
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 2, FEBRUARY 2011 1015

Network Coding for Computing: Cut-Set Bounds
Rathinakumar Appuswamy, Student Member, IEEE, Massimo Franceschetti, Member, IEEE,

Nikhil Karamchandani, Student Member, IEEE, and Kenneth Zeger, Fellow, IEEE

Abstract—The following network computing problem is consid-
ered. Source nodes in a directed acyclic network generate indepen-
dent messages and a single receiver node computes a target func-
tion � of the messages. The objective is to maximize the average
number of times � can be computed per network usage, i.e., the
“computing capacity”. The network coding problem for a single-re-
ceiver network is a special case of the network computing problem
in which all of the source messages must be reproduced at the re-
ceiver. For network coding with a single receiver, routing is known
to achieve the capacity by achieving the network min-cut upper
bound. We extend the definition of min-cut to the network com-
puting problem and show that the min-cut is still an upper bound
on the maximum achievable rate and is tight for computing (using
coding) any target function in multi-edge tree networks. It is also
tight for computing linear target functions in any network. We also
study the bound’s tightness for different classes of target functions.
In particular, we give a lower bound on the computing capacity in
terms of the Steiner tree packing number and a different bound
for symmetric functions. We also show that for certain networks
and target functions, the computing capacity can be less than an
arbitrarily small fraction of the min-cut bound.

Index Terms—Capacity, cut-set bound, function computation,
information theory, network coding, throughput.

I. INTRODUCTION

W E consider networks where source nodes generate inde-
pendent messages and a single receiver node computes

a target function of these messages. The objective is to charac-
terize the maximum rate of computation, that is, the maximum
number of times can be computed per network usage.

Giridhar and Kumar [18] have stated:
“In its most general form, computing a function in a net-

work involves communicating possibly correlated messages, to
a specific destination, at a desired fidelity with respect to a joint
distortion criterion dependent on the given function of interest.
This combines the complexity of source coding of correlated
sources, with rate distortion, different possible network collab-
orative strategies for computing and communication, and the in-
applicability of the separation theorem demarcating source and
channel coding.”

Manuscript received April 18, 2010; revised August 10, 2010; accepted
September 11, 2010. Date of current version January 19, 2011. This work
was supported by the National Science Foundation and the UCSD Center for
Wireless Communications.

This paper is part of the special issue on “Facets of Coding Theory: From
Algorithms to Networks,” dedicated to the scientific legacy of Ralf Koetter.

The authors are with the Department of Electrical and Computer En-
gineering, University of California, San Diego, La Jolla, CA 92093-0407
(e-mail: rathnam@ucsd.edu; massimo@ece.ucsd.edu; nikhil@ucsd.edu;
zeger@ucsd.edu).

Communicated by M. Effros, Associate Editor for the special issue on “Facets
of Coding Theory: From Algorithms to Networks.”

Digital Object Identifier 10.1109/TIT.2010.2095070

The overwhelming complexity of network computing sug-
gests that simplifications be examined in order to obtain some
understanding of the field.

We present a natural model of network computing that is
closely related to the network coding model of Ahlswede, Cai,
Li, and Yeung [1], [49]. Network coding is a widely studied
communication mechanism in the context of network informa-
tion theory. In network coding, some nodes in the network are
labeled as sources and some as receivers. Each receiver needs
to reproduce a subset of the messages generated by the source
nodes, and all nodes can act as relays and encode the information
they receive on in-edges, together with the information they
generate if they are sources, into codewords which are sent on
their out-edges. In existing computer networks, the encoding
operations are purely routing: at each node, the codeword sent
over an out-edge consists of a symbol either received by the node,
or generated by it if it is a source. It is known that allowing more
complex encoding than routing can in general be advantageous in
terms of communication rate [1], [22], [38]. Network coding with
a single receiver is equivalent to a special case of our function
computing problem, namely when the function to be computed is
the identity, that is, when the receiver wants to reproduce all the
messages generated by the sources. In this paper, we study net-
work computation for target functions different than the identity.

Some other approaches to network computation have also ap-
peared in the literature. In [8], [11], [12], [28], [34], [39] net-
work computing was considered as an extension of distributed
source coding, allowing the sources to have a joint distribu-
tion and requiring that a function be computed with small error
probability. For example, [28] considered a network where two
correlated uniform binary sources are both connected to the re-
ceiver and then determined the maximum rate of computing the
parity of the messages generated by the two sources. A rate-dis-
tortion approach to the problem has been studied in [10], [15],
[47]. However, the complexity of network computing has re-
stricted prior work to the analysis of elementary networks. Net-
works with noisy links were studied in [3], [14], [16], [17], [19],
[26], [35], [37], and [50]. For example, [17] considered broad-
cast networks where any transmission by a node is received
by each of its neighbors via an independent binary symmetric
channel. Randomized gossip algorithms [6] have been proposed
as practical schemes for information dissemination in large un-
reliable networks and were studied in the context of distributed
computation in [4]–[6], [9], [27], and [36].

In the present paper, our approach is somewhat (tangentially)
related to the field of communication complexity [30], [48]
which studies the minimum number of messages that two nodes
need to exchange in order to compute a function of their inputs
with zero error. Other studies of computing in networks have
been considered in [18], and [43], but these were restricted

0018-9448/$26.00 © 2011 IEEE

1016 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 2, FEBRUARY 2011

TABLE I
EXAMPLES OF TARGET FUNCTIONS

to the wireless communication protocol model of Gupta and
Kumar [20].

In contrast, our approach is more closely associated with
wired networks with independent noiseless links. Our work
is closest in spirit to the recent work of [31], [40]–[42] on
computing the sum (over a finite field) of source messages
in networks. We note that in independent work, Kowshik and
Kumar [29] obtain the asymptotic maximum rate of computa-
tion in tree networks and present bounds for computation in
networks where all nodes are sources.

Our main contributions are summarized in Section I-C, after
formally introducing the network model.

A. Network Model and Definitions

In this paper, a network consists of a finite, directed
acyclic multigraph , a set of source nodes

, and a receiver . Such a
network is denoted by . We will assume that

and that the graph1 contains a directed path from
every node in to the receiver . For each node , let

and denote the set of in-edges and out-edges of
respectively. We will also assume (without loss of generality)
that if a network node has no in-edges, then it is a source node.

An alphabet is a finite set of size at least two. For any pos-
itive integer , any vector , and any ,
let denote the -th component of . For any index set

with , let
denote the vector .

The network computing problem consists of a network and
a target function of the form

(see Table I for some examples). We will also assume that any
target function depends on all network sources (i.e., they cannot
be constant functions of any one of their arguments). Let and

be positive integers. Given a network with source set and
alphabet , a message generator is any mapping

For each source , is called a message vector and its
components are called messages.2

1Throughout the paper, we will use “graph” to mean a directed acyclic multi-
graph, and “network” to mean a single-receiver network. We may sometimes
write ���� to denote the edges of graph �.

2For simplicity, we assume that each source has exactly one message vector
associated with it, but all of the results in this paper can readily be extended to
the more general case.

Definition I.1: A network code in a network consists
of the following.

(i) For any node and any out-edge , an
encoding function

if

otherwise.

(ii) A decoding function:

Given a network code, every edge carries a
vector of at most alphabet symbols3, which is obtained
by evaluating the encoding function on the set of vectors
carried by the in-edges to the node and the node’s message
vector if it is a source. The objective of the receiver is to com-
pute the target function of the source messages, for any ar-
bitrary message generator . More precisely, the receiver con-
structs a vector of alphabet symbols such that for each

, the -th component of the receiver’s computed
vector equals the value of the desired target function applied
to the -th components of the source message vectors, for any
choice of message generator . Let denote
the in-edges of the receiver.

Definition I.2: A network code is said to compute
in if the decoding function is such that for each

and for every message generator

(1)

If there exists a code that computes , we say the rational
number is an achievable computing rate.

In the network coding literature, one definition of the coding
capacity of a network is the supremum of all achievable coding
rates [7], [13]. We adopt an analogous definition for computing
capacity.

Definition I.3: The computing capacity of a network with
respect to target function is

3By default, we will assume that edges carry exactly � symbols.

APPUSWAMY et al.: NETWORK CODING FOR COMPUTING: CUT-SET BOUNDS 1017

Fig. 1. � , � are two sources with messages � and � respectively. � commu-
nicates ���� to � so that � can compute a function � of � and �.

Thus, the computing capacity is the supremum of all achiev-
able computing rates for a given network and a target func-
tion .

Definition I.4: For any target function , any
index set , and any , , we write
if for every , , we have whenever ,

, and for all .
It can be verified that is an equivalence relation4 for every
and .

Definition I.5: For every and , let denote the total
number of equivalence classes induced by and let

be any function such that iff .
That is, assigns a unique index to each equivalence class,

and

The value of is independent of the choice of . We call
the footprint size of with respect to .

Remark I.6: Let . The footprint size
has the following interpretation (see Fig. 1). Suppose a

network has two nodes, and , and both are sources. A single
directed edge connects to . Let generate and

generate . communicates a function of its
input, to so that can compute where , ,
and . Then for any , such that , we need

. Thus, , which implies a lower
bound on a certain amount of “information” that needs to
send to to ensure that it can compute the function . Note that

achieves the lower bound. We will use this intuition
to establish a cut-based upper bound on the computing capacity

of any network with respect to any target function
, and to devise a capacity-achieving scheme for computing any

target function in multi-edge tree networks.

Definition I.7: A set of edges in network is said to
separate sources from the receiver , if for each

, every directed path from to contains
at least one edge in . The set is said to be a cut in if it
separates at least one source from the receiver. For any network

, define to be the collection of all cuts in . For any
cut and any target function , define

(2)

4Witsenhausen [46] represented this equivalence relation in terms of the in-
dependent sets of a characteristic graph and his representation has been used in
various problems related to function computation [11], [12], [39]. Although �
is defined with respect to a particular index set � and a function � , we do not
make this dependence explicit—the values of � and � will be clear from the
context.

Fig. 2. Example of a multi-edge tree.

Since target functions depend on all sources, we have
for any cut and any target function .
A multi-edge tree is a graph such that for every node ,

there exists a node such that all the out-edges of are in-edges
to , i.e., (e.g., see Fig. 2).

B. Classes of Target Functions

We study the following four classes of target functions: (1)
divisible, (2) symmetric, (3) -exponential, (4) -bounded.

Definition I.8: A target function is divisible if
for every index set , there exists a finite set
and a function such that the following hold:

(1) ;
(2) ;
(3) for every partition of , there exists a func-

tion such that for every
, we have .

Examples of divisible target functions include the identity,
maximum, sum, and arithmetic sum.

Divisible functions have been studied previously5 by Giridhar
and Kumar [18] and Subramanian, Gupta, and Shakkottai [43].
Divisible target functions can be computed in networks in a di-
vide-and-conquer fashion as follows. For any arbitrary parti-
tion of the source indices , the receiver

can evaluate the target function by combining evaluations
of . Furthermore, for every , the target
function can be evaluated similarly by partitioning and
this process can be repeated until the function value is obtained.

Definition I.9: A target function is symmetric
if for any permutation of and any vector ,

That is, the value of a symmetric target function is invariant
with respect to the order of its arguments and hence, it suf-
fices to evaluate the histogram target function for computing
any symmetric target function. Examples of symmetric func-
tions include the arithmetic sum, maximum, and sum.
Symmetric functions have been studied in the context of com-
puting in networks by Giridhar et al. [18], Subramanian et al.
[43], Ying et al. [50], and [26].

Definition I.10: Let . A target function
is said to be -exponential if its footprint size satisfies

5The definitions in [18], [43] are similar to ours but slightly more restrictive.

1018 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 2, FEBRUARY 2011

Let . A target function is said to be
-bounded if its footprint size satisfies

Example I.11: The following facts are easy to verify:
• The identity function is 1-exponential.
• Let be an ordered set. The maximum (or minimum)

function is 1-bounded.
• Let where . The sum

target function with is -bounded.

Remark I.12: Giridhar and Kumar [18] defined two classes of
functions: type-threshold and type-sensitive functions. Both are
sub-classes of symmetric functions. In addition, type-threshold
functions are also divisible and -bounded, for some constant

that is independent of the network size. However, [18] uses a
model of interference for simultaneous transmissions and their
results do not directly compare with ours.

Following the notation in Leighton and Rao [33], the min-cut
of any network with unit-capacity edges is

- (3)

A more general version of the network min-cut plays a funda-
mental role in the field of multi-commodity flow [33], [44]. The
min-cut provides an upper bound on the maximum flow for any
multi-commodity flow problem. The min-cut is also referred to
as “sparsity” by some authors, such as Harvey, Kleinberg, and
Lehman [22] and Vazirani [44]. We next generalize the defini-
tion in (3) to the network computing problem.

Definition I.13: If is a network and is a target function,
then

- (4)

Example I.14:
• If is the identity target function, then

-

Thus for the identity function, the definition of min-cut in
(3) and (4) coincide.

• Let . If is the arithmetic sum target
function, then

- (5)

• Let be an ordered set. If is the maximum target func-
tion, then

-

C. Contributions

The main results of this paper are as follows. In Section II,
we show (Theorem II.1) that for any network and any target

function , the quantity - is an upper bound on the
computing capacity . In Section III, we note that the
computing capacity for any network with respect to the identity
target function (Theorem III.1) and linear target functions over
finite fields (Theorem III.2) is equal to the min-cut upper bound.
We show that the min-cut bound on computing capacity can
also be achieved for all multi-edge tree networks with any target
function (Theorem III.3). For any network and any target func-
tion, a lower bound on the computing capacity is given in terms
of the Steiner tree packing number (Theorem III.5). Another
lower bound is given for networks with symmetric target func-
tions (Theorem III.7). In Section IV, the tightness of the above-
mentioned bounds is analyzed for divisible (Theorem IV.2),
symmetric (Theorem IV.3), -exponential (Theorem IV.4), and

-bounded (Theorem IV.5) target functions. For -exponential
target functions, the computing capacity is at least times the
min-cut. If every nonreceiver node in a network is a source, then
for -bounded target functions the computing capacity is at least
a constant times the min-cut divided by . It is also shown, with
an example target function, that there are networks for which
the computing capacity is less than an arbitrarily small fraction
of the min-cut bound (Theorem IV.7). In Section V, we discuss
an example network and target function in detail to illustrate the
above bounds. In Section VI, conclusions are given and various
lemmas are proven in the Appendix.

II. MIN-CUT UPPER BOUND ON COMPUTING CAPACITY

The following shows that the maximum rate of computing a
target function in a network is at most - .

Theorem II.1: If is a network with target function , then

-

Proof: Let the network alphabet be and consider any
code that computes in . Let be a cut and for each

, let , . Suppose
is such that , where is the equivalence relation from
Definition I.4. Then there exist , satsifying:

, , , and for every .
The receiver can compute the target function only if,

for every such pair and corre-
sponding to the message vectors generated by the sources in ,
the edges in cut carry distinct vectors. Since the total number
of equivalence classes for the relation equals the footprint size

, the edges in cut should carry at least distinct
vectors. Thus, we have

and hence for any cut ,

Since the cut is arbitrary, the result follows from Definition
I.3 and (4).

The min-cut upper bound has the following intuition. Given
any cut , at least units of information

APPUSWAMY et al.: NETWORK CODING FOR COMPUTING: CUT-SET BOUNDS 1019

need to be sent across the cut to successfully compute a target
function . In subsequent sections, we study the tightness of this
bound for different classes of functions and networks.

III. LOWER BOUNDS ON THE COMPUTING CAPACITY

The following result shows that the computing capacity of
any network with respect to the identity target function equals
the coding capacity for ordinary network coding.

Theorem III.1: If is a network with the identity target func-
tion , then

- -

Proof: Rasala Lehman and Lehman [32, p.6, Theorem 4.2]
showed that for any single-receiver network, the conventional
coding capacity (when the receiver demands the messages gen-
erated by all the sources) always equals the - . Since
the target function is the identity, the computing capacity is
the coding capacity and - - , so the
result follows.

Theorem III.2: If is a network with a finite field alphabet
and with a linear target function , then

-

Proof: Follows from [41, Theorem 2].

Theorems III.1 and III.2 demonstrate the achievability of the
min-cut bound for arbitrary networks with particular target func-
tions. In contrast, the following result demonstrates the achiev-
ability of the min-cut bound for arbitrary target functions and
a particular class of networks. The following theorem concerns
multi-edge tree networks, which were defined in Section I-A.

Theorem III.3: If is a multi-edge tree network with target
function , then

-

Proof: Let be the network alphabet. From Theorem II.1,
it suffices to show that - . Since

is a cut for node , and using (2), we have

- (6)

Consider any positive integers , such that

(7)

Then we have

(8)

We outline a code that computes in the multi-edge tree
network . Each source generates a message vector

. Denote the vector of -th components of the source
messages by

Every node sends out a unique index (as guaranteed
by (8)) over corresponding to the equivalence classes

(9)

If has no in-edges, then by assumption, it is a source node,
say . The set of equivalence classes in (9) is a function of its
own messages for . On the other hand, if
has in-edges, then let be the nodes with out-edges
to . For each , using the uniqueness of the
index received from , node recovers the equivalence classes

(10)

Furthermore, the equivalence classes in (9) can be identified by
from the equivalance classes in (10) (and if is a source

node) using the fact that for a multi-edge tree network , if
is not a source node, then we have a disjoint union

If each node follows the above steps, then the receiver
can identify the equivalence classes for

. The receiver can evaluate for each
from these equivalence classes. The above network code

computes and achieves a computing rate of . From (7),
it follows that

(11)

We next establish a general lower bound on the computing
capacity for arbitrary target functions (Theorem III.5) and then
another lower bound specifically for symmetric target functions
(Theorem III.7).

For any network with , define
a Steiner tree6 of to be a minimal (with respect to nodes
and edges) subgraph of containing and such that every
source in has a directed path to the receiver . Note that every
nonreceiver node in a Steiner tree has exactly one out-edge. Let

denote the collection of all Steiner trees in . For each
edge , let . The
fractional Steiner tree packing number is defined as the
linear program

.

(12)

Note that for any network , and the maximum
value of the sum in (12) is attained at one or more vertices of the
closed polytope corresponding to the linear constraints. Since all
coefficients in the constraints are rational, the maximum value

6Steiner trees are well known in the literature for undirected graphs. For di-
rected graphs a “Steiner tree problem” has been studied and our definition is
consistent with such work (e.g., see [25]).

1020 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 2, FEBRUARY 2011

in (12) can be attained with rational ’s. The following theorem
provides a lower bound7 on the computing capacity for any net-
work with respect to a target function and uses the quantity

. In the context of computing functions, in the above
linear program indicates the fraction of the time the edges in tree

are used to compute the desired function. The fact that every
edge in the network has unit capacity implies .

Lemma III.4: For any Steiner tree of a network , let
. Let be a cut in . Then there exists a cut

in such that .
(Note that is the set of indices of sources separated in

by . The set may differ from the indices of sources
separated in by .)

Proof: Define the cut

(13)

is the collection of out-edges in of a set of sources dis-
connected by the cut in . If , then, by (13),
disconnects from in , and thus .

Let be a source such that and let be a path from
to in . From (13), it follows that there exists such

that contains at least one edge in . If also lies in
and does not contain any edge in , then has a path to in

that does not contain any edge in , thus contradicting the
fact that . Therefore, either does not lie in or
contains an edge in . Thus , i.e., .

Theorem III.5: If is a network with alphabet and target
function , then

Proof: Suppose . Consider a Steiner tree
of , and let . From Lemma

III.4 (taking to be in), we have

(14)

Now we lower bound the computing capacity for the network
with respect to target function :

- (15)

(16)

The lower bound in (16) is the same for every Steiner tree of .
We will use this uniform bound to lower bound the computing
capacity for with respect to . Denote the Steiner trees of

7In order to compute the lower bound, the fractional Steiner tree packing
number ��� � can be evaluated using linear programming. Also note that if
we construct the reverse multicast network by letting each source in the original
network � become a receiver, letting the receiver in the � become the only
source, and reversing the direction of each edge, then it can be verified that the
routing capacity for the reverse multicast network is equal to ��� �.

by . Let and let denote the quantity on the right
hand side of (16). On every Steiner tree , a computing rate of
at least is achievable by (16). Using standard arguments for
time-sharing between the different Steiner trees of the network

, it follows that a computing rate of at least is
achievable in , and by letting , the result follows.

The lower bound in Theorem III.5 can be readily computed
and is sometimes tight. The procedure used in the proof of The-
orem III.5 may potentially be improved by maximizing the sum

(17)

where is any achievable rate8 for computing in the Steiner
tree network .

We now obtain a different lower bound on the computing
capacity in the special case when the target function is the arith-
metic sum. This lower bound is then used to give an alternative
lower bound (in Theorem III.7) on the computing capacity for
the class of symmetric target functions. The bound obtained in
Theorem III.7 is sometimes better than that of Theorem III.5,
and sometimes worse (Example III.8 illustrates instances of
both cases).

Theorem III.6: If is a network with alphabet
and the arithmetic sum target function , then

where denotes the smallest prime number greater than
.

Proof: Let and let denote the same network
as but whose alphabet is , the finite field of order .

Let . From Theorem III.2, there exists a code
that computes the -sum of the source messages in with an
achievable computing rate satisfying

This code can be repeated to derive a code that
also computes for any integer (note that edges in the
network carry symbols from the alphabet

, while those in the network carry symbols from a larger
alphabet). Any code that computes the -sum in

can be “simulated” in the network by a
code (e.g., see [2]). Furthermore, since and the
source alphabet is , the -sum of the source
messages in network is equal to their arithmetic sum. Thus,
by choosing large enough, the arithmetic sum target function
is computed in with an achievable computing rate of at least

Since is arbitrary, the result follows.

8From Theorem III.3, � can be arbitrarily close to ���-��	�� � ��.

APPUSWAMY et al.: NETWORK CODING FOR COMPUTING: CUT-SET BOUNDS 1021

Theorem III.7: If is a network with alphabet
and a symmetric target function , then

where is the smallest prime number9 greater than .
Proof: From Definition I.9, it suffices to evaluate the his-

togram target function for computing . For any set of source
messages , we have

where for each . Consider the net-
work with alphabet . Then for each

, can be evaluated by computing the arithmetic sum
target function in where every source node is assigned
the message 1 if , and 0 otherwise. Since we know that

the histogram target function can be evaluated by computing
the arithmetic sum target function times in the network
with alphabet . Let . From Theorem III.6 in
the Appendix, there exists a code that computes the arith-
metic sum target function in with an achievable computing
rate of at least

The above code can be repeated to derive a code
that computes for any integer . Note that edges in the net-
work carry symbols from the alphabet

, while those in the network carry symbols from
. Any code that computes the arithmetic sum

target function in can be simulated in the network by a
code10. Thus by choosing large enough, the

above-mentioned code can be simulated in the network to de-
rive a code that computes the histogram target function with
an achievable computing rate11 of at least

Since is arbitrary, the result follows.

Example III.8: Consider networks and in Fig. 3, each
with alphabet and the (symmetric) arithmetic sum
target function . Theorem III.7 provides a larger lower bound
on the computing capacity than Theorem III.5, but
a smaller lower bound on .

9From Bertrand’s Postulate [21, p.343], we have � ��� � ��.
10To see details of such a simulation, we refer the interested reader to [2].
11Theorem III.7 provides a uniform lower bound on the achievable computing

rate for any symmetric function. Better lower bounds can be found by consid-
ering specific functions; for example Theorem III.6 gives a better bound for the
arithmetic sum target function.

Fig. 3. Reverse Butterfly Network � has two binary sources �� � � � and
network � has three binary sources �� � � � � �, each with � � ��� ��.
Each network’s receiver � computes the arithmetic sum of the source messages.

• For network (in Fig. 3), we have

and , both of which occur, for example,

when consists of the two in-edges to the receiver . Also,
and , so

(18)

In fact, we get the upper bound
from Theorem II.1, and thus from (18),

.
• For network , we have and

, both of which occur when .

Also, and , so

From Theorem III.3, we have .

Remark III.9: An open question in network coding, pointed
out in [7], is whether the coding capacity of a network can be ir-
rational. Like the coding capacity, the computing capacity is the
supremum of ratios for which a code exists that com-
putes the target function. Example III.8 demonstrates that the
computing capacity of a network (e.g.,) with unit capacity
links can be irrational when the target function is the arithmetic
sum function.

IV. ON THE TIGHTNESS OF THE MIN-CUT UPPER BOUND

In the previous section, Theorems III.1—III.3 demonstrated
three special instances for which the - upper
bound is tight. In this section, we use Theorem III.5 and
Theorem III.7 to establish further results on the tightness of
the - upper bound for different classes of target
functions.

The following lemma provides a bound on the footprint size
for any divisible target function .

1022 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 2, FEBRUARY 2011

Lemma IV.1: For any divisible target function
and any index set , the footprint size satisfies

Proof: From the definition of a divisible target function,
for any , there exist maps , , and such
that

where . From the definition of the equiv-
alence relation (see Definition I.4), it follows that ,
belong to the same equivalence class whenever .
This fact implies that . We need

to complete the proof which follows from Definition
I.8(2).

Theorem IV.2: If is a network with a divisible target func-
tion , then

-

where denotes the set of in-edges of the receiver .
Proof: Let be the network alphabet. From Theorem III.5

(19)

On the other hand, for any network , the set of edges is
a cut that separates the set of sources from . Thus

-

(20)

Combining (19) and (20) completes the proof.

Theorem IV.3: If is a network with alphabet
and symmetric target function , then

-

where is the smallest prime number greater than and12

12From our assumption, �� � � for any target function � .

Proof: The result follows immediately from Theorem III.7
and since for any network and any target function

-

The following results provide bounds on the gap between
the computing capacity and the min-cut for -exponential and

-bounded functions (see Definition I.10).

Theorem IV.4: If and is a network with a -ex-
ponential target function , then

-

Proof: We have

-

-

-

Therefore

- -

where the last inequality follows because a computing rate
of - is achievable for the identity target func-
tion from Theorem III.1, and the computing capacity for
any target function is lower bounded by the computing
capacity for the identity target function (since any target
function can be computed from the identity function), i.e.,

- .

Theorem IV.5: Let . If is a network with alphabet
and a -bounded target function , and all nonreceiver nodes in
the network are sources, then

-

Proof: For any network such that all nonreceiver nodes
are sources, it follows from Edmond’s Theorem [45, p.405, The-
orem 8.4.20] that

APPUSWAMY et al.: NETWORK CODING FOR COMPUTING: CUT-SET BOUNDS 1023

Then

- (21)

On the other hand,

-

(22)

Combining (21) and (22) gives

-

Since the maximum and minimum target functions are
1-bounded, and for each one, we get the following
corollary.

Corollary IV.6: Let be any ordered alphabet and let be
any network such that all nonreceiver nodes in the network are
sources. If the target function is either the maximum or the
minimum function, then

-

Theorems IV.2—IV.5 provide bounds on the tightness of
the - upper bound for different classes of target
functions. In particular, we show that for -exponential (re-
spectively, -bounded) target functions, the computing capacity

is at least a constant fraction of the -
for any constant and any network (respectively, any
network where all nonreceiver nodes are sources). The
following theorem shows by means of an example target func-
tion and a network , that the - upper bound
cannot always approximate the computing capacity
up to a constant fraction. Similar results are known in network
coding as well as in multicommodity flow. It was shown in
[33] that when source nodes communicate independently
with the same number of receiver nodes, there exist networks
whose maximum multicommodity flow is times a
well known cut-based upper bound. It was shown in [23] that
with network coding there exist networks whose maximum
throughput is times the best known cut bound
(i.e., “meagerness”). Whereas these results do not hold for
single-receiver networks (by Theorem III.1), the following
similar bound holds for network computing in single-receiver

Fig. 4. Network � has � binary sources �� � � � � � � � � �, with � �

��� ��, connected to the receiver node � via a relay � . Each bold edge denotes
� parallel capacity-one edges and � computes the arithmetic sum of the source
messages.

networks. The proof of Theorem IV.7 uses Lemma VII.1 which
is presented in the Appendix.

Theorem IV.7: For any , there exists a network such
that for the arithmetic sum target function

-

Proof: Consider the network depicted in Fig. 4 with
alphabet and the arithmetic sum target function .
Then we have

-

Let be the number of sources disconnected from the receiver
by a cut in the network . For each such source , the

cut must contain the edge as well as either the parallel
edges or the parallel edges . Thus

- (23)

Let attain the minimum in [23] and define
- . Then

(24)

(25)

where (25) follows since the function attains
its maximum value over at (
by (24)). Let us choose . We have

- -

(26)

- (27)

1024 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 2, FEBRUARY 2011

-

V. AN EXAMPLE NETWORK

In this section, we evaluate the computing capacity for an ex-
ample network and a target function (which is divisible and sym-
metric) and show that the min-cut bound is not tight. In addition,
the example demonstrates that the lower bounds discussed in
Section III are not always tight and illustrates the combinatorial
nature of the computing problem.

Theorem V.1: The computing capacity of network with
respect to the arithmetic sum target function is

Proof: For any code that computes , let , ,
denote the message vectors generated by sources

, , , respectively, and let , be the vectors
carried by edges and , respectively.

Consider any positive integers , such that is even and

(28)

Then we have

(29)

We will describe a network code that computes in the
network . Define vectors , by

if

if

if

if .

The first components of can take on the values 0, 1,
2, and the last components can take on the values 0, 1,
so there are a total of possible values for , and
similarly for . From (29), there exists a mapping that assigns
unique values to for each different possible value of ,
and similarly for and . This induces a code for that
computes as summarized below.

The source sends its full message vector to
each of the two nodes it is connected to. Source (respectively,

) computes the vector (respectively,), then computes
the vector (respectively,), and finally sends (respec-
tively,) on its out-edge. The receiver determines and

from and , respectively, and then computes ,
whose -th component is , i.e., the arithmetic
sum target function . The above code achieves a computing
rate of . From [28], it follows that

(30)

We now prove a matching upper bound on the computing
capacity . Consider any code that computes
the arithmetic sum target function in network . For any

, let

That is, each element of is a possible pair of input edge-
vectors to the receiver when the function value equals .

Let denote the number of components of that are either 0
or 3. Without loss of generality, suppose the first components
of belong to and define by

if
if .

Let

and notice that

(31)

If , then:
(i) implies ;

(ii) implies ;

(iii) implies or (1,0).

Thus, the elements of consist of -bit vector pairs
whose first components are fixed and equal (i.e., both are 0
when and both are 1 when), and whose remaining

components can each be chosen from two possibilities
(i.e., either (0, 1) or (1, 0), when). This observation
implies that

(32)

Notice that if only changes, then the sum
changes, and so must change (since is not a function of

) in order for the receiver to compute the target function.
Thus, if changes and does not change, then must
still change, regardless of whether changes or not. More
generally, if the pair , changes, then the pair ,
must change. Thus

(33)

and therefore

(34)

APPUSWAMY et al.: NETWORK CODING FOR COMPUTING: CUT-SET BOUNDS 1025

We have the following inequalities:

(35)

(36)

where (35) follows since the ’s must be disjoint in order for
the receiver to compute the target function. Taking logarithms
of both sides of (36), gives

which holds for all and , and therefore

(37)

Combining (30) and (37) concludes the proof.

Corollary V.2: For the network with the arithmetic sum
target function

-

Proof: Consider the network depicted in Fig. 5 with
the arithmetic sum target function . It can be shown that the
footprint size is for any cut , and thus

-

The result then follows immediately from Theorem V.1.

Remark V.3: In light of Theorem V.1, we compare the var-
ious lower bounds on the computing capacity of the network
derived in Section III with the exact computing capacity. It can
be shown that . If is the arithmetic sum target func-
tion, then

Thus, this example demonstrates that the lower bounds obtained
in Section III are not always tight and illustrates the combinato-
rial nature of the problem.

Fig. 5. Network �� has three binary sources, � , � , and � with � � ��� ��
and the receiver � computes the arithmetic sum of the source messages.

VI. CONCLUSIONS

We examined the problem of network computing. The net-
work coding problem is a special case when the function to be
computed is the identity. We have focused on the case when a
single receiver node computes a function of the source messages
and have shown that while for the identity function the min-cut
bound is known to be tight for all networks, a much richer set of
cases arises when computing arbitrary functions, as the min-cut
bound can range from being tight to arbitrarily loose. One key
contribution of the paper is to show the theoretical breadth of the
considered topic, which we hope will lead to further research.
This work identifies target functions (most notably, the arith-
metic sum function) for which the min-cut bound is not always
tight (even up to a constant factor) and future work includes
deriving more sophisticated bounds for these scenarios. Exten-
sions to computing with multiple receiver nodes, each com-
puting a (possibly different) function of the source messages,
are of interest.

APPENDIX

Define the function

as follows. For every such that each

(38)

1026 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 2, FEBRUARY 2011

We extend for by defining

.
We now present Lemma VII.1. The proof uses Lemma VII.2,

which is presented thereafter. We define the following function
which is used in the next lemma. Let

(39)

where denotes the inverse of the binary entropy function
. Note that is an

increasing function of .

Lemma VII.1: If , then
.

Proof: For any and , a code that computes with
computing rate 1 is obtained by having each source send
its message directly to the receiver on the edge . Hence,

. Now suppose that has a code
that computes with computing rate and for each

, let

be the corresponding encoding function on the edge .
Then for any , we have

(40)

Each represents a set of possible message vectors of source
. The left-hand side of (40) is the maximum number of dif-

ferent possible instantiations of the information carried by the
in-edges to the receiver (i.e., possible vectors on each
edge and possible vectors on the parallel edges

). The right-hand side of (40) is the number of distinct
sum vectors that the receiver needs to discriminate, using the
information carried by its in-edges.

For each , let be such that
and choose for each . Also,

let . Then we have

(41)

Thus (41) is a necessary condition for the existence of a
code that computes in the network . Lemma VII.2 shows
that13

(42)

where the function is defined in (39). Combining (41) and
(42), any code that computes in the network with
rate must satisfy

(43)

13One can compare this lower bound to the upper bound ���� �� � ���
�� which follows from [38].

From (43), we have

(44)

The quantity is monotonic increasing from 0 to on the
interval and the right hand side of (44) goes to zero as

. Thus, the rate can be forced to be arbitrarily close
to 1 by making sufficiently large, i.e., .
In summary,

Lemma VII.2: Let , , be positive integers such that
. For each , let be such

that and let . Then

Proof: The result follows from Lemmas VII.4 and VII.7.

The remainder of this Appendix is devoted to the proofs of
lemmas used in the proof of Lemma VII.2. Before we pro-
ceed, we need to define some more notation. For every

, define the map

by

if
otherwise.

(45)

That is, the map subtracts one from the -th component of
the input vector (as long as the result is nonnegative) and leaves
all the other components the same. For every ,
define a map

by

if
otherwise

(46)

for every and . Define

by

(47)

Note that

(48)

APPUSWAMY et al.: NETWORK CODING FOR COMPUTING: CUT-SET BOUNDS 1027

A set is said to be invariant under the map if the set is
unchanged when is applied to it, in which case from (46)
and (47) we would have that for each ,

(49)

Lemma VII.3: For any and all integers and
such that , the set is

invariant under the map .
Proof: For any , we have

(50)

The proof of the lemma is by induction on . For the base case
, the proof is clear since from

(50). Now suppose the lemma is true for all (where)
and let and let . Since

from (50), the lemma is true when
. In the following arguments, we take . From

the induction hypothesis, is invariant under the map , i.e.,

(51)

Consider any vector . From (49), we need to show
that . We have the following cases:

(52)

(53)

(54)

(55)

(56)

(57)

Thus, the lemma is true for and the induction argument is
complete.

Let be such that for

each . Let and extend the definition of in

(47) to products by

is said to be invariant under if

It can be verifed that is invariant under iff each is
invariant under . For each , let

and from (48) note that

(58)

Let

and recall the definition of the function in (38).

Lemma VII.4:

Proof: We begin by showing that

(59)

For every , let

and note that

(60)

(61)

where the two unions are in fact disjoint unions. We show that
for every

(62)

which by (60) and (61) implies (59).
If , then (62) is trivial. Now consider any

such that and let

Then we have

(63)

Since , there exists
such that

(64)

1028 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 2, FEBRUARY 2011

Then from the definition of the map in (46), there are of
the ’s from amongst such that

and . Let
be the index set for these vectors and let

for each . Then for each , we have

Let

(65)
From (64) and (65), for every we have

and thus

(66)

Hence, we have

and then from (60) and (61), it follows that

For any and any , we know that
. Thus, the same arguments as above can be

repeated to show that

...

For any , , we say that if for every
.

Lemma VII.5: Let . If
and , then .

Proof: Since , it can be obtained by iteratively sub-
tracting 1 from the components of , i.e., there exist and

such that

Consider any . We show that
, which implies by induction that .

If , then and we are done. Suppose that
. Since , there exists for every

such that

and for some . From Lemma
VII.3, is invariant under and thus from (49),

and

is an element of .

The lemma below is presented in [3] without proof, as the
proof is straightforward.

Lemma VII.6: For all positive integers , , , and

(67)

For any , let denote the Hamming weight of
, i.e., the number of nonzero components of . The next lemma

uses the function defined in (39).

Lemma VII.7:

Proof: Let . The number of distinct elements
in with Hamming weight at most equals

For each , from (58) and hence
there exists such that . Let

It follows that for every
, and

(68)

The number of vectors in such that

equals , and from Lemma VII.5, each such vector is

also in . Therefore

APPUSWAMY et al.: NETWORK CODING FOR COMPUTING: CUT-SET BOUNDS 1029

Since , the result follows.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their
comments which have greatly improved the presentation of this
paper and would also like to thank Prof. Jacques Verstraete at
UC San Diego for his help with the proof of Lemma VII.2.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network infor-
mation flow,” IEEE Trans. Inf. Theory, vol. 46, no. 7, pp. 1204–1216,
Jul. 2000.

[2] R. Appuswamy, M. Franceschetti, N. Karamchandani, and K. Zeger,
“Network computing capacity for the reverse butterfly network,” in
Proc. IEEE Int. Symp. Information Theory, 2009, pp. 259–262.

[3] O. Ayaso, D. Shah, and M. Dahleh, “Lower bounds on information rates
for distributed computation via noisy channels,” in Proc. 45th Allerton
Conf. Computation, Communication and Control, 2007.

[4] O. Ayaso, D. Shah, and M. Dahleh, “Counting bits for distributed func-
tion computation,” in Proc. IEEE Int. Symp. Information Theory, 2008,
pp. 652–656.

[5] F. Benezit, A. G. Dimakis, P. Thiran, and M. Vetterli, “Gossip along the
way: Order-optimal consensus through randomized path averaging,” in
Proc. 45th Allerton Conf. Computation, Communication and Control,
2007.

[6] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2508–2530,
Jun. 2006.

[7] J. Cannons, R. Dougherty, C. Freiling, and K. Zeger, “Network routing
capacity,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 777–788, Mar.
2006.

[8] P. Cuff, H. Su, and A. E. Gamal, “Cascade multiterminal source
coding,” in Proc. IEEE Int. Symp. Information Theory, 2009, pp.
1199–1203.

[9] A. G. Dimakis, A. D. Sarwate, and M. J. Wainwright, “Geographic
gossip: Efficient aggregation for sensor networks,” in Proc. 5th Int.
Conf. Information Processing in Sensor Networks, 2006, pp. 69–76.

[10] V. Doshi, D. Shah, and M. Médard, “Source coding with distortion
through graph coloring,” in Proc. IEEE Int. Symp. Information Theory,
2007, pp. 1501–1505.

[11] V. Doshi, D. Shah, M. Médard, and S. Jaggi, “Graph coloring and con-
ditional graph entropy,” in Proc. 40th Asilomar Conf. Signals, Systems
and Computers, 2006, pp. 2137–2141.

[12] V. Doshi, D. Shah, M. Médard, and S. Jaggi, “Distributed functional
compression through graph coloring,” in Proc. Data Compression
Conf., 2007, pp. 93–102.

[13] R. Dougherty, C. Freiling, and K. Zeger, “Unachievability of network
coding capacity,” IEEE Trans. Inf. Theory & IEEE/ACM Trans. Netw.
(Joint Issue), vol. 52, no. 6, pp. 2365–2372, Jun. 2006.

[14] C. Dutta, Y. Kanoria, D. Manjunath, and J. Radhakrishnan, “A
tight lower bound for parity in noisy communication networks,” in
Proc. 19th Annu. ACM-SIAM Symp. Discrete Algorithms, 2008, pp.
1056–1065.

[15] H. Feng, M. Effros, and S. Savari, “Functional source coding for net-
works with receiver side information,” in Proc. 42nd Allerton Conf.
Computation, Communication and Control, 2004, pp. 1419–1427.

[16] R. G. Gallager, “Finding parity in a simple broadcast network,” IEEE
Trans. Inf. Theory, vol. 34, no. , pp. 176–180, Mar. 1988.

[17] A. El Gamal, “Reliable communication of highly distributed informa-
tion,” in Open Prob. in Commun. and Comput., T. M. Cover and B.
Gopinath, Eds. New York: Springer-Verlag, 1987, pp. 60–62.

[18] A. Giridhar and P. R. Kumar, “Computing and communicating func-
tions over sensor networks,” IEEE J. Select. Areas Commun., vol. 23,
no. 4, pp. 755–764, Apr. 2005.

[19] N. Goyal, G. Kindler, and M. Saks, “Lower bounds for the noisy broad-
cast problem,” SIAM J. Comput., vol. 37, no. 6, pp. 1806–1841, Mar.
2008.

[20] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE
Trans. Inf. Theory, vol. 46, no. 3, pp. 388–404, Mar. 2000.

[21] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Num-
bers, 5th ed. Oxford, U.K.: Oxford University Press, 1979.

[22] N. J. A. Harvey, R. Kleinberg, and A. Rasala Lehman, “On the ca-
pacity of information networks,” IEEE Trans. Inf. Theory & IEEE/ACM
Trans. Netw. (Joint Issue), vol. 52, no. 6, pp. 2345–2364, Jun. 2006.

[23] N. J. A. Harvey, R. D. Kleinberg, and A. Rasala Lehman, “Comparing
network coding with multicommodity flow for the k-pairs communica-
tion problem,” M.I.T. LCS, Tech. Rep. 964, 2004.

[24] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” J. Amer. Statist. Assoc., vol. 58, no. 301, pp. 13–30, Mar.
1963.

[25] K. Jain, M. Mahdian, and M. R. Salavatipour, “Packing steiner trees,”
in Proc. 14th Ann. ACM-SIAM Symp. Discrete Algorithms, 2003, pp.
266–274.

[26] N. Karamchandani, R. Appuswamy, and M. Franceschetti, “Dis-
tributed computation of symmetric functions with binary inputs,” in
Proc. IEEE Information Theory Workshop, 2009, pp. 76–80.

[27] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of
aggregate information,” in Proc. 44th Ann. IEEE Symp. Foundations of
Computer Science, 2003, pp. 482–491.

[28] J. Körner and K. Marton, “How to encode the modulo-two sum of bi-
nary sources,” IEEE Trans. Inf. Theory, vol. IT-25, pp. 29–221, Mar.
1979.

[29] H. Kowshik and P. R. Kumar, “Zero-error function computation in
sensor networks,” in Proc. IEEE Conf. Decision and Control, 2009,
pp. 3787–3792.

[30] E. Kushilevitz and N. Nisan, Communication Complexity. Cam-
bridge, U.K.: Cambridge University Press, 1997.

[31] M. Langberg and A. Ramamoorthy, “Communicating the sum of
sources in a 3-sources/3-terminals network,” in Proc. IEEE Int. Symp.
Information Theory, 2009, pp. 2121–2125.

[32] A. Rasala Lehman and E. Lehman, “Complexity classification of
network information flow problems,” in Proc. 15th Annu. ACM-SIAM
Symp. Discrete Algorithms, 2003, pp. 142–150.

[33] T. Leighton and S. Rao, “Multicommodity max-flow min-cut theorems
and their use in designing approximation algorithms,” J. ACM, vol. 46,
no. 6, pp. 787–832, Nov. 1999.

[34] N. Ma and P. Ishwar, “Two-terminal distributed source coding with al-
ternating messages for function computation,” in Proc. IEEE Int. Symp.
Information Theory, 2008, pp. 51–55.

[35] N. Ma, P. Ishwar, and P. Gupta, “Information-theoretic bounds for mul-
tiround function computation in collocated networks,” in Proc. IEEE
Int. Symp. Information Theory, 2009, pp. 2306–2310.

[36] D. Mosk-Aoyama and D. Shah, “Fast distributed algorithms for com-
puting separable functions,” IEEE Trans. Inf. Theory, vol. 54, no. 7, pp.
2997–3007, Jul. 2008.

[37] B. Nazer and M. Gastpar, “Computing over multiple-access channels,”
IEEE Trans. Inf. Theory, vol. 53, no. 10, pp. 3498–3516, Oct. 2007.

[38] C. K. Ngai and R. W. Yeung, “Network coding gain of combination
networks,” in Proc. IEEE Information Theory Workshop, 2004, pp.
283–287.

[39] A. Orlitsky and J. R. Roche, “Coding for computing,” IEEE Trans. Inf.
Theory, vol. 47, no. 3, pp. 903–917, Mar. 2001.

[40] B. K. Rai and B. K. Dey, “Feasible alphabets for communicating the
sum of sources over a network,” in Proc. IEEE Int. Symp. Information
Theory, 2009, pp. 1353–1357.

[41] B. K. Rai, B. K. Dey, and S. Shenvi, “Some bounds on the capacity of
communicating the sum of sources,” in Proc. ITW 2010, Cairo, Egypt,
2010.

[42] A. Ramamoorthy, “Communicating the sum of sources over a net-
work,” in Proc. IEEE Int. Symp. Information Theory, 2008, pp.
1646–1650.

[43] S. Subramanian, P. Gupta, and S. Shakkottai, “Scaling bounds for func-
tion computation over large networks,” in Proc. IEEE Int. Symp. Infor-
mation Theory, 2007, pp. 136–140.

[44] V. V. Vazirani, Approximation Algorithms, 1st ed. New York:
Springer, 2004.

[45] D. B. West, Introduction to Graph Theory. Upper Saddle River, NJ:
Prentice-Hall, 2001.

[46] H. Witsenhausen, “The zero-error side information problem and chro-
matic numbers,” IEEE Trans. Inf. Theory, vol. IT-22, pp. 592–593, Sep.
1976.

[47] H. Yamamoto, “Wyner—Ziv theory for a general function of the corre-
lated sources,” IEEE Trans. Inf. Theory, vol. IT-28, pp. 803–807, Sep.
1982.

1030 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 2, FEBRUARY 2011

[48] A. C. Yao, “Some complexity questions related to distributive com-
puting,” in Proc. 11th Annu. ACM Symp. Theory of Computing, 1979,
pp. 209–213.

[49] R. W. Yeung, A First Course in Information Theory. : Springer, 2002.
[50] L. Ying, R. Srikant, and G. E. Dullerud, “Distributed symmetric func-

tion computation in noisy wireless sensor networks,” IEEE Trans. Inf.
Theory, vol. 53, no. 12, pp. 4826–4833, Dec. 2007.

Rathinakumar Appuswamy (S’05) received the B.Tech. degree from Anna
University, Chennai, India, and the M.Tech. degree from the Indian Institute of
Technology, Kanpur, India, both in electrical engineering in 2004, and the M.A.
degree in mathematics from the University of California, San Diego, in 2008.

He is currently a doctoral student at the University of California, San Diego,
where he is a member of the Information and Coding Laboratory, as well as
the Advanced Network Sciences Group. His research interests include network
coding, communication for computing, and network information theory.

Massimo Franceschetti (M’98) received the Laurea degree (magna cum laude)
in computer engineering from the University of Naples, Naples, Italy, in 1997,
and the M.S. and Ph.D. degrees in electrical engineering from the California
Institute of Technology, Pasadena, CA, in 1999, and 2003, respectively.

He is an Associate Professor in the Department of Electrical and Computer
Engineering, University of California at San Diego (UCSD). Before joining
UCSD, he was a postdoctoral scholar at the University of California at Berkeley
for two years. He has held visiting positions at the Vrije Universiteit Amsterdam,
the Ecole Polytechnique Federale de Lausanne, and the University of Trento. His
research interests are in communication systems theory and include random net-
works, wave propagation in random media, wireless communication, and con-
trol over networks.

Dr. Franceschetti is an Associate Editor for Communication Networks of
the IEEE TRANSACTIONS ON INFORMATION THEORY (2009–2012) and has
served as Guest Editor for two issues of the IEEE JOURNAL ON SELECTED

AREAS IN COMMUNICATION. He was awarded the C. H. Wilts Prize in 2003 for

best doctoral thesis in electrical engineering at Caltech; the S.A. Schelkunoff
Award in 2005 for best paper in the IEEE TRANSACTIONS ON ANTENNAS AND

PROPAGATION; a National Science Foundation (NSF) CAREER award in 2006,
an ONR Young Investigator Award in 2007; and the IEEE Communications
Society Best Tutorial Paper Award in 2010.

Nikhil Karamchandani (S’05) received the B.Tech. degree in electrical engi-
neering from the Indian Institute of Technology, Bombay, in 2005 and the M.S.
degree in electrical engineering in 2007 from the University of California at San
Diego (UCSD), where he is currently pursuing the Ph.D. degree in the Depart-
ment of Electrical and Computer Engineering.

His research interests are in communication theory and include network
coding, information theory, and random networks.

Mr. Karamchandani received the California Institute for Telecommunications
and Information Technology (CalIT2) Fellowship in 2005.

Kenneth Zeger (S’85–M’90–SM’95–F’00) was born in Boston, MA, in 1963.
He received the B.S. and M.S. degrees in electrical engineering and computer
science from the Massachusetts Institute of Technology, Cambridge, in 1984,
and both the M.A. degree in mathematics in 1989 and the Ph.D. degree in elec-
trical engineering in 1990 from the University of California at Santa Barbara.

He was an Assistant Professor of Electrical Engineering at the University of
Hawaii from 1990 to 1992. He was with the Department of Electrical and Com-
puter Engineering and the Coordinated Science Laboratory, both at the Univer-
sity of Illinois at Urbana-Champaign, first as an Assistant Professor (1992 to
1995) and then as an Associate Professor (1995 to 1996). He has been with the
Department of Electrical and Computer Engineering, University of California at
San Diego, since 1996, as an Associate Professor (1996 to 1998) and currently
as a Professor (since 1998).

Dr. Zeger received a National Science Foundation (NSF) Presidential Young
Investigator Award in 1991. He served as Associate Editor At-Large for the
IEEE TRANSACTIONS ON INFORMATION THEORY during 1995–1998, and as a
member of the Board of Governors of the IEEE Information Theory Society
during 1998–2000, 2005–2007, and 2008–2010.

