 identity matrix), then receives from
which can be computed by summing its components. Thus,
a computing rate of is achievable. From (26), it then
follows that

We now prove that . Let denote the
ring where for . For a given
linear code over that computes , the -dimensional vector
received by can be written as in (22). Let denote the col-
lection of all message vector pairs such that

. Define the matrix

and notice that
Then

Thus, , so .

B. Lower Bound On the Computing Capacity

Lemma VI.3: The computing capacity of the network
shown in Fig. 2, with respect to a target function ,
satisfies

Proof: Suppose

(27)

Let and assume that each source node sends its
message to node . Let

be any injective map [which exists by (27)]. Then, the node
can compute and send it to the receiver. The receiver can

compute the value of from the value of , and thus, a rate of
1 is achievable, so

Now suppose

(28)

Then, any rate less than can be achieved
as follows. Since the desired rate is less than 1, we can still
assume that each source sends its message vector to node .
Since representing needs symbols from
the alphabet , node can communicate it to the receiver at
any rate less than .

C. Proof of Lemma III.4

Definition VI.4: Let be a finite field and let be a sub-
space of the vector space over the scalar field . Let

and let denote the dimension of over .
Lemma VI.5:7 If is a finite field and is a subspace of

vector space , then .
Proof of Lemma III.4: Let and , respectively, be the

map and matrix associated with the reducible function , as in-
dicated in Definition II.1. It then follows easily that there exists
a nonzero such that and hence

(29)

Conversely, suppose that there exists a nonzero such that (29)
holds for every and every and let be the 1-D
subspace of spanned by . Then

(30)

Note that . Let , let be
a matrix such that its columns form a basis for , and let

7This lemma is a standard result in coding theory regarding dual codes over
finite fields, even though the operation is not an inner product (see, e.g.,
[12, Theorem 7.5] or [18, Corollary 3.2.3]). An analogous result for orthogonal
complements over inner product spaces is well known in linear algebra (see,
e.g., [13, Theorem 5, p. 286]).
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denote the row space of . Define the map
as follows. For any such that for , let

(31)

Note that if for , then
from the definition of and Lemma

VI.5. This implies that

Thus, is well defined. Then, from (31) and Definition II.1,
is reducible.
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