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Combining the results in Lemmas 1.1, 1.2, and Theorems 4.3, 5.7,
and 6.4, we have the following.

Theorem 6.5:There exists an optimal(v; 4; 1)-OOC for all posi-
tive integersv � 6 (mod12) or v � 24 (mod48). There exists also
an optimal(12v; 4; 1)-OOC exists for any positive integerv whose
prime factors are all congruent to1 modulo4.
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A Table of Upper Bounds for Binary Codes

Erik Agrell, Member, IEEE, Alexander Vardy, Fellow, IEEE, and
Kenneth Zeger, Fellow, IEEE

Abstract—Let ( ) denote the maximum possible number of
codewords in an ( ) binary code. We establish four new bounds
on ( ), namely, (21 4) 43 689, (22 4) 87 378,
(22 6) 6941, and (23 4) 173 491. Furthermore, using

recent upper bounds on the size of constant-weight binary codes, we
reapply known methods to generate a table of bounds on ( ) for
all 28. This table extends the range of parameters compared with
previously known tables.

Index Terms—Binary codes, constant-weight codes, Delsarte inequalities,
linear programming, upper bounds.

I. INTRODUCTION

An (n; d) binary codeis a set of binary vectors (orcodewords) of
lengthn such that the Hamming distance between any two of them is
at leastd. An (n; d; w) constant-weightbinary code is an(n; d) bi-
nary code in which all codewords have the same numberw of ones.
The sizeof a code is its cardinality. The maximum possible sizes of
binary codes and constant-weight binary codes are denotedA(n; d)
andA(n; d; w), respectively. Known methods to boundA(n; d) often
assume that bounds onA(n; d; w) are known. Motivated by the re-
cently published [1] tables of upper bounds onA(n; d; w), we com-
pute bounds onA(n; d) for all lengthsn 28. This generates Table I,
which is the main result of this correspondence. The table gives upper
bounds for longer codes than existing tables; it also includes several
updates to bounds in these tables.

The latest published table of upper bounds onA(n; d) is [5, p. 248],
for the rangen 24 andd 10. A wider range of parameters is in-
cluded in [4, Table II]. Updates to the combination of the upper bounds
in [4] and [5] are given in boldface in Table I. Specifically, we establish
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TABLE I
A TABLE OF BOUNDS ONA(n; d). BOLDFACE DENOTESUPDATES TO[4] AND [5]

four new bounds onA(n; d) for n 24, namely,A(21; 4) 43 689,
A(22; 4) 87 378, A(22; 6) 6941, andA(23; 4) 173491.
Superscripts in Table I indicate the method used to obtain each upper
bound, where integers refer to theorem numbers in this correspondence
while S refers to bounds for specific parameters (discussed in the last
paragraph of the next section). The best known lower bounds are in-
cluded for completeness; these are taken from [9].

Online versions of the tables of bounds onA(n; d) andA(n; d; w)
are available at [2]. We welcome reports of any updates, which will be
recorded at [2] upon verification.

II. A T ABLE OF BOUNDS ONA(n; d)

We start with a brief review of known upper bounds onA(n; d) that
are referenced in Table I. The following bounds are due to Plotkin [12].

Theorem 1:

A(n; d) 2A(n� 1; d)

A(n; d) 2
d

2d� n
; if n < 2d

A(n; d) 2n; if n = 2d:

Johnson [10, p. 532] showed that the sphere-packing bound can be im-
proved as follows.

Theorem 2: For every positive integer�

A(n; 2�) 2n�1
n� 1

0
+ � � �+

n� 1

� � 1

+
( n�1

�
)� ( 2��1

��1
)A(n� 1; 2�; 2� � 1)

b( n�1
�

)c

�1

:

The best known bounds onA(n; d; w) are tabulated in [1], [2]. One
useful result of Theorem 2 isA(24; 4) 344308. This was known
to Johnson [8, Table I] in 1971, but has been overlooked in later tables
[4], [5].

The distance distributionof a binary codeC is defined as the se-
quence

Ai = jf(ccc1; ccc2) 2 C � C: d(ccc1; ccc2) = igj=jCj

for i = 0; 1; . . . ; n, whered(�; �) is the Hamming distance. It is
known that

A(n; d) = A(n+ 1; d+ 1)

if d is odd. Furthermore, for any(n; d) binary code with evend, there
exists another(n; d) binary code with the same number of codewords,
in which all codewords have even weight. Hence, the search for
A(n; d) can be limited to those codes for whichd is even andAi = 0
for all odd i. The linear programming bound was introduced by
Delsarte [6], who showed that the distance distribution of any code
satisfies

n

i=0

AiPk(i) 0

for k = 0; 1; . . . ; n, wherePk(x) is theKrawtchouk polynomialof
degreek, given by

Pk(x) =

k

j=0

(�1)j
x

j

n� x

k � j
:

As discussed above, it would suffice to consider only even values
of d, while assuming thatAi = 0 except for A0 and Ad,
Ad+2; . . . ; A2bn=2c. This leads to the following theorem.

Theorem 3: For every positive even integerd

A(n; d) 1 + max(Ad +Ad+2 + � � �+ A2bn=2c)

subject to the constraints

0 Ai A(n; d; i); i = d; d+ 2; . . . ; 2bn=2c

bn=2c

j=d=2

A2jPk(2j) �
n

k
; k = 1; 2; . . . ; bn=2c: (1)
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In some cases, the right-hand side of (1) can be slightly increased,
as in the following theorem [3, Theorems 5, 8].

Theorem 4: The distance distribution of an(n; d) binary code of
odd sizeM satisfies

bn=2c

j=d=2

A2jPk(2j)
1�M

M

n

k
; k = 1; 2; . . . ; bn=2c

while if M � 2(mod 4), then for at least onel 2 f0; . . . ; ng

bn=2c

j=d=2

A2jPk(2j)
(2�M) n

k
+2Pk(l)

M
; k=1; . . . ; bn=2c:

Finally, some bounds hold only for specific values ofn and d.
The following bounds, which do not follow from Theorems 1–4,
are included in Table I.A(13; 6) 32 was proved by linear pro-
gramming in [10, pp. 538–540], using constraints specifically derived
for these parameters. In a similar manner, van Pul [13, pp. 32–39]
provedA(18; 8) 72, A(21; 10) 48, andA(22; 10) 88,
while Honkala [7, pp. 25–27] obtainedA(25; 12) 56 and
A(26; 12) 98. The boundsA(17; 6) 340, A(21; 6) 4096,
A(17; 8) 37, andA(21; 8) 512 have been derived in [3], appar-
ently by linear programming, although the specific inequalities used in
the optimization are not disclosed in [3]. The boundsA(11; 4) 72
andA(12; 4) 144 have been established in [11] with the help of
a computer-assisted search method (thereby proving a long-standing
conjecture).
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Construction of Fast Recovery Codes Using A New Optimal
Importance Sampling Method

Michael Yung Chung Wei and Lei Wei, Senior Member, IEEE

Abstract—In this correspondence, we introduce the problem of con-
structing good fast recovery convolutional codes. When the constraint
lengths of the candidate codes are long (say more than12), it is too
computationally complex to perform the code search task. Fortunately,
we can transform the code construction problem to a problem related
to a transient Markov system. We then develop an optimal importance
sampling (IS) method to fulfill the tasks. In this correspondence, we
also prove several propositions for optimal IS. For instance, we show
analytically that the optimal IS method is unique. We prove that the
optimal IS method must converge to the standard Monte Carlo (MC)
simulation method when the sample path length approaches infinity.
This finding shows that it is not the size of the state space of the Markov
system, but the sample path length, that limits the efficiency of the IS
method. Based on insights from the optimal IS method, a suboptimal
IS method is then proposed to search for long fast recovery codes. The
suboptimal method can achieve a substantial speedup gain. After that,
several numerical results are presented to study the efficiency of the IS
methods and to justify the code search procedures. Finally, we give the
code search results and the application of these codes.

Index Terms—Convolutional codes, fast simulation, importance sam-
pling (IS), -algorithm (MA), Markov systems, sequential decoding.

I. INTRODUCTION

Over the last 30 years, the famous Viterbi algorithm (VA) has been
widely applied in digital communications [1], [2]. The complexity of
the VA (in terms of the number of states) grows exponentially with the
constraint length of the code. For codes with large constraint lengths,
sequential algorithms such as the Fano algorithm [3], [4] and Stack
algorithm [5] are often used, since they can achieve a better balance
between the error performance and the decoding complexity at a high
bit energy-to-noise ratio(Eb=No).

Many other reduced complexity VAs have been proposed and studied
[6], but most of these are only successful for near-optimal detection
on intersymbol interference (ISI) channels or multiuser interference
channels. TheM -algorithm (MA) has been well studied by Anderson
et al. [6], [7]. When the MA is applied to decode convolutional codes,
its error performance is often much worse than that of theM -state VA
using goodM -state convolutional codes, especially when theEb=No is
small. This poor performance is due to error propagation caused by the
correct path lost event. The performance of the MA can be improved
either by using error control codes with fast recovery capability (for
example, systematic feed forward (SFF) codes [8]) or by modifying
the transmission structure to overcome error propagation (for example,
short block packet transmission [9] and [10]).
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