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Abstract—Let ( ) denote the maximum possible
number of codewords in an ( ) constant-weight bi-
nary code. We improve upon the best known upper bounds on
( ) in numerous instances for 24 and 12,

which is the parameter range of existing tables. Most improve-
ments occur for = 8 10 where we reduce the upper bounds in
more than half of the unresolved cases. We also extend the existing
tables up to 28 and 14.

To obtain these results, we develop new techniques and intro-
duce new classes of codes. We derive a number of general bounds
on ( ) by means of mapping constant-weight codes into
Euclidean space. This approach produces, among other results,
a bound on ( ) that is tighter than the Johnson bound.
A similar improvement over the best known bounds for doubly-
constant-weight codes, studied by Johnson and Levenshtein, is ob-
tained in the same way. Furthermore, we introduce the concept
of doubly-bounded-weight codes, which may be thought of as a
generalization of the doubly-constant-weight codes. Subsequently,
a class of Euclidean-space codes, called zonal codes, is introduced,
and a bound on the size of such codes is established. This is used
to derive bounds for doubly-bounded-weight codes, which are in
turn used to derive bounds on ( ). We also develop a uni-
versal method to establish constraints that augment the Delsarte
inequalities for constant-weight codes, used in the linear program-
ming bound.

In addition, we present a detailed survey of known upper bounds
for constant-weight codes, and sharpen these bounds in several
cases. All these bounds, along with all known dependencies among
them, are then combined in a coherent framework that is amenable
to analysis by computer. This improves the bounds on ( )
even further for a large number of instances of , , and .

Index Terms—Constant-weight codes, Delsarte inequalities,
doubly-bounded-weight codes, doubly-constant-weight codes,
error-correcting codes, linear programming, spherical codes,
zonal codes
.

I. INTRODUCTION

A N constant-weight binary code is a set of bi-
nary vectors of length, such that each vector contains

ones and zeros, and any two vectors differ in at least
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positions. Given the three parameters: length, weight , and
distance , what is the largest possible size of an

constant-weight binary code? This question has been
studied for almost four decades, and remains one of the most
basic questions in coding theory.

Although the general answer is not known, various upper
and lower bounds on have been developed. Lower
bounds are typically obtained by means of explicit code
constructions, while upper bounds involve analytic methods,
ranging from linear programming to geometry.

The first systematic tables of bounds on ap-
peared in 1977 in the book of MacWilliams and Sloane [42, pp.
684–691], for and . An updated version of these
tables, along with a more complete treatment of the underlying
theory, was published [8] in 1978. Another update appeared in
Honkala’s Licentiate thesis [34, Sec. 6], together with a new
table of upper bounds for and . Since then, there
has been very little progress on the upper bounds. In contrast,
lower bounds on were improved upon many times.
The lower bounds of [8] were revised in 1980 by Graham and
Sloane [31]. Then in 1990, following a large number of new
explicit code constructions for certain parameters, came the
encyclopedic work of Brouwer, Shearer, Sloane, and Smith
[17], where the best known lower bounds on for

and are collected. Upper bounds are given in
[17] only for those parameters where these bounds are known
to coincide with the lower bounds.

This work is concerned with the problem of determining
upper bounds on the size of constant-weight codes. Our contri-
butions to this problem are three-fold, as described in the next
three paragraphs.

First, we improve upon the existing upper bounds on
in many instances. For example, out of the 23

unresolved cases for in [17], [34], fourteen upper bounds
are improved upon in this paper. For , we update 10
out of the 18 unresolved cases. As a result, we establish seven
new exact values of , and rederive by analytical
methods exact values of that were previously found
by exhaustive computer search. Furthermore, we extend the
existing tables of upper bounds on from
and to and , so as to match the tables
of lower bounds in [17]. In fact, our intent in the present paper
is to provide a counterpart to [17], with respect to the upper
bounds on .

Second, in addition to the specific bounds on
mentioned in the foregoing paragraph, we develop a number
of new general approaches to the problem. Some of these
are briefly described below. It is well known, since the work
of Johnson [35] and Levenshtein [39], that certain bounds
on can be derived using doubly-constant-weight
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codes, which constitute a special restricted subclass of con-
stant-weight codes. In this work, we introduce the concept of
doubly-bounded-weight codes. These codes are less restricted
than doubly-constant-weight codes, yet more restricted than
general constant-weight codes. We derive bounds on the size of
doubly-bounded-weight codes, which turn out to be extremely
useful in developing upper bounds on . Another
useful approach, developed in Section III of this paper, is as
follows. Map the three types of constant-weight codes into
Euclidean space. It is shown in Section III that, under the
appropriate mapping, this results in three different kinds of
spherical codes. Consequently, one can use upper bounds for
spherical codes (already known bounds, as well as new bounds
for zonal codes derived in Appendix B) to establish bounds
on constant-weight codes. Surprisingly, this simple idea often
leads to powerful upper bounds on (cf. Examples
2–4). Finally, as in most previous work on the subject, we
make use of linear programming, based on the Delsarte [24]
inequalities for constant-weight codes. It is known that the
distance distribution of constant-weight codes is subject to
more constraints than can be obtained from the Delsarte
inequalities, but determining these extra constraints has in most
cases involved a different (nontrivial) manipulation for each
distinct set of parameters . In contrast, in this work,
we develop a universal method to find such constraints (cf.
Proposition 17).

Our third contribution is the integration of all the known
(to us) bounds on constant-weight codes—as well as related
methods and techniques—into a coherent framework that is
amenable to analysis by computer. Many existing bounds on

are restated herein in a different, substantially
simplified, way. Other known bounds whose application was
previously limited to specific sets of parameters are
given here in their most general form. We listall methods
that we are aware of to obtain upper bounds on .
The methods are of two types: dependent and stand-alone.
Dependent bounds are functions of other bounds, whereas
stand-alone bounds are not. Most of the known bounds are
dependent, which makes their evaluation, and the determination
of which bound is best for a given set of parameters, a fairly
complex process. These dependencies are outlined in Fig.
1, where each arrowhead represents one bound, as given by
a numbered theorem in this paper. (We have omitted the
stand-alone bounds in Fig. 1.) Thus several steps may be
necessary to prove a tight bound on for specific

, , and . The organization of all these methods into a
streamlined framework has the advantage that the paths in Fig.
1 can be followed iteratively until a steady state is reached.
Later in this paper, we give a series of examples that will
illustrate one such route in Fig. 1.

Since the early work of Johnson [35] and Freiman [30],
bounds on constant-weight codes have been employed to derive
bounds on unrestricted binary codes. An binary code
(unrestricted) is a set of binary vectors of lengthsuch that any
two of them differ in at least positions; the maximum number
of codewords in any such code is usually denoted . An
important relation between and is due to
Elias (see [10, pp. 451, 456]) and Bassalygo [6]. This elegant

Fig. 1. The interdependence between bounds on the three types of binary
constant-weight codes:A stands for general constant-weight codes,T for
doubly-bounded-weight codes, andT for doubly-constant-weight codes.
Numbers refer to theorems in this paper. For example, the arrowhead labeled 20
represents a bound onA(n; d; w), derived in Theorem 20, in terms of bounds
on doubly-constant-weight codes and bounds on doubly-bounded-weight
codes.

Bassalygo–Elias inequality

(1)

was improved upon by Levenshtein [39, eq. (32)], and later by
van Pul (see [1]), who pointed out that the right-hand side of
(1) can be reduced by a factor of two. The best known asymp-
totic upper bound on , given by McEliece, Rodemich,
Rumsey, and Welch [43] in 1977, consists of this inequality
in conjunction with a linear programming bound on the size
of constant-weight codes. Thus it should not be surprising that
better bounds on lead to new bounds on .
Our contributions in the area of unrestricted codes, based on the
results of this paper, will be presented elsewhere.

While unrestricted codes have obvious applications in
error correction, constant-weight codes have been historically
regarded as a purely theoretical construction. Today, however,
they are generally recognized as an important class of codes
in their own right. They have been recently introduced in
a number of engineering applications, including code-division
multiple-access (CDMA) systems for optical fibers [19],
protocol design for the collision channel without feedback [1],
automatic-repeat-request error-control systems [54], and par-
allel asynchronous communication [12]. In addition, they often
serve as building blocks in the design of spherical codes [28]
and DC-free constrained codes [29], [52]. Further applications
have been reported in frequency-hopping spread-spectrum
systems, radar and sonar signal design, mobile radio, and
synchronization [9], [11], [19]. For general background on
constant-weight codes, and the related class of spherical codes,
we refer the reader to [22], [28], and [42].
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The rest of this paper is organized as follows. In the next
section, we define concepts and terminology that will be used
throughout this work. A simple mapping from binary codes to
spherical codes is introduced in Section III; bounds derived di-
rectly from this mapping improve upon two well-known bounds
by Johnson. Sections IV–VI list all useful upper bounds on con-
stant-weight codes that we are aware of, including many new
ones derived in this paper. One section is devoted to each of the
three classes: constant-weight codes, doubly-bounded-weight
codes, and doubly-constant-weight codes. Finally, tables of the
best known upper bounds on are presented in Sec-
tion VII, for all .

II. PRELIMINARIES

In this section, we introduce concepts and notation that will
be used throughout the paper. We distinguish between codes in
Hamming space (that is, binary codes) and their counterparts in
Euclidean space—the spherical codes.

A. Hamming Space

Four nested levels of binary codes will be discussed. To begin
with, any subset of is called anunrestricted
binary code, in the sense that no weight constraint is imposed.
A constant-weight binary codeis any subset of

(2)

where is the all-one vector and the dot product is carried out
in . A doubly-bounded-weight codeis a constant-weight code
with at most ones in the first positions and at least ones
in the last positions. (In the following, the first positions
will be called theheadand the last positions thetail.) Equiv-
alently, a doubly-bounded-weight code is a subset of

(3)

where

(4)

Finally, adoubly-constant-weight codeis any subset of

(5)

Thus a codeword of a doubly-constant-weight codeword has ex-
actly ones in its head and ones in its tail. It follows di-
rectly from the definitions in (2), (3), and (5) that doubly-con-
stant-weight codes constitute a subclass of the doubly-bounded-
weight codes, which themselves constitute a subclass of the con-
stant-weight codes, which, in turn, are a subclass of unrestricted
codes.

Unrestricted codes and constant-weight codes have been
studied extensively in the past. Doubly-constant-weight
codes were proposed in [39] and [37]. The class of
doubly-bounded-weight codes is introduced in this paper;
it turns out to be very useful in deriving bounds for the other
classes.

In the following, denotes the minimum Hamming dis-
tance within a code , namely,

(6)

where is the number of positions in which the code-
words and differ. Given a set , let

(7)

denote all subsets of whose minimum distance is at least.
We are interested in the quantities

(8)

(9)

where and , as well as

where , , and . Despite
the potential confusion of using for both (8) and (9), we
maintain this standard notation [17], [42].

B. Euclidean Space

We start by defining, in analogy to (6) and (7), the distance
and the functions in Euclidean space, as follows:

Here is the Euclidean norm, is a finite subset of , and
is an arbitrary subset of .
Two types of codes in Euclidean space will be considered.

Theunit sphereis the set

A spherical codeis a finite subset of . To characterize the
codeword separation in a spherical code, theminimum angle
or themaximum cosine is often used instead of the Euclidean
distance. The relation between these three parameters is

(10)

We will generally use as the separation parameter. The max-
imum possible cardinality of an-dimensional spherical code
with maximum cosine is

For , the best known general upper bound on
was given by Levenshtein in [40]. This bound can be improved
upon for certain specific parameters using the methods of Boy-
valenkov, Danev, and Bumova [15].

For , this function is known exactly. Specifically, it is
known that

if (11)

if (12)

(13)
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Fig. 2. A zone.

Rankin [47] was the first to establish (11), while (12) was origi-
nally stated by Davenport and Hajós [23], and proved by Aczél
and Szele [2]. Equation (13) was first stated by Erdös [26], and
proved by Sarkadi and Szele [50].

Example 1: We have (to
be continued in Example 15).

We now introduce the class of zonal codes. Azone is
a subset of a sphere bounded by two parallel hyperplanes [56,
pp. 314–315], as illustrated in Fig. 2. Given a “north pole”
vector , with , we define

where . A zone with is a
spherical cap [56, pp. 314–315]. Azonal codeis a finite subset
of a zone. The maximum cardinality of a zonal code is denoted

(14)

where the maximum is taken over all

Clearly, the right-hand side of (14) is independent of.

III. B OUNDS FROMSPHERICAL CODES

It is well known that, under a suitable mapping, the class of bi-
nary codes can be viewed as a subclass of spherical codes. This
implies that a lower bound on the size of binary codes is also
a lower bound for spherical codes. Conversely, an upper bound
on the cardinality of spherical codes serves as an upper bound
for binary codes. The former relation has been successfully ex-
ploited—see [22, pp. 26–27], [27], [28], and references therein.
One contribution of the present paper is to investigate the latter
relation, from which we obtain improved bounds in some cases.

This approach, which has been less highlighted than its con-
verse, was used in [27] to prove two well-known bounds; see

below in Section III-B. A somewhat related method was sug-
gested by Wax [55], who derived upper bounds1 on binary codes
from some sphere packings (not spherical codes) in Euclidean
space.

A. Binary Codes as Spherical Codes

We first map three of the classes of binary codes introduced
in the previous section into Euclidean space. This mapping
produces spherical codes in three different dimensions. Known
upper bounds for spherical codes are then used to generate
new upper bounds for the original binary codes. The derivation
of an analogous bound for doubly-bounded-weight codes is
deferred to Section V-B.

Let denote the mapping and from binary
Hamming space to Euclidean space. Then

(15)

(16)

(17)

(18)

where , , and is as defined in (4).
Note that if the Hamming distance between two binary vectors

and is , then the Euclidean distance between and
is .

Clearly, is a subset of the -dimensional hyper-
sphere of radius , centered at .

For constant-weight codes, any point satisfies
and , where

(19)

and

(20)

Hence is a subset of the -dimensional hy-
persphere of radius centered at .

In a similar way, one can show that is
a subset of the -dimensional hypersphere of radius

centered at

where is as defined in (4) and . This follows from
the fact that for any point , we have

and .
These observations lead to upper bounds on the size of the

corresponding binary codes, formulated in terms of the max-
imum cardinality of spherical codes.

Theorem 1:

1These bounds are not very strong, however. See Appendix A.
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where

Theorem 2:

if (21)

if (22)

where

Proof: Let be a constant-weight code with parameters
. Translating by and scaling the result by

, in accordance with (20) and (19), yields an -di-
mensional spherical code. Its maximum cosine is given by (10),
where . Using as an upper bound
for completes the proof.

Theorem 3:

if

if

where

The proofs of all three theorems are similar to each other, and
their common principle is demonstrated in the proof of The-
orem 2.

Note that the case corresponds to a spherical code
whose minimum Euclidean distance is greater than the diameter
of the sphere. Although formally for such , we
chose to treat this trivial case separately.

B. New Bounds

For , the exact values of given by (11) and
(13) can be used in conjunction with Theorems 1–3 to yield
bounds on the size of binary codes. The method is simple and
produces interesting results.

The resulting bounds, which are summarized in the following
three corollaries, can be interpreted as a common framework for
bounds by Plotkin, Johnson, and Levenshtein, as well as some
new, tighter, bounds. The bounds (23) and (25) were derived in
[27] using this method.

Corollary 4:

if (23)

if (24)

Corollary 5:

if (25)

if (26)

if (27)

where

Corollary 6:

if (28)

if (29)

if (30)

where

Corollary 4 is similar to the Plotkin bound [44]. The only dif-
ference is that in the latter, the right-hand side of (23) is trun-
cated to an even value, instead of just an integer as in Corol-
lary 4. Hence the Plotkin bound is stronger. It was derived using
an entirely different (combinatorial) technique, as will be men-
tioned in the context of Proposition 7.

For , Corollary 5 is equivalent to one of
Johnson’s bounds [35]. Johnson showed (25) for all by
the same method that is used below to prove Theorem 29. If we
let , Corollary 5 yields

(31)

which is another well-known special case [39], [42, p. 525].
Note also that (22) is covered by (25). The bound (26), which
improves on the Johnson bound for , has
not, to our knowledge, been previously published. Comparing
Corollary 5 with Levenshtein’s linear programming bound [41,
Theorem 6.25], it can be observed that (25) is equivalent to Lev-
enshtein’s bound within the applicable range of parameters, (26)
is lower, and (27) is higher. Hence, (27) need not be further con-
sidered.

The inequalities (29) and (30) in Corollary 6 appear to be new,
whereas (28) was found previously by both Levenshtein [39]
and Johnson [37]. They use this inequality for all (see
also Section V-A).

Example 2: Take . Corollary 5
gives and . This is an improvement
on the best previously known upper bound of, given in [31].
Since a lower bound of is known [17], we conclude that this
bound is in fact tight.

Example 3: Corollary 5 also gives . This
reproduces a well-known bound which was proved in [36]
through a combinatorial argument specifically devised for these
parameters. See also [42, p. 530].

Example 4: For ,
Corollary 6 yields and ,
a significant improvement upon the best previously known
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bound of , given in [8]. For , Corollary 6
reduces the best known upper bound fromto .

C. Plotkin-Type Bounds

It is somewhat surprising that Corollaries 4–6 are so sim-
ilar to the Plotkin bound and its various relatives, since these
bounds have been derived using entirely different methods. For
comparison and for future reference, we now re-establish the
Plotkin bound in its most general form following the traditional,
combinatorial, approach. From this generic form of the Plotkin
bound, many related bounds easily follow. Special cases include
the original Plotkin bound, four of Johnson’s and Levenshtein’s
bounds, as well as a new bound to be reported in Section V-A.

Given a code , let denote the proportion of code-
words that have a one in position. We have the following propo-
sition.

Proposition 7: Let . Then

(32)

provided that the denominator is positive.
Proof: We consider the average distance within the

code , defined as follows:

(33)

where . For each , count the contribution to the
sum on the right-hand side of (33) from each position. Then,
interchanging the order of summation, it is easy to see that

The proposition now follows from the fact that .

Bounds for many types of binary codes can be derived from
Proposition 7, since constraints on codewords translate into con-
straints on . For instance, using no information other
than for all , we find that the maximum of

is . Substituting for the sum in (32) es-
tablishes (23). If, in addition, are constrained to be
multiples of , the resulting bound is the classical Plotkin
bound of [44].

Bounds for constant-weight codes are obtained from Propo-
sition 7 by requiring . If this is the only
constraint in the maximization, the result is a proof of the afore-
mentioned Johnson bound (25) for all . Imposing the ad-
ditional constraint that are multiples of yields
Theorem 10.

For doubly-bounded-weight codes, we maintain the con-
straint and also require .
Again, the maximization can be carried out in either
the continuous domain or in the discrete domain

. This yields Theorem 29 in the dis-
crete case and a weaker bound in the continuous case.

Relevant constraints for doubly-constant-weight codes are
and . The

resulting bounds are similar to (28) in the continuous case
and to Theorem 29 in the discrete case. Both were proposed

independently by Levenshtein [39] and by Johnson [37].
However, neither of them produces any improvement over the
selection of bounds on doubly-constant-weight codes that is
presented in Section VI.

IV. BOUNDS ON

In this section, we summarize all important bounds on the car-
dinality of constant-weight codes that are known to us. Corol-
lary 5 gives one such bound, but many more exist.

A. Elementary Bounds

The first theorem states without proof some elementary prop-
erties of .

Theorem 8:

if is odd (34)

(35)

(36)

(37)

if (38)

Example 5: (to be con-
tinued in Example 16).

The following theorem is due to Johnson [35].

Theorem 9:

if

if

The next theorem is equivalent to another of Johnson’s
bounds [35, eq. (6)], although it may look very different.
Inspired by [39], we have formulated this theorem in a fashion
that makes the relation to Proposition 7 apparent and highlights
the symmetry between and . A proof was outlined in
Section III-C.

Theorem 10: If , then

where

(39)

(40)

(41)

The foregoing upper bound on is implicit since
the quantity depends on through its dependence
on . Specifically, Theorem 10 implies that certain values of

are ruled out because they yield a contradiction. If
an upper bound on has this property, one can de-
crease the bound byand try again.

Sometimes, when Theorem 10 holds with equality, it can be
sharpened. This was done in two cases in [17]—see Example 6
for one of them. The next theorem details when, in general, such
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improvement is possible. This general result, to the best of our
knowledge, is new.

Theorem 11:Suppose that , where is
given by (39). Then

where

(42)

(43)

(44)

(45)

and .
Proof: With and as defined in (43) and (45), we can

rewrite (39) as

(46)

Let be an constant-weight code, and assume that
contains codewords. This assumption imposes strong
constraints on the structure of. First, according to Theorem 10,
the bound in (32) must hold with equality, and we get

which implies

(47)

in view of (46). Observe that is the maximum
value of the sum on the left-hand side of (47) subject to the con-
straint . This value is attained when
for all . Subject to the additional constraint that are
multiples of , we find that equality in (47) is possible if and
only if

for (48)

for (49)

up to permutations of the same sequence . Further-
more, a necessary condition for equality in (32) is that ,
where is as defined in (33). This means thatall pairwise dis-
tances within the code are exactly, which in turn implies that
every two codewords of intersect in exactly positions.

Consider a codeword . Let and
denote the weights of the first and the last positions

of , respectively. Let

where is the support of . Then

(50)

(51)

where (50) follows from (48) and (49), while (51) follows from
the fact that every two codewords ofintersect in posi-
tions. Since , (50) and (51) can be solved for

the values of and , which means that these values
are independent of the choice of.

This proves that is actually a doubly-constant-weight code.
To find the values of and , we first use
the condition in conjunction with (46) to expressas
a function of , , , , and . Substituting this expression
into (51) leads to the solutions for and that are given by
(42) and (44), respectively.

Example 6: From Corollary 5, we get .
Furthermore, by Theorem 21. Assume that

. Then Theorem 11 yields

But from Theorems 27 and 33, which
is a contradiction. Hence , which, in fact,
holds with equality [42, p. 689].

We next describe another well-known upper bound on
. In this context, let . A -tuple is

any subset of of size . Let be an
constant-weight code. We say that a given-tuple is covered
by a codeword if it is a subset of the support of. It
is easy to see that no-tuple can be covered by two distinct
codewords , since, otherwise, . The
total number of -tuples is , and of these are covered by
each codeword of . Thus we have proved the following.

Theorem 12:Let . Then

Theorem 12 also follows by recursive application of Theorem
9. The codewords of any codethat meets the bound of The-
orem 12 with equality form a Steiner system . This
means that every-tuple is covered by exactly one codeword of

. See [42, pp. 58–64, 528] and [53, pp. 1–4, 99–100] for more
background on this topic.

If is an integer and it is known that a Steiner
system does not exist, the bound of Theorem 12 can
be improved to . The next theorem makes it pos-
sible to further improve this bound to under
a certain condition. Although two special cases of this theorem
were implicitly used in [8] (one such case is Example 7), the
general result, to our knowledge, has not been previously pub-
lished.

Theorem 13: If divides , then

Proof: Assume that , and
let be a code that attains this bound. Note that this assumption
implies, in particular, that is an integer. For all

, we have

(52)

since, otherwise, there exists a-tuple, involving position, that
is covered by two codewords. On the other hand,

(53)
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by assumption. This implies that (52) must hold with equality
for at least values of . Without loss of generality, let these
values be . This means that every-tuple that
involves any of the first positions is covered by a codeword
of . The total number of such-tuples is . Since

by assumption, this is precisely equal
to the total number of -tuples covered
by the codewords of . This, in turn, implies that none of the

-tuples that involve only the last positions is covered
by a codeword of . A vector of
weight covers all these-tuples and no others. Hence

is an constant-weight code. This contradicts
the assumption that .

Example 7: Consider the case .
Then , which is not achievable by The-
orem 21. Since divides , the condition of Theorem 13
holds, and the theorem proves that cannot equal

either. Hence , which was stated without
proof in [8] (though was proved there).

B. The Freiman–Berger–Johnson Bound

The well-known Hamming bound [33] for unrestricted
codes is obtained by centering a sphere around each codeword.
Johnson [37] developed a family of bounds for constant-weight
codes using a similar technique, and thereby generalized
a bound by Berger [7], who in turn generalized a bound by
Freiman [30].

Johnson [37] gives a range of versions of the same general
bound, which leaves the user of these bounds some freedom to
choose a suitable level of complexity. Since the original presen-
tation in [37] does not contain an explicit description on how
to evaluate these bounds, we now summarize the key equations
necessary for complete implementation.

Theorem 14:For all , we have

where

while the value of depends on the parity ofas
follows. If , then

where

if or

if and

If , then

where

Theorem 14 specifies one version of the bounds in [37], namely,
the same version that Johnson used in his experiments in that
paper. Colbourn [20] successfully evaluated another, simpler,
version. We have simplified the original notation of [37] for
brevity and ease of reading.

C. Linear Programming

Thedistance distributionof a code may be defined
as

(54)

for , where denotes the shell of Hamming
radius centered at , namely,

The shell is equivalent under translation byto a con-
stant-weight code. If is a constant-weight code, then is
equivalent under translation and permutation to a doubly-con-
stant-weight code.

The linear programming bound for constant-weight codes is
based on the properties of the distance distribution of a code

for given constants , , and . Through-
out this subsection, it is assumed that . The compo-
nent of the distance distribution is, in this case, trivially zero
for , , and whenever is odd. Thus we focus
on . The general idea is to find linear in-
equalities involving these components, for use in the linear pro-
gramming problem of Theorem 20.

Since is a doubly-constant-weight code, its size can be
upper-bounded as

(55)

Combining this result with (54) yields the following well-known
constraint [8].

Proposition 15: For all
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The following profound inequality of Delsarte [24, Sec. 4.2]
has led to the success of linear programming bounds for con-
stant-weight codes.

Proposition 16: For all

where

(56)

It is known that the distance distribution of constant-weight
codes is subject to more constraints than can be obtained
from Propositions 15 and 16. However, determining these
additional constraints has, in most cases, involved a separate
nontrivial argument for each distinct set of parameters, ,
and (as in [8, Theorem 22]). The following proposition is,
in some sense, a generalization of this type of constraints. This
proposition provides a universal method to find constraints
for pairs of distance distribution components, given bounds
on doubly-bounded-weight codes and doubly-constant-weight
codes.

Proposition 17: Let , with .
If , then

(57)

where and are any nonnegative integers such that

(58)

(59)

If , define and as any nonnegative integers
such that

(60)

(61)

where . Then

if (62)

if (63)

if (64)

Proof: The proof relies on the following lemma that re-
lates the sizes of two shells and .

Lemma 18: Let , with ; and let .
If , then

for , and elsewhere.

Proof: Let . Without loss of generality, reorder
the positions so that and have the forms

(65)

(66)

If , there is nothing to prove. Otherwise, consider
any codeword . As in (66), it must have zeros
among the first positions and ones among the last
positions. Let and denote the Hamming distance be-
tween the first positions and the last positions of two
codewords, respectively.Then .
Since , we have

This implies that has at least ones among the last
positions and at most ones in the preceding block of

positions. (If , this is impossible, and hence
must be empty.) It follows that the punctured code obtained by
extracting the last positions from is a doubly-
bounded-weight code. To bound its distance, consider any pair
of codewords , in . They satisfy ,
and hence .

Remark: Although Lemma 18 is valid for any distinct
, parameters near the lower end of this interval yield

useless bounds. In particular, it follows from the results of Sec-
tions V-A and VI-A that if , then

Hence Lemma 18 gives a weaker bound on than (55)
whenever . Thus the application of Lemma 18 can be
confined to .

We are now ready to complete the proof of Proposition 17. It
follows from (55) and Lemma 18 that

(67)

if (68)

(69)

if (70)

with , , , and as in (58)–(61). Define the sets

Then (54), in conjunction with (67) and (68), yields

(71)

where denotes the complement of a set. Similarly, we have

(72)
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Fig. 3. The inequalities (67)–(70) define the region enclosed by the thick lines.
Its convex hull (shaded) is the domain of(A ; A ). Dashed lines indicate the
well-known bound of Proposition 15.

We multiply both sides of (71) by and both sides of
(72) by . Adding the results then yields

if

where we have used some elementary set relations to establish
the first inequality. This proves (63). The bound (62) follows by
symmetry. To prove (64), we take a different linear combination
of (71) and (72), namely,

Finally, the bound (57) for follows from the above
by observing that is empty in this case.

From a geometrical viewpoint, the inequalities (67)–(70) can
be regarded as lines bounding a region in the plane. Two ex-
amples are shown in Fig. 3. The definition of the distance dis-
tribution in (54) implies that a point is formed by
averaging the points for all . Hence
the domain of is the convex hull of the domain of

. This convex hull is a polygon with either
three or four sides, depending on the values of, , ,
and . This is illustrated in Fig. 3 (top) and (bottom), respec-
tively. In the former case, the polygon is bounded by (64) and

in the latter case by (62) and (63). Note that if and
in (62) and (63), then the polygon becomes a rec-

tangle and Proposition 17 reduces to Proposition 15. In all other
cases, Proposition 17 gives a stronger constraint on the distance
distribution than Proposition 15.

Remark: It would suffice to evaluate Proposition 17 for
and such that . The lower

bound comes from the earlier remark regarding Lemma 18,
while can be assumed without loss of generality.

Example 8: Suppose that , and
consider . We have

from Examples 16, 17, 11, and 13, respectively. Then Proposi-
tion 17 yields and . This
example will be concluded in Example 10.

The following proposition gives another useful constraint on
the distance distribution of constant-weight codes derived from
bounds for doubly-bounded-weight codes.

Proposition 19: For all , we have

(73)

Proof: For any code and any code-
word , the set is a doubly-bounded-weight
code with parameters as in (73).

Having established the constraints on the distance distribu-
tion, we now state the linear programming bound itself.

Theorem 20: If , then

where the maximum is taken over all
that satisfy the constraints in Propositions 15–17 and 19.

Example 9: For , the linear program-
ming bound, using the constraints developed in Propositions 17
and 19, yields . This improves upon the best
previously known upper bound of .

Example 10: Using the constraints on and derived
in Example 8, linear programming yields the upper bound

.

D. Specific Bounds

In this subsection, bounds that hold only for specific values
of , , and are collected and discussed. The following the-
orem lists all the relevant specific bounds that we are aware of.
This theorem does not include all specific bounds that have ever
been proposed; some of them have later been reproduced or su-
perseded by general bounds.
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Theorem 21:

(74)

(75)

(76)

(77)

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(85)

(86)

(87)

(88)

(89)

(90)

(91)

(92)

(93)

(94)

(95)

(96)

We have not verified all the values in Theorem 21. In general,
it is very difficult to check specific upper bounds found by
others. (As pointed out in [17], an extreme case of this is the
celebrated result of Lam, Thiel, and Swiercz [38] that there
is no projective plane of order , which is equivalent to

. The proof of [38] is based on years
of research and thousands of hours of computer time.) Thus
Theorem 21 relies on the published literature. We now provide
references for each bound listed in Theorem 21.

The bounds (77) and (79) were obtained by Brouwer [16] and
Stinson [51], respectively. The method used was assuming the
existence of a code with a higher value of , identi-
fying properties of this hypothetical code, and arriving at a con-
tradiction. The bound (75) is given as a problem in [42, p. 531],
where it is suggested that it can be proved using a similar tech-
nique.

The bounds (74) and (78) follow from the nonexistence of
certain Steiner systems, while (86) and (96) follow from the
nonexistence of certain-designs [21], [25], [32] (see [17] and
the discussion following Theorem 12). These four bounds can
each be decreased by one using Theorems 11 or 13.

The value in (84) was derived in [13] from the nonexistence
of a certain instance of what is known as a partial linear space
[18, pp. 68–70, 435, 650].

The bounds (88) and (89) were obtained by van Pul [45, p. 38]
using linear programming with constraints specifically derived

for these parameters. In a similar manner, Honkala [34, Sec. 5]
obtained (91)–(95).

A full search algorithm by Brouwer, Shearer, Sloane, and
Smith [17] has contributed several exact values of
compiled in [17, Table III]. The cases in Theorem 21 obtained
from this source are (76), (80), (85), (87), and (90). See also Ap-
pendix A regarding the exact value of (90).

The bounds (81) and (83) have been reported as results of
linear programming [42, p. 688] and the Freiman–Berger–
Johnson bound [37], respectively. Both [42] and [37] apparently
used undisclosed constraints to obtain these bounds.

Finally, the bound (82) is from [17, Table III], where the only
justification is: “By the Bose–Connor theorem a square divisible
design does not exist.” We believe it would
be useful to provide a more elaborate argument, as follows. Let

and proceed in a manner similar to the
proof of Theorem 13. From (52), we have for all ,
which implies that

For a code that attains this bound, we must have for
all . The -tuples in this case are simply pairs, and out of all

pairs of positions, 220 are covered by the 22 code-
words, in such a way that each position is contained in exactly
20 covered pairs. It follows that the remaining 11 pairs, which
are not covered by any codeword, are disjoint. This structure is
known, in the terminology of design theory, as a group divisible
incomplete block design with parameters

but no such design exists [14].

E. Redundant Bounds

Many bounds for constant-weight codes have been proposed,
but not all of them remain competitive today. Our intent in this
work is to list all the upper bounds for constant-weight codes
known to us. Thus for completeness, we briefly mention in this
section those bounds that were evaluated in the present study
but did not contribute to our tables in Section VII.

Two standard bounds that we have so far omitted are [42,
p. 525, Theorems 1(d), 2]. As already mentioned, both are con-
tained in Corollary 5, and are often improved upon by this corol-
lary. The upper bound version of [8, Theorem 20] also does not
need to be separately considered. It can be shown that this the-
orem is weaker than Theorem 10.

Levenshtein’s bound [39, eq. (4)] relates constant-weight
codes to doubly-constant-weight codes in precisely the same
way as the Bassalygo–Elias inequality (1) relates unrestricted
codes to constant-weight codes. It yields, in conjunction with
the linear programming bound of [43], the best known upper
bound on asymptotically, as , , and tend to
infinity [4], [5], [48]. Nevertheless, neither [39, eq. (4)] nor its
strengthened version [39, eq. (5)] improve on any of the values
in our tables. Neither does [41, Theorem 6.25], which has the
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same asymptotical performance. Apparently, is not
large enough to do these bounds justice.

Known results on Steiner systems yield exact values of
in a number of cases [35, p. 207], [8, p. 90], [17,

pp. 1339, 1341]. All such values were also obtained by some
other means in our investigation.

The linear programming bound suggested by van Pul [45,
Sec. 3.3] was implemented, and we also combined his constraint
[45, p. 20] with the constraints of Section IV-C. No improve-
ments were obtained from this general approach, but including
constraints specific for each instance of has led to in-
teresting results; see Section IV-D.

V. BOUNDS ON

All the bounds for doubly-bounded-weight codes derived
here are new. Our motivation for introducing and studying
these codes is that they have strong connections to con-
stant-weight codes. Several methods for bounding the size of
constant-weight codes based on doubly-bounded-weight codes,
either directly or indirectly, via doubly-constant-weight codes,
are presented in Sections IV and VI. These relations are also
summarized in Fig. 1.

A. Elementary Bounds

As defined in Section II, a doubly-bounded-weight code
is any subset of . Thus doubly-bounded-
weight codes are a subclass of constant-weight codes obtained
by imposing an upper bound on the weight of the head or
a lower bound on the weight of the tail. Let

(97)

It follows immediately from the definition (3) that for any vector
in , the weight of the head ranges from

to , and the weight of the tail ranges, correspondingly,
from to .

Since each of the relations in the following theorem is
straightforward, we omit the proofs.

Theorem 22:

if is odd

In the following cases, simple expressions exist for the exact
value of .

Theorem 23:

if (98)

if (99)

if (100)

if (101)

if (102)

if (103)

if

(104)

Proof: The distance between two codewords of a code
in equals if and only
if their ones are in disjoint positions. The total number
of codewords with disjoint ones is upper-bounded by

. Similarly, the total number of
codewords with disjoint ones in the tails is upper-bounded
by . Thereby the upper bound versions of (98)
and (99) are proved. To prove that these bounds are attain-
able with equality, we consider two constructions. First, let

and
with . Such codes exist, according to
(37), if . The code formed by joining
each codeword in with a unique codeword in belongs to

, which proves (98). Now,
let be a code in with

Then reordering the positions so that all codewords have at most
ones in their heads (which can be done if ) com-

pletes the proof of (99).
The proofs of the remaining cases, except (104), are similar.

The distance between codewords whose ones in the heads and
zeros in the tails are in disjoint positions is , and
the distance between codewords with disjoint zeros in all posi-
tions is . The details of these proofs are
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omitted. Finally, (104) follows from the foregoing two observa-
tions, along with the fact that the distance between two code-
words cannot be greater than .

Example 11: From (102), we have
(this example is continued in Example 8).

The simple nature of the next bound may suggest that it is not
very strong. It is, however, useful in certain cases, as demon-
strated later in Example 12.

Theorem 24:

if and (105)

(106)

(107)

(108)

(109)

Proof: The bound (105) is a consequence of the fact that
. Appending

a zero or a one to all codewords of a doubly-bounded-weight
code yields (106)–(109).

Theorem 25:Let be as defined in (97). Then

Proof: Extending the head of a doubly-bounded-weight
code with bits, suitably chosen for each codeword, assures that
the weight of the head is a constant. An additional extra
bits make the weight of the tail .

Theorem 26:For all

Proof: We partition a code in
into two subcodes. Let the codewords with weight at most

in the heads form one subcode and the remaining
codewords form another. The former subcode belongs to

. In the latter subcode,
the weight in the heads ranges from to , and
in the tails from to . Extending the latter code
with bits as in the proof of Theorem 25 yields a code in

.

Theorem 27:

(110)

(111)

The latter bound holds with equality if .

Proof: The bound (110) is obvious from (3). To prove
(111), let

and consider a code . Now
is a constant-weight code with . Its

minimum distance is

(112)

To derive a lower bound on , we consider two cases. If
, then the tail of is all-zero, which implies

that heads and tails each contribute at leastto the distance.
Analogously, if , then the head of contains only
ones, and heads and tails contribute at least each to the
distance. Hence

if
if

or, equivalently,

for all . Thus .
To prove the equality part of (111), consider any constant-

weight code that attains . If we reorder the bits so
that is a codeword and then remove this
codeword, then all of the remaining code-
words have at leastzeros in the first positions. The doubly-
bounded-weight code formed by these codewords demonstrates
that

Taking , , , and in the
above expression completes the proof.

Example 12: di-
rectly by Theorem 27. If, however, Theorem 24 is used as an
intermediate step, the bound can be improved to

Theorem 28:

if

if

Proof: Consider a code
and form a new code by shortening in the th position,
where (this consists of selecting all codewords
for which the th bit is zero and thereafter deleting theth bit).
The total number of zeros in the heads of all codewords of
equals . On the other hand, the same number is lower-
bounded by . Since

for all

we have
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This proves the first inequality in Theorem 28. Similarly, the
second inequality is proved by counting in two ways the number
of ones in the tails.

The next bound is similar to a bound for doubly-constant-
weight codes, given by both Levenshtein [39] and Johnson [37,
eq. (20)]. We use the notation of [39], which shows the connec-
tion with (28).

Theorem 29: If and , then

(113)

where

and denotes the fractional part , as in (41).
Proof: The proof is based upon Proposition 7. We take

and let . Then
the following constraints hold for :

for (114)

for (115)

(116)

(117)

The maximum of subject to the constraints
(114)–(117) is

(118)

if , and

(119)

otherwise. Substituting (118) for the sum in (32) completes the
proof.

Remark: An alternative bound is obtained if (119) is substi-
tuted for the sum in (32), but this bound has already been cov-
ered by a combination of Theorems 10 and 27.

Example 13: From Example 14 in the next subsection, we
have . Suppose that equality holds.
Then Theorem 29 yields , a contradiction. Hence,

. Similarly, Theorem 29 reduces the
upper bound for from (Example 14) to .
This example continues in Examples 17 and 8.

B. Binary Doubly-Bounded-Weight Codes as Zonal Codes

In Section III-A, bounds on unrestricted binary codes, con-
stant-weight codes, and doubly-constant-weight codes were ob-
tained by mapping these codes into Euclidean space and ap-
plying known bounds for spherical codes. Now, an analogous
bound will be derived for doubly-bounded-weight codes. We
have found this bound to be particularly successful in conjunc-
tion with Proposition 17.

The new bound depends on the existence of upper bounds on
the cardinality of zonal codes. One such bound for zonal codes
will be presented in the next subsection.

Theorem 30:

if

if

where

(120)

(121)

and is as defined in (97).
Proof: Let and . Then

is a subset of the -dimensional sphere,
whose radius and center are given by (19) and (20).
Every codeword of a doubly-bounded-weight code belongs
to and, in addition, satisfies a constraint on
given in (3). To translate this constraint into a constraint in
Euclidean space, we first define a normalized “north pole”
vector in the -dimensional subspace that contains

. A vector belongs to this subspace if and
only if . Thus we take

where is given by (4) and is given by (120). Notice that
and the constant in (120) is chosen so that

. Now, from (17) and (97), it follows that any
satisfies

(122)

and (16) shows that

We create the Euclidean code

(123)
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where is given by (121). It is obvious from the normal-
ization in (123) that and for all , and
the fact that

follows from (122). This proves that, and every subset thereof,
is a zonal code. To complete the proof, the maximum cosine is
obtained from (10) with .

Example 14: It follows from Theorem 31 (as shown in Ex-
ample 15) that

Thus Theorem 30 implies that .
Similarly, Theorems 30 and 31 yield .
This example continues in Example 13.

C. A Bound on Zonal Codes

In this subsection, an upper bound on the cardinality of zonal
codes is presented. The proof is deferred to Appendix B. The
principal application of this bound is in conjunction with The-
orem 30.

Theorem 31: If , then

if (124)

if (125)

if

(126)

otherwise (127)

where

if

if

(128)

(129)

Although in (124) depends on the value of , the fore-
going theorem yields a finite bound on for
any and . Typically, case
(124) would be applied recursively, each time increasing,
until one of the other cases holds.

Example 15: Consider and . Then for
and , we obtain

Since none of (124)–(126) is applicable, we conclude that (127)
must hold. Thus

which, from Example 1, is equal to . This example continues
in Example 14.

We point out that the bound of Theorem 31 depends on
, the maximum possible cardinality of a spherical

code . For , the value of
is known exactly (see (11)–(13)) and this is the case

where we have found Theorem 31 to be most useful; through
Theorem 30 and one of the paths in Fig. 1, numerous upper
bounds on were improved. For , we have
used Levenshtein’s upper bound [40], which resulted in some
additional improvements for at the
expense of higher complexity. However, these improvements
did not propagate to or , for

.

VI. BOUNDS ON

Doubly-constant-weight codes were introduced by Johnson
[37] and, independently, by Levenshtein [39] in the early
1970s. Both Johnson [37] and Levenshtein [39] used these
codes as a tool to obtain sharper bounds for constant-weight
codes, although the specific methods derived in [37] and
[39] differ from each other. Best, Brouwer, MacWilliams,
Odlyzko, and Sloane [8] gave a linear programming bound
for doubly-constant-weight codes. They also applied this and
other bounds for doubly-constant-weight codes to sharpen
the linear programming bound for constant-weight codes (cf.
Proposition 15).

In this section we list all known bounds on doubly-constant-
weight codes, including several new ones. Another useful bound
is given in Section III-B as Corollary 6.

A. Elementary Bounds

As for and , we begin the
exposition of bounds for doubly-constant-weight codes with
some straightforward equalities, given without proof.

Theorem 32:

if

if

if is odd

if

The first two equalities in Theorem 32 are the two basic “re-
flection operations” for doubly-constant-weight codes. Alter-
nating these operations generates an eightfold symmetry in the

domain, and thereby partitions this domain into eight octants.
Thus for all sets of parameters , there ex-
ists another set that belongs to a given octant and has the same

value. For the sake of brevity, all the theorems in this section
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are given only for parameters within the octant where ,
, and .

Example 16: From Theorem 32, we have

Recall that , as was shown in Example 5.
This example continues in Example 8.

The following theorem consists of four inequalities, all of
which can potentially improve upon an upper bound for doubly-
constant-weight codes. Hence, all four inequalities should be
considered, even when the parameters are confined to one oc-
tant only.

Theorem 33:

(130)

(131)

(132)

(133)

Proof: .

Example 17: We have

where the last inequality comes from Example 13. This example
continues in Example 8.

Example 18: Combining (130) with (110) yields

Of course, this is also immediately clear from the definition of
. This trivial bound, which was known to

Levenshtein [39] in 1971, nevertheless updates some of the best
known specific upper bounds for doubly-constant-weight codes.
For example, , an improvement from
15 in [8].

In analogy with (111), the inequalities in Theorem 33 can be
improved upon in some cases, which is our next theorem.

Theorem 34:

(134)

(135)

(136)

(137)

Proof: Consider a code

and define , where

(138)

There are two cases, depending on whether or
not. It is easily verified that in both
cases. The minimum distance ofis given by (112), where

if (139)

if (140)

or, equivalently,

(141)

for all , which completes the proof of (134). The bounds
(135)–(137) follow from repeated application of the first two
equalities in Theorem 32.

The following theorem is due to Levenshtein [39]. Note that
the right-hand sides are independent ofand , respectively.

Theorem 35:

if

if

The following bounds, analogous to Theorems 9 and 28, were
first given by Johnson [37].

Theorem 36:

if (142)

if (143)

if (144)

if (145)

Remark: Bounds analogous to (142) and (145) do not exist
for doubly-bounded-weight codes, since the number of ones in
the heads and the number of zeros in the tails are not lower-
bounded in this case.

B. Linear Programming

A distance distribution can be defined for doubly-constant-
weight codes, whose components are indexed by two variables.
We refer the reader to [8] for more details. Based on this distri-
bution, the following linear programming bound was given
in [8].



AGRELL et al.: UPPER BOUNDS FOR CONSTANT-WEIGHT CODES 2389

Theorem 37:

where and . The
set of optimization variables consists of all for which

, , and , while the maximization is
carried out over all sets of these variables that satisfy
and Proposition 38.

The main set of constraints for this linear programming bound
is given by the following proposition [8].

Proposition 38: For all and for all

where is defined by (56) and , are as in Theorem 37.

C. Specific Bounds

To the best of our knowledge, the only specific upper bound
for doubly-constant-weight codes has been reported in [31],
namely, . This was later identified as a
typographical error in [17].

D. Redundant Bounds

We now list bounds on doubly-constant-weight codes that
were evaluated but did not yield any competitive values within
the studied range of parameters.

The bounds [39, eq. (8)] and [37, eq. (19)], which despite dis-
parate notation are completely equivalent, are inferior to Corol-
lary 6. The bounds [39, eq. (11)] and [37, eq. (20)] are also
equivalent to each other, and they are precisely what one gets
by combining Theorems 29 and 33.

Theorem 3 is a strong bound, but only when . This
special case is Corollary 6. When , Theorem 3 can be
evaluated using the bound of Levenshtein [40] for . This,
however, does not improve upon the values obtained through
Theorems 32–37 within the studied range of parameters.

VII. T HE TABLES

This section contains tables of the best known bounds on
, which were obtained using the results presented

in this paper. The authors would appreciate hearing of any im-
provements to the tables. To conserve space, our tables of upper
bounds for and
are published electronically only [3]. On the same website [3],
we will also keep record of any updates or corrections that are
brought to our attention.

Most of the theorems in this paper yield upper bounds
that depend on , , or

. However, these entities are in general
not known exactly. This problem is easily overcome by sub-
stituting any upper bound for the exact value. This strategy

of obtaining upper bounds based on other bounds yields
a complicated pattern of dependencies, as shown in Fig. 1. To
provide each theorem with the best possible input, the loops in
this figure were evaluated iteratively until a steady state was
reached.

The tables also reference the number of the theorem from
which each bound was obtained. Although, in many cases, the
same bound can be obtained using more than one method, we
mention only one method for each bound. In this regard, we have
given precedence to universal methods (as opposed to methods
applicable to certain parameters only), to analytical methods
(as opposed to computerized search methods), and to relatively
simple methods. We have also tried to keep the total number of
methods used in the production of the tables at a minimum.

Tables I–VI give upper and lower bounds on for
all and all even . For each and , ranges
from to . The values of for outside
this interval or for odd are given by Theorem 8. Finally, for

and or , exact values of are given
in [17].

All the lower bounds in Tables I–VI are taken from
http://www.research.att.com/~njas/codes/Andw/, an updated
and extended version of [17]. Boldface indicates updates to the
upper bounds in the tables of [34] and http://www.research.
att.com/~njas/codes/Andw/. Those tables cover for

and for . Superscripts refer to theorem
numbers in this paper.

One can conclude that most progress since similar tables were
last published has been made for . Out of the 23 unre-
solved instances for in [17], [34] fourteen have now been
updated. For , ten out of eighteen instances are updated,
of which two are settled exactly. The corresponding numbers for

and are, respectively, six out of 13 with three
exact values and three out of three with two exact values.

APPENDIX A
ERRATA IN EARLIER WORK

As pointed out in [37], there exist errors in some of the pub-
lished literature on constant-weight codes. Johnson [37] pro-
vides a list of known errata. A similar but more extensive list,
covering more recent literature, was included in [17]. In this sec-
tion, we supplement these two lists with many newly discovered
errata, and also comment on some of the known ones. We do not,
however, listall errata previously reported.

The bounds , , ,
and , which were claimed by Wax [55], cannot
be obtained by the methods proposed in [55]. This was proved in
[8]. In fact, no useful contributions remain today from the
Wax [55] bound.

Johnson [35] claimed without proof that ,
, , and . These

are incorrect, as these bounds do not agree with the exact values
that are well known today [42, pp. 674, 686].

The following corrections relate to the well-known paper of
Best, Brouwer, MacWilliams, Odlyzko, and Sloane [8]. In [8,
legend of Table IIA], “ From Theorem 9 …” and “From The-
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orem 6 …” should both be replaced by a reference to the un-
named theorem immediately before [8, Sec. IV-A]. In the same
legend to [8, Table IIA], the reference “See [31], [34]” does
not apply for and ; see Example 3 and
Theorem 21 in the present paper. To quote [17], all the linear
programming bounds for in [8, Table IID] should “be
regarded with suspicion” until further checks are made. Our
checks and Honkala’s [34] together verify all of these bounds.
There are three more errors in [8, Table III], in addition to the
five errors reported in [17]. The bounds
and originate from the known error

, which was corrected in [17]. Our
best upper bounds in these cases are
and . In [8, Table IIIC], the value of

should be , not . Also, in the last two lines
of [8, p. 85], “ ” should be “ ,” while “ ” in [8, Theorem
20] should be “ .”

In [42, p. 689], the values of and
should be , not . The linear programming bounds for
are as unreliable in [42] as in [8]; see above.

The foregoing comments on [42] apply to [31] as well.
In addition, “[13, (29)]” in [31, p. 40, line 32] should be
“[13, (27)]” and “[5, Table IIIA]” three lines later should be
“[3, Table IIIA].”

Furthermore, in [17, Table III], “ ” should
be “ ” and the corresponding entries in [17,
Tables I-D and XVI] should give as an exact value [49]. The
value in [17, Table I-D] is not explained
in [17, Table III]. It appears possible that [17, Table I-D] was
wrong in stating that the value for was exact rather
than a lower bound [49]. Also, [17, p.
1359, line 11] should be and “line 3”
[17, p. 1360, line 13] should be “line 23.”

Finally, in [1, eq. (3)], “ ” should be “ .”
As demonstrated by this list of errata, and by the lists in [37]

and [17], it is very difficult to collect a large number of bounds
without introducing some errors. We would welcome reports of
any corrections and updates to this work.

APPENDIX B
PROOF OFTHEOREM 31

In this appendix, we prove the bound on the cardinality of
zonal codes given as Theorem 31 in Section V-C. We distinguish
between two cases: and . Upper bounds for
these two cases will be derived separately in Lemmas 43 and 44,
respectively. These two lemmas, along with the lower bound of
Lemma 45, yield Theorem 31.
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Throughout this appendix,denotes the maximum cosine be-
tween points of a zonal code, as defined in (10). Thus

We will make use of the function and the angle , de-
fined as follows. For any

(146)

and for any the angle2

(147)

The angle was already defined in (128) of Theorem 31. Here,
we point out that this definition is motivated by the following
property. As will be shown in Lemma 42, for as defined in
(128) and (147), we have

Also note that as decreases from to , the angle
increases monotonically from to . The following lemma
gives some important bounds on .

2We intentionally avoid the inverse cotangent, since there is no uniform agree-
ment on the definition ofarccot x for x < 0.

Lemma 39: If , then .
If , then . If ,
then .

Proof: Follows by rewriting (147) as

The next three lemmas will be proved independently of each
other, and then combined in Lemma 43. The main idea of the
following lemma is that the “latitudes” of points in a zonal code
are bounded by a function of and , rather than by , pro-
vided is within a certain range.

Lemma 40: If , then

if

(148)

if (149)

Proof: Consider a zonal code with , and let
and be two arbitrary points in . Now , , and the north
pole vector form a spherical triangle with sides ,
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, and . The triangle inequality for spherical
triangles [46, p. 75] implies that

or, equivalently,

(150)

If , then (150) yields , which
is a contradiction. Thus in this case,cannot contain two or
more points, which proves (149). If or if

, then the inequality (150) is weaker than

(151)

which follows directly from the definition of a zonal code. On
the other hand, for and for in the range specified in
(148), the bound (150) is stronger than (151), which completes
the proof of the lemma.

The main idea of the following lemma is the construction of
spherical codes from zonal codes. This makes it possible to use
bounds for spherical codes in the case of zonal codes.

Lemma 41: For all and for in
the range , we have

Proof: Let be a zonal code, and
let be its north pole vector. For , we let

denote the “latitudes” of the points of. Consider
the code , , where

(152)

for . It is easy to verify that and
for all . Furthermore

for all distinct . Hence, is a spherical code in
dimensions with a maximum cosine given by

The constraints on in the statement of the lemma ensure that
.

The next lemma is concerned with the maximization of the
function defined in (146).

Lemma 42: For all , we have

if

if

Proof: Regard as a function of , keeping
and fixed. Since is well-defined, the maximum occurs
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TABLE V
BOUNDS ONA(n; 12; w)

either at an endpoint of the interval or at an in-
terior point for which and . By dif-
ferentiating twice with respect to and observing
that , it is straightforward to verify that the max-
imum does not occur at an interior point. Hence, is
maximum for either or . The same argument
proves that the maximum occurs for or . Thus
the function attains its global maximum at one of the
four corners of the feasibility region in the

-plane.
Since is a symmetric function of and , we

have . Also, it is obvious that
for all .

Thus it remains to compare and . We
factorize the difference. Omitting the tedious details, the result
can be written as

This expression is positive if and only if the last factor is posi-
tive. The lemma now follows directly from the definition of
in (147).

Remark: It follows from Lemma 39 that
for all whenever .
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The next lemma combines Lemmas 40–42 to summarize the
bounds that hold for . There is an intentional overlap
between some of the cases in the lemma.

Lemma 43: If , then

if (153)

if and (154)

if and (155)

if (156)

Proof: The bounds (154) and (155) follow from Lemmas
41 and 42. Note that implies that ,
in view of Lemma 39. This, in turn, is a stronger condition
than . Hence, the constraint in
Lemma 41 would be redundant in (154). Similarly, the con-
straint in Lemma 41 would be redundant
in (155). This is so because if and ,
then and , which contradicts
Lemma 39. The inequality (153) follows from

(157)

if , where the first term can be bounded using (155).
Finally, (156) follows directly from Lemma 40.

The next lemma gives upper bounds for .

Lemma 44: If , then

if (158)

if (159)

if (160)

Proof: The bound (158) follows, if , from (157)
and (155). If , then for any such that

we have

and (158) follows by applying (149) and (155), respectively,
to the two terms. To prove (159) and (160), we observe that if

, then

Letting in Lemma 40 and using (155) to bound
completes the proof.

The last component in the proof of Theorem 31 is a lower
bound, given in the next lemma. This lemma is the counterpart
to Lemma 41: we now reverse the mapping in (152) to construct
zonal codes from spherical codes.

Lemma 45: For all and all in
the range , we have

Proof: Let be a spherical code with maximum cosine
in an -dimensional subspace of . Let be

a unit vector orthogonal to this subspace. For any given, we
construct the code

It is easy to verify that and for all .
Furthermore, for all distinct , where

or, equivalently, . Hence is a zonal code
and .

Theorem 31 now follows by combining Lemmas 43–45.
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