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Upper Bounds for Constant-Weight Codes

Erik Agrell, Member, IEEEAlexander VardyFellow, IEEE and Kenneth ZegeFellow, IEEE

Abstract—tet A(n, d, w) denote the maximum possible positions. Given the three parameters: lengthveightw, and
number of codewords in an (n, d, w) constant-weight bi- distanced, what is the largest possible siz&n, d, w) of an
nary code. We improve upon the best known upper bounds on (,, 7,y constant-weight binary code? This question has been

A(n, d, w) in numerous instances forn < 24 andd < 12, . .
which is the parameter range of existing tables. Most improve- studied for almost four decades, and remains one of the most

ments occur ford = 8, 10, where we reduce the upper bounds in basic questions in coding theory.
more than half of the unresolved cases. We also extend the existing ~ Although the general answer is not known, various upper
tablesup ton < 28 andd < 14. and lower bounds ori(n, d, w) have been developed. Lower

To obtain these results, we deve_lop new techniques and intro- bounds are typically obtained by means of explicit code
duce new classes of codes. We derive a number of general bounds

on A(n, d, w) by means of mapping constant-weight codes into cons.tructions,_ while upper bqunds involve analytic methods,
Euclidean space. This approach produces, among other results, ranging from linear programming to geometry.

a bound on A(n, d, w) that is tighter than the Johnson bound. The first systematic tables of bounds of{n, d, w) ap-

A similar improvement over_the best known bounds for d(_)ub_ly- peared in 1977 in the book of MacWilliams and Sloane [42, pp.
constant-weight codes, studied by Johnson and Levenshtein, is 0b_684—691], fom < 24 andd < 10. An updated version of these

tained in the same way. Furthermore, we introduce the concept . .
of doubly-bounded-weight codes, which may be thought of as a tables, along with a more complete treatment of the underlying

generalization of the doubly-constant-weight codes. Subsequently, theory, was published [8] in 1978. Another update appeared in
a class of Euclidean-space codes, called zonal codes, is introducediionkala’s Licentiate thesis [34, Sec. 6], together with a new
and a bound on the size of such codes is established. This is useqgp|e of upper bounds fat = 12 andn < 27. Since then, there

to derive bounds for doubly-bounded-weight codes, which are in ;
turn used to derive bounds onA(n, d, w). We also develop a uni- has been very little progress on the upper bounds. In contrast,

versal method to establish constraints that augment the Delsarte |OWer bounds omi(n, d, w) were improved upon many times.

inequalities for constant-weight codes, used in the linear program- The lower bounds of [8] were revised in 1980 by Graham and

ming bound. _ Sloane [31]. Then in 1990, following a large number of new
In addition, we present a detailed survey of known upper bounds  explicit code constructions for certain parameters, came the

for constant-weight codes, and _sharpen these bounds in Severalencyclopedic work of Brouwer, Shearer, Sloane, and Smith
cases. All these bounds, along with all known dependencies among

them, are then combined in a coherent framework that is amenable 1171, Where the best known lower bounds diin, d, w) for

to analysis by computer. This improves the bounds om(n, d, w) n < 28 andd < 18 are collected. Upper bounds are given in

even further for a large number of instances ofri, d, and w. [17] only for those parameters where these bounds are known
to coincide with the lower bounds.

Index Terms—Constant-weight codes, Delsarte inequalites, This work is concerned with the problem of determining
doubly-bounded-weight codes, doubly-constant-weight codes, upper bounds on the size of constant-weight codes. Our contri-
error-correcting  codes, linear programming, spherical codes, pytions to this problem are three-fold, as described in the next
zonal codes three paragraphs.

First, we improve upon the existing upper bounds on
A(n, d, w) in many instances. For example, out of the 23
. INTRODUCTION unresolved cases far= & in [17], [34], fourteen upper bounds

N (n, d, w) constant-weight binary code is a set of bi&ré improved upon in this paper. Fér= 10, we update 10
nary vectors of length, such that each vector contaias out of the 18 unresolved cases. As a result, we establish seven

ones andh — w zeros, and any two vectors differ in at ledst "W exact values ofi(n, d, w), and rederive by analytical
methods exact values df{(n, d, w) that were previously found

_ _ _ , b|¥ exhaustive computer search. Furthermore, we extend the
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codes, which constitute a special restricted subclass of con-
stant-weight codes. In this work, we introduce the concept of
doubly-bounded-weight codes. These codes are less restricte
than doubly-constant-weight codes, yet more restricted than/
general constant-weight codes. We derive bounds on the size o'
doubly-bounded-weight codes, which turn out to be extremely 9:1"0,13
useful in developing upper bounds of{n, d, w). Another
useful approach, developed in Section Il of this paper, is as \\
follows. Map the three types of constant-weight codes into )
Euclidean space. It is shown in Section Il that, under the

appropriate mapping, this results in three different kinds of

spherical codes. Consequently, one can use upper bounds fc

spherical codes (already known bounds, as well as new bound:

for zonal codes derived in Appendix B) to establish bounds

on constant-weight codes. Surprisingly, this simple idea often (’"
leads to powerful upper bounds of(n, d, w) (cf. Examples 24,28,29 —
2-4). Finally, as in most previous work on the subject, we o

make use of linear programming, based on the Delsarte [%ﬂ 1. The interdependence between bounds on the three types of binary

in.equa”tiesl fc’_r CQnStant'Weight COd_eS- It is knqwn th_at th@nstant-weight codes stands for general constant-weight cod&, for
distance distribution of constant-weight codes is subject doubly-bounded-weight codes, arifi for doubly-constant-weight codes.

more constraints than can be obtained from the DebaH@nbersrefertotheorems in this paper. For example, the arrowhead labeled 20

. - . . . represents a bound ofi(n, d, w), derived in Theorem 20, in terms of bounds

|nequal_|t|es, but det_ermlnlng these_ ?Xtra Con_Stram_tS has in M@$tyoubly-constant-weight codes and bounds on doubly-bounded-weight

cases involved a different (nontrivial) manipulation for eactodes.

distinct set of parameter%:, d, w). In contrast, in this work,

we develop a universal method to find such constraints (cf. o )

Proposition 17). Bassalygo—Elias inequality
Our third contribution is the integration of all the known

(to us) bounds on constant-weight codes—as well as related

methods and techniques—into a coherent framework that is A(n,d) < ZTA(n, d, w) (1)
amenable to analysis by computer. Many existing bounds on (w)
A(n, d, w) are restated herein in a different, substantially
simplified, way. Other known bounds whose application wa¥as improved upon by Levenshtein [39, eq. (32)], and later by
previously limited to specific sets of parametérs d, w) are van Pul (see [1]), who pointed out that the right-hand side of
given here in their most general form. We liall methods (1) can be reduced by a factor of two. The best known asymp-
that we are aware of to obtain upper boundsAfm, d, w). totic upper bound oni(n, d), given by McEliece, Rodemich,
The methods are of two types: dependent and stand-aloR&msey, and Welch [43] in 1977, consists of this inequality
Dependent bounds are functions of other bounds, wherdagonjunction with a linear programming bound on the size
stand-alone bounds are not. Most of the known bounds &econstant-weight codes. Thus it should not be surprising that
dependent, which makes their evaluation, and the determinatR$iter bounds oni(n, d, w) lead to new bounds or(n, d).
of which bound is best for a given set of parameters, a fair@urcontributions in the area of unrestricted codes, based on the
complex process. These dependencies are outlined in FRpUlts of this paper, will be presented elsewhere.
1, where each arrowhead represents one bound, as given byhile unrestricted codes have obvious applications in
a numbered theorem in this paper. (We have omitted tREOr correction, constant-weight codes have been historically
stand-alone bounds in Fig. 1.) Thus several steps may flggarded as a purely theoretical construction. Today, however,
necessary to prove a tight bound akin, d, w) for specific they are generally recognized as an important class of codes
n, d, and w. The organization of all these methods into & their own right. They have been recently introduced in
streamlined framework has the advantage that the paths in Righumber of engineering applications, including code-division
1 can be followed iteratively until a steady state is reachemultiple-access (CDMA) systems for optical fibers [19],
Later in this paper, we give a series of examples that wjlrotocol design for the collision channel without feedback [1],
illustrate one such route in Fig. 1. automatic-repeat-request error-control systems [54], and par-
Since the early work of Johnson [35] and Freiman [30g@llel asynchronous communication [12]. In addition, they often
bounds on constant-weight codes have been employed to desgeve as building blocks in the design of spherical codes [28]
bounds on unrestricted binary codes. An d) binary code and DC-free constrained codes [29], [52]. Further applications
(unrestricted) is a set of binary vectors of lengtiuch that any have been reported in frequency-hopping spread-spectrum
two of them differ in at least positions; the maximum numbersystems, radar and sonar signal design, mobile radio, and
of codewords in any such code is usually denatéd, d). An  synchronization [9], [11], [19]. For general background on
important relation betweed(n, d) and A(n, d, w) is due to constant-weight codes, and the related class of spherical codes,
Elias (see [10, pp. 451, 456]) and Bassalygo [6]. This elegawe refer the reader to [22], [28], and [42].
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The rest of this paper is organized as follows. In the next In the following, d(C) denotes the minimum Hamming dis-
section, we define concepts and terminology that will be uséghce within a cod€, namely,
throughout this work. A simple mapping from binary codes to A i d 6
spherical codes is introduced in Section Ill; bounds derived di- ©) 1122%0 (e, e2) ©)
Lec;lyrfrom th'ss mtapplr}gllT/rl)lrp\t/e Illjponftv;/o WeII—Ignowg boundﬁ/hered(cl, ¢2) is the number of positions in which the code-

y Johnson. Sections IvV—=VIiSt all usetul upperbounds on COWOI’dScl ande; differ. Given a set/ C H(n), let

stant-weight codes that we are aware of, including many new et
ones derived in this paper. One section is devoted to each of the U, d) = {C CU:d(C) = d} (1)
three classes: constant-weight codes, doubly-bounded-weigbhote all subsets @ whose minimum distance is at least
codes, and doubly-constant-weight codes. Finally, tables of the are interested in the quantities
best known upper bounds of{n, d, w) are presented in Sec- def
tion VII, for all n < 28. Aln,d) = ccal® IC] ®)

A(n,d,w) !

Il. PRELIMINARIES ceal 0 IC] 9)

In this section, we introduce concepts and notation that wifi€re0 < d < n and0 < w < n, as well as
be used throughout the paper. We distinguish between codes in 77 (wy, ny, wa, na, d) Lef max IC|
Hamming space (that is, binary codes) and their counterparts in CCR(H (wi,mw2,n2),d)
def
€]

Euclidean space—the spherical codes. T(wy,ny,we,na,d) = max
CeP(H(wy,n1,wz,n2),d)

A. Hamming Space where0 < w; €11, 0 € we <no, and0<d<ny + no. Despite

Four nested levels of binary codes will be discussed. To beéﬂne potential confusion of using(.) for both (8) and (9), we

with, any subset of{(n) = {0, 1}" is called anunrestricted aintain this standard notation [17], [42].
binary code in the sense that no weight constraint is imposed. £y clidean Space

A constant-weight binary code any subset of L )
We start by defining, in analogy to (6) and (7), the distance

def . . .
H(n, w) = {z € H(n): 21 =w} (2) and the® functions in Euclidean space, as follows:
wherel is the all-one vector and the dot product is carried out dp(C) 4o nin ller — e
in R™. A doubly-bounded-weight codkea constant-weight code Tt
with at mostw; ones in the first;; positions and at least; ones def

in the lastn, positions. (In the following, the first; positions . Pl d‘?) =icc Z/l:. dE(.C)' > dp}-
will be called theheadand the last., positions theail.) Equiv- Here|| - || is the Euclidean norng is a finite subset oR™, and

alently, a doubly-bounded-weight code is a subset of U is an arbitrary subset dt".
def Two types of codes in Euclidean space will be considered.
!
H(wy, ny, we, n2) = {#€H(n+ne, witws): T-w <wi}  Theunit spheres the set

(3) S(n) & {2 € R ||z = 1).
where A spherical codés a finite subset o8 (n). To characterize the
head tail codeword separation in a spherical code,rittieimum angles
w ¥ (1,...,1,0,...,0). (4) orthemaximum cosine is often used instead of the Euclidean
—— —— distance. The relation between these three parameters is
ny o

2

sdéfcosd):l—%. (20)
We will generally uses as the separation parameter. The max-
imum possible cardinality of an-dimensional spherical code

(5)  with maximum cosine is

Thus a codeword of a doubly-constant-weight codeword has ex- Ag(n, s) def max cl.
actly w; ones in its head and, ones in its tail. It follows di- CEPr(S(n),v2-25)
rectly from the definitions in (2), (3), and (5) that doubly-conFor s > 0, the best known general upper bound 4g(n, s)
stant-weight codes constitute a subclass of the doubly-boundets given by Levenshtein in [40]. This bound can be improved
weight codes, which themselves constitute a subclass of the capen for certain specific parameters using the methods of Boy-
stant-weight codes, which, in turn, are a subclass of unrestrickgdenkov, Danev, and Bumova [15].

Finally, adoubly-constant-weight code any subset of

def
’H(wl, ny, wa, 712) = {.TEH(TL;L—FTLQ, wl—i—wg):x-ul le}.

codes. For s < 0, this function is known exactly. Specifically, it is
Unrestricted codes and constant-weight codes have bdé@own that

studied extensively in the past. Doubly-constant-weight A _ 1_1 it < 1 11

codes were proposed in [39] and [37]. The class of s(ns) s’ oS (1)

n
doubly-bounded-weight codes is introduced in this paper; _ _ 1
it turns out to be very useful in deriving bounds for the other As(n, s) =n+1, if = n Ss<0 (12)
classes. As(n,0) =2n. (13)
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below in Section IlI-B. A somewhat related method was sug-
gested by Wax [55], who derived upper bouhds binary codes
from some sphere packings (not spherical codes) in Euclidean
space.

A. Binary Codes as Spherical Codes

We first map three of the classes of binary codes introduced
in the previous section into Euclidean space. This mapping
produces spherical codes in three different dimensions. Known
upper bounds for spherical codes are then used to generate
new upper bounds for the original binary codes. The derivation
of an analogous bound for doubly-bounded-weight codes is
deferred to Section V-B.

LetQ(-) denote the mapping— 1 andl — —1 from binary
Hamming space to Euclidean space. Then

Q(H(n)) ={1,-1}" (15)
QHm,w))={z e QH{n)): z-1=n—-2w} (16)
Q(H (wi,n1,we,n2))

={xc QHn,w)):z u 2n — 2w} (17)
Fig. 2. A zone. Q(H(wl, ny, wa, 712))

={z € QH(n,w)): & -u =n; — 2w} (18)
Rankin [47] was the first to establish (11), while (12) was origi- _ _ ; fi in (4
nally stated by Davenport and Hajés [23], and proved by Aczkf%, eren =1+t w = w1t wa, andu 1s s defined in (4).

. ) i te that if the Hamming distance between two binary vectors
and Szele [2]. Equation (13) was first stated by Erdos [26], ar:;:(fancm_2 is , then the Euclidean distance betwe(x; ) and

proved by Sarkadi and Szele [50]. Q) is 2v/d.
Example 1: We haveAs(25, —3/41) = [44/3] = 14 (to Clearly, 2(H(n)) is a subset of the:-dimensional hyper-
be continued in Example 15). O sphere of radiusy = 1/n, centered aty = 0.

. . For constant-weight codes, any poine H(n, w) satisfies
We now introduce the class of zonal codes.zéne is g%(z_) “¢)-1=0and|[Q) — e = 1, where

a subset of a sphere bounded by two parallel hyperplanes [

pp. 314-315], as illustrated in Fig. 2. Given a “north pole” = o, W — W) (19)
vectore, with ||e|| = 1, we define ' n
def . . and
Z(n,yL,yu,€) = {2 € S(n):sinyr <z -e<sinyy} . <1 2w 2w> (20)
where—7/2 < v, < vu < 7/2. A zone withyy = 7/2is a o n’ n )’

spherical cap [56, pp. 314-315].zZbnal codes a finite subset HenceQ(H(n, w)) is a subset of thén — 1)-dimensional hy-
of a zone. The maximum cardinality of a zonal code is denot@@rsphere of radius, centered at; .

def In a similar way, one can show th@{ H (w1, n1, wa, n2))is
A = max |C 14 ’ s . Pt T :
71 8,71, 7H) max [C] (14) a subset of thén; +ns — 2)-dimensional hypersphere of radius
where the maximum is taken over all
wiing —w wolNg — W
CE(I)F] (Z(n,’yﬁa,}/f-ﬁe)a V2_28) 7)2:2\/ 1( ;1 1) + 2( 721 2)
1 2
Clearly, the right-hand side of (14) is independeng.of centered at
w1 W2
Ill. BOUNDS FROMSPHERICAL CODES C = <1 - n—) u + <1 - n—) )
1 2

Itis well known that, under a suitable mapping, the class of bjherey, is as defined in (4) and> = 1 — . This follows from
nary codes can be viewed as a subclass of spherical codes. JHstact that for any point € H(wi, n1, wa, n2), We have
implies that a lower bound on the size of binary codes is al$Q () —¢,) -u; = (Qz) — €2) -4 = 0 and||Q2(z) — ¢2]| = 7o.
a lower bound for spherical codes. Conversely, an upper boundrhese observations lead to upper bounds on the size of the
on the cardinality of spherical codes serves as an upper bogresponding binary codes, formulated in terms of the max-
for binary codes. The former relation has been successfully @um cardinality of spherical codes.
ploited—see [22, pp. 26-27], [27], [28], and references therein.
One contribution of the present paper is to investigate the latter] h€orem 1:
relation, from which we obtain improved bounds in some cases.

This approach, which has been less highlighted than its con-
verse, was used in [27] to prove two well-known bounds; se€lThese bounds are not very strong, however. See Appendix A.

A(n,26) < As(n, s)
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where where
s=1-4> p=s- )
n n
Theorem 2: Corollary 6:
. §
A(n,26,w) < As(n — 1, s), if s> —1 (21) T(wy,n1,wa,na,26) < \ﬁJ ,
A(n,26,w) =1, if s<—1 (22) §
ifb> ——— (28)
where ny+no—1
671 T(w17n17w27n2726) <7’Ll +712_ 17
s=1— ———. _ §
w(n — w) fo<bg —  (29)
ni+ng—1
Proof: Let C be a constant-weight code with parameters T(wy,ny,wa,no,20) < 2nq + 2no — 4,
(n, 26, w). Translating2(C) by —e; and scaling the result by if b=0 (30)

1/71, in accordance with (20) and (19), yields én— 1)-di- here
mensional spherical code. Its maximum cosine is given by (15\5,
wheredy = (2/r1)v/26. UsingAs(n—1, s) as an upper bound

for |©2(C)| completes the proof. ] b=2¢ ny no '

Theorem 3: Corollary 4 is similar to the Plotkin bound [44]. The only dif-
T(wi,n1,wa,ne,26) < As(ny + ne — 2, s), if s> —1 ference is that in the latter, the right-hand side of (23) is trun-
T(wy,ny, wz,n2,28) =1, if s< —1 cated to an even value, instead of just an integer as in Corol-

lary 4. Hence the Plotkin bound is stronger. It was derived using
where an entirely different (combinatorial) technique, as will be men-
s=1— dning ) tioned in the context of Proposition 7.
niwz(nz — wa) + nawi(ny — wy) Forb > &/(n + 1), Corollary 5 is equivalent to one of

Johnson’s bounds [35]. Johnson showed (25) fob all 0 by

The proofs of all three theorems are similar to each other, afyl, <2 me method that is used below to prove Theorem 29. If we
their common principle is demonstrated in the proof of Thq'ét § = w, Corollary 5 yields '

orem 2. n
Note that the case < —1 corresponds to a spherical code A(n, 2w, w) < LEJ (31)

whose minimum Euclidean distance is greater than the diamejgtich is another well-known special case [39], [42, p. 525].

of the sphere. Although formallys(n, s) = 1 for suchs, we  Note also that (22) is covered by (25). The bound (26), which

chose to treat this trivial case separately. improves on the Johnson bound for< b < §/(n + 1), has
not, to our knowledge, been previously published. Comparing
B. New Bounds Corollary 5 with Levenshtein’s linear programming bound [41,

For s < 0, the exact values afis(n, s) given by (11) and Theorem 6.25], it can be observed that (25) is equivalent to Lev-
(13) can be used in conjunction with Theorems 1-3 to yieRnhshtein’s bound within the applicable range of parameters, (26)
bounds on the size of binary codes. The method is simple a@adower, and (27) is higher. Hence, (27) need not be further con-
produces interesting results. sidered.

The resulting bounds, which are summarized in the following The inequalities (29) and (30) in Corollary 6 appear to be new,
three corollaries, can be interpreted as a common framework ¥gnereas (28) was found previously by both Levenshtein [39]
bounds by Plotkin, Johnson, and Levenshtein, as well as soamel Johnson [37]. They use this inequality forfall> 0 (see
new, tighter, bounds. The bounds (23) and (25) were deriveddlso Section V-A).

[27] using this method. Example 2: Take (n, 26, w) = (24, 10, 7). Corollary 5

Corollary 4: givesh = 1/24 andA(24, 10, 7) < 24. Thisis an improvement
468 on the best previously known upper bound@@f given in [31].
A(n,26) < {46 — nJ , if 46 > n (23) Since a lower bound df4 is known [17], we conclude that this
A(n, 26) <2, 45— . (24) bound is in fact tight. O
Example 3: Corollary 5 also givesA(12, 6, 5) < 12. This
Corollary 5: reproduces a well-known bound which was proved in [36]
5 _ 5 through a combinatorial argument specifically devised for these
A(n, 26,w) < {ZJ ; ifo>— (25) parameters. See also [42, p. 530]. O
. o Example 4: For (wy, ny, wa, na, 26) = (4, 9, 4, 13, 10),
A(n, 26, w) <, IFO<b< n (26) Corollary 6 yieldsb( = 1/117 and T(4), 9, 4(, 13, 10) < 2%,

A(n, 26,w) < 2n — 2, ifo=0 (27) a significant improvement upon the best previously known
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bound of29, given in [8]. For7(2, 9, 6, 14, 10), Corollary 6 independently by Levenshtein [39] and by Johnson [37].

reduces the best known upper bound frérto 22. O However, neither of them produces any improvement over the
selection of bounds on doubly-constant-weight codes that is
C. Plotkin-Type Bounds presented in Section VI.

It is somewhat surprising that Corollaries 4—-6 are so sim-
ilar to the Plotkin bound and its various relatives, since these IV. BOUNDS ONA(n, d, w)
bounds have been derived using entirely different methods. Foln this section, we summarize allimportant bounds on the car-
comparison and for future reference, we now re-establish thigality of constant-weight codes that are known to us. Corol-
Plotkin bound in its most general form following the traditionaliary 5 gives one such bound, but many more exist.
combinatorial, approach. From this generic form of the Plotkin
bound, many related bounds easily follow. Special cases inclulle Elementary Bounds
the original Plotkin bound, four of Johnson’s and Levenshtein’s The first theorem states without proof some elementary prop-
bounds, as well as a new bound to be reported in Section V-Briies ofA(n, d, w).

Given acod€ C H(n), let f; denote the proportion of code- T
words that have a one in positiorWe have the following propo- ~ Theorem 8:

sition. Aln,d,w) = A(n,d+1,w), ifdisodd (34)
Proposition 7: LetC € ®(H(n), 26). Then A(n,d,w) =A(n,d,n — w) (35)
o< — % (32) A(n, 2,w) = <Z> (36)
6= 2 fill=fi) n

_ sl N A(n, 2w, w) = L—J (37)

provided that the denominator is positive. w _
Proof: We consider the average distance within the A(n, d,w) =1, if d>2w. (38)
code, defined isffonov‘f: Example 5: A(16, 10, 11) = A(16, 10, 5) = 3 (to be con-
dy = MOI-D) Z d(e;, e2) (33) tinued in Example 16). O

e1,62€C . .
’ _— The following theorem is due to Johnson [35].
whereM = |C|. For eache € C, count the contribution to the g [35]

sum on the right-hand side of (33) from each position. Then, Theorem 9:

interchanging the order of summation, it is easy to see that A(n, d,w) < LEA(H —1,d,w— 1)J 7 if w>0
NS n w
da":M_lzZ:;fi(l_f"’)' Aln,d,w) < {n_wA(n—l,d,w)J, if w<n.

The proposition now follows from the fact thdt, > 26. ®  The next theorem is equivalent to another of Johnson’s

Bounds for many types of binary codes can be derived frofunds [35, eq. (6)], although it may look very different.
Proposition 7, since constraints on codewords translate into cg#sPired by [39], we have formulated this theorem in a fashion
straints onfi, ..., f,.. Forinstance, using no information othethat makes the relation to Proposition 7 apparent and highlights

than0 < f; < 1 for all 4, we find that the maximum of the s_ymmetry betweew andn — w. A proof was outlined in
S £i(1 — £;) is n/4. Substitutingn /4 for the sum in (32) es- Section IlI-C.

tablishes (23). If, in additionfs, ..., f. are constrained to be  Theorem 10:1f b > 0, then
multiples of1/M, the resulting bound is the classical Plotkin s
bound of [44]. A(n,26,w) < {ZJ
Bounds for constant-weight codes are obtained from Propo-
sition 7 by requiringf; + --- + f. = w. If this is the only where
const_raint in the maximization, the resultis a proqf of the afore- h=§— w(n — w) + LQ {ME} {M” - w} (39)
mentioned Johnson bound (25) for &li> 0. Imposing the ad- n M n n
ditional constraint thafy, ..., f, are multiples ofl /A yields M = A(n,26,w) (40)
Theorem 10. {z} =2 — |z]. (41)
For doubly-bounded-weight codes, we maintain the con-
straintfy +- - -+ f, = w and also requirgy + - - - + f,,, < ws. The foregoing upper bound a#(n, d, w) is implicit since

Again, the maximization can be carried out in eithethe quantityb depends omi(n, d, w) through its dependence
the continuous domair0, 1] or in the discrete domain on M. Specifically, Theorem 10 implies that certain values of
{0, 1/M, 2/M, ..., 1}. This yields Theorem 29 in the dis- A(n, d, w) are ruled out because they yield a contradiction. If
crete case and a weaker bound in the continuous case. an upper bound oni(n, d, w) has this property, one can de-
Relevant constraints for doubly-constant-weight codes aggease the bound hyyand try again.

N+ +fo, =wrandfn, 41+ -+ fa4n, = wa. The Sometimes, when Theorem 10 holds with equality, it can be
resulting bounds are similar to (28) in the continuous casearpened. This was done in two cases in [17]—see Example 6
and to Theorem 29 in the discrete case. Both were propogedone of them. The next theorem details when, in general, such
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improvement is possible. This general result, to the best of dhe values ofw;(¢) andw.(¢), which means that these values
knowledge, is new. are independent of the choice of
Theorem 11: Suppose thati(n, 26, w) = §/b, whereb is This proves thaf is actuallyadoubly-constant—weight code.
given by (39). Then To find thg values Oiul.(c) =w ande(c) = wo, We first use
the conditionM = §/bin conjunction with (46) to expressas
A(n, 26, w) < T(wy, ny, wa, nz, 26) a function of M, w, n, n1, andny. Substituting this expression

where into (51) leads to the solutions far; andw- that are given by
wy = % (w _ %) (42) (42)and (44), respectively. [
. w Example 6: From Corollary 5, we getd(21, 10, 7) < 15.
meenen {Mn } (43) Furthermore A(21, 10, 7) # 15 by Theorem 21. Assume that

wy =2 (w + %) (44) A(21, 10, 7) = 14. Then Theorem 11 yields
"N A(21, 10, 7) < T(2, 7, 5, 14, 10).
2 =n {Mﬁ} (45) ButT(2, 7, 5, 14, 10) < 13 from Theorems 27 and 33, which
andM = A(n, 26, w). is a contradiction. Hencel(21, 10, 7) < 13, which, in fact,
Proof: With n; andns as defined in (43) and (45), we canholds with equality [42, p. 689]. O
rewrite (39) as

We next describe another well-known upper bound on
bzé_w(n—w) ning

. (46) A(n, 26, w). In this context, let = w — § + 1. A t-tuple is
n M3n

LetC be an(n, 28, w) constant-weight code, and assume that 2" ?ubtset .Ofilt’ i ”E’NOf S'Zetﬁ' tLet C‘\zgtij a}n (n, 26, w)d
containsM = é/b codewords. This assumption imposes strorfgijnS ant-weight code. WWe say tnat a gl pie IS covere

constraints on the structure®fFirst, according to Theorem 10,iS ez;:;(tjgvlzre%theat Cmfuljtpllz i;:t;zetcg\flé:\; dst;jﬁﬂ)\?vrc: (clijic.s'litnct

the bound in (32) must holdnthh equality, and we get codewordse, . ¢ € C, since, otherwised(c,. &) < 26. The

b=6-3 fill- /i) total number of-tuples is(7), and (%) of these are covered by
= each codeword of. Thus we have proved the following.

which implies Theorem 12:Lett = w — § + 1. Then

_w(n—w)  ning
n

ZfZ(l - fi)= ~ Wn (47) A(n, 26, w) < X(n, §, w) = (i)
i=1

()
in view of (46). Observe thats(n — w)/n is the maximum

value of the sum on the left-hand side of (47) subject to the co biﬁrem 32 alsg folflows bydr:ztchur;swe atpptlr|1cagon oc: TP_T_?]rem
straintf; +- - -+ f,, = w. This value is attained whefy = w/n ™ € codewords ot any co at meets the bound of the-

orem 12 with equality form a Steiner systef(t, n, w). This

fr(n)Lﬁil ! fi‘.efggj%}tc\)’vtﬁn%dﬁig?gahgﬁ?s;;aziz;;??t oss’bﬁre]: ;rsn 4means that everttuple is covered by exactly one codeword of

only # ! quaity P C. See [42, pp. 5864, 528] and [53, pp. 1—4, 99-100] for more
w background on this topic.

LM;J w o N ) If X(n, 6, w) is an integer and it is known that a Steiner

fi= M o M fori<mni (48)  systemS(¢, n, w) does not exist, the bound of Theorem 12 can

LMEJ 41 bg improved to%"(n, 8, w) — 1. The next theorem makes it pos-

fi = n _w, M fori>n; (49) sible to further improve this bound t&(n, 8, w) — 2 under

’ M n  Mn’ a certain condition. Although two special cases of this theorem

up to permutations of the same sequeffice. . ., f.. Further- \yere implicitly used in [8] (one such case is Example 7), the

more, a necessary condition for equality in (32) is that= 26,  general result, to our knowledge, has not been previously pub-
whered,, is as defined in (33). This means tladitpairwise dis- |ished.

tances within the code are exac®, which in turn implies that o
every two codewords  intersect in exactlys — & positions.  1heorem 13:1f n divideswA'(n, 6, w), then
Consider a codeword = (ci, ..., ¢,) € C. Letws(e) and A(n, 26, w) # X(n, 6, w) — 1.
ws(e) denote the weights of the fira and the last» positions Proof: Assume thatd(n, 26, w) = X(n, §, w) — 1, and

of ¢, respectively. Let

W) =M Z fi

+Csupp (¢)

let C be a code that attains this bound. Note that this assumption
implies, in particular, that’(n, &, w) is an integer. For all =
1, ..., n, we have

wheresupp (e) is the support ot. Then (=D wX(n, b, w)

w w w—1y —
W(e) =un (e) LMEJ + ws(e) (LMEJ + 1) (50) (= n
=w+ (M — 1)(w—6) (51 since, otherwise, there exists-&uple, involving positiort, that
where (50) follows from (48) and (49), while (51) follows fromIS covered by two codewords. On the other hand,

the fact that every two codewords @fintersect inw — é posi- Ic| zn: fi = |Clw = wX(n, 6,w) — w (53)
tions. Sincew; (¢) +w2(e) = w, (50) and (51) can be solved for P

IC|fi <

(52)
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by assumption. This implies that (52) must hold with equality ~ def {w - jJ if 4 > 0andy > (w—j)é
for at least —w values ofi. Without loss of generality, let these v ’ ~ n
valuesbe =1, ..., n —w. This means that everytuple that der 6 — j

involves any of the first —w positions is covered by a codeword 7=

of C. The total number of sucktuples is(}) — (7). Since j # 5mod 2, then

IC| = X(n, §, w) — 1 by assumption, this is precisely equal

to the total numbefX'(n, 8, w) — 1)(_;”) of #-tuples covered K, 6.0, ) L max {0 A
by the codewords of. This, in turn, implies that none of the

(V) t-tuples that involve only the last positions is covered

by a codeword of’. A vectorz = (0,...,0,1,...,1) of where

weightw covers all these-tuples and no others. Hencé = 4 def < w ) <” - w)

CU{z}isan(n, 26, w) constant-weight code. This contradicts J+a+1/\v+1

the assumption that(n, 26, w) = X(n, 6, w) — 1. ] 3 <6> < ) ) T(6,w, 8, n — 1w, 26)
Example 7: Consider the casén, 26, w) = (15, 4, 5). SV Al

Then X(n, 6, w) = 273, which is not achievable by The- a YTy +Lw—jj+y+1,n—w+j26)

orem 21. Sincd5 divides5-273, the condition of Theorem 13 def 6—j—1

holds, and the theorem proves th&fl5, 4, 5) cannot equal T Ty

272 either. HenceA(15, 4, 5) < 271, which was stated without

proof in [8] (thoughA(15, 4, 5) < 272 was proved there).d Theorem 14 specifies one version of the bounds in [37], namely,
the same version that Johnson used in his experiments in that

B. The Freiman-Berger—Johnson Bound paper. Colbourn [20] successfully evaluated another, simpler,

The well-known Hamming bound [33] for unrestricted’erSion' We have simplified the original notation of [37] for

codes is obtained by centering a sphere around each codewBF@Yity and ease of reading.
Johnson [37] developed a family of bounds for constant-weight
codes using a similar technique, and thereby generalizgd
a bound by Berger [7], who in turn generalized a bound by Thedistance distributiomfa code” C H(n) may be defined

Linear Programming

Freiman [30]. as

Johnson [37] gives a range of versions of the same general gt 1
bound, which leaves the user of these bounds some freedom to A= ] > 1Sie)l (54)
choose a suitable level of complexity. Since the original presen- ceC

tation in [37] does not contain an explicit description on ho%”. -0 n, wheres; (¢) denotes the shell of Hamming
to evaluate these bounds, we now summarize the key equating o cér'ﬁér’ed’ at namzaly

necessary for complete implementation.

def .
Theorem 14:Forallj = -6, =6+ 1, ..., §, we have Si(e) = {z € C: d(e,x) =1}

() J The shellS;(¢) is equivalent under translation leyto a con-

— stant-weight code. If is a constant-weight code, théh(c) is

A(n, 26, w) <
(n’ 7w) \"C(n7 67 w7‘j) +L(n767 w7‘j) H H H
equivalent under translation and permutation to a doubly-con-

where stant-weight code.
L(5+5—1)/2] The linear programming bound for constant-weight codes is
L(n, 6, w, j) < 3 <w> <” - w) based on the properties of the distance distribution of a code
i=max{0, j} t—J C € ®(H(n, w), 26) for given constants, w, andé. Through-

out this subsection, it is assumed that< n/2. The compo-
nentA; of the distance distribution is, in this case, trivially zero
for i < 26,¢ > 2w, and whenevef is odd. Thus we focus
K(n, 6,0, ) def oo { A 28A- B} on AQ(.)',- AQ_HQ, o Ay, The general idea is tolfind Iir_lear in-

T equalities involving these components, for use in the linear pro-
gramming problem of Theorem 20.

while the value ofC(n, 6, w, j) depends on the parity gfas
follows. If j = é mod 2, then

o’ BL+P)

where
B SinceS; (e) is a doubly-constant-weight code, its size can be
B &t {1 + ZJ upper-bounded as
e <5 2T(6 s ) |Si(e)] < T(i/2,w,7/2,n — w,26). (55)
= y W, 0,1 — W,

¢ Combining this result with (54) yields the following well-known
et < w ) <n - w) constraint [8].

I v Proposition 15: For alli = ¢, ..., w

— (w—yj)o
ify=00ry<—o- 0 < Asi < T(i,w,45,n — w, 26).
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The following profound inequality of Delsarte [24, Sec. 4.2]  Proof: Leta € S»;(e). Without loss of generality, reorder
has led to the success of linear programming bounds for cdhe positions so thatandz have the forms
stant-weight codes.

Proposition 16: Forallk =1, ..., w 02(17___71717___71‘707___70707___7(3 (65)
et z=(1,...,1,0,...,0,1,...,1,0,...,0). (66)
> alk,in,w)dy > ~1 —— S
Z=6 w—1 T T n—w-—u
where If So;(e) = O, there is nothing to prove. Otherwise, consider
‘ any codewordy € Si;(¢). As in (66), it must have zeros
ZZ: (_1)j(k;) (u;—zy) <” —w— k) among the firstw positions andj ones among the last — w
. def j=0 I i—J positions. Let; () andd,(-) denote the Hamming distance be-
(k,i,n,w) = (56)

(sz) (n;w) tween the firstw positions and the last — w positions of two

codewords, respectively. Theh(y, =) < (w — ) + (w — j).
It is known that the distance distribution of constant-weigrﬁ'”ced(% z) > 26, we have

codes is sul:_)J_ect to more constraints than can _b(_a obtained Sy, x) = d(y,x) — di(y,x) > i+ j — 2A.

from Propositions 15 and 16. However, determining these

additional constraints has, in most cases, involved a separgtgs implies thaty has at leasj — A ones among the last —

nontrivial argument for each distinct set of parameters/, « — ¢ positions and at mosk ones in the preceding block of

andw (as in [8, Theorem 22]). The following proposition ispositions. (Ifi +;j > n — 6, this is impossible, and hendg; (¢)

in some sense, a generalization of this type of constraints. Thgist be empty.) It follows that the punctured code obtained by

proposition provides a universal method to find constraingktracting the last — w positions fromSz;(e) is a doubly-

for pairs of distance distribution components, given bounggunded-weight code. To bound its distance, consider any pair

on doubly-bounded-weight codes and doubly-constant-weigiftcodewordgy, z in S,;(e). They satisfyd; (y, z) < 2w — 2,

codes. and hencelx(y, z) = 25 — 2A. ]
Proposition 17: Leti, j € {6, 6 + 1, ..., w}, withi # j. Remark: Although Lemma 18 is valid for any distinét j €
If i+5 > n—0,then {6, ..., w}, parameters near the lower end of this interval yield

useless bounds. In particular, it follows from the results of Sec-

PjAs + PiAz; < BiE; (57)  tions V-A and VI-A that ifi < A, then

whereF; and P; are any nonnegative integers such that T'(8, 4, j— A, n—w—i, 2§—20) 2 T(j, w, j, n—w, 26).

P 2T w,i,n — w,26) (58) Hence Lemma 18 gives a weaker bound|&g;(¢)| than (55)

P, 2T(j,w,j,n—w,26). (59) whenevet < w — 6. Thus the application of Lemma 18 can be

confined toz, j > max{6, A+ 1}.

If i+ j < n— 6, defineP;; andP;; as any nonnegative integers »

such that We are now ready to complete the proof of Proposition 17. It
follows from (55) and Lemma 18 that

P> min{P,T (A, j,i — An—w— 7,2 — 2A 60
i 2 min B, TUA ¢ s -28)) (00 Su(e)] <P (67)
Pj; 2z min{P;,T'(A,i,j —A,n—w—14,25 —2A)} (61) .
Sas@l < Biye i |S25(0)] > 0 (68)
whereA ' 4 — 8. Then |SQJ (o)) < ‘PJ (69)
PjiAQi + (.PZ—P“) AQJ <.1D.1DJZ7 if =L 251 (62)
P P with P, P,;, P;, andP;; as in (58)-(61). Define the sets
Pj—Pj;) Ag; + P;jAy; < PPy, if =2 2 ~1 (63 .
(J J’) 2 + 425 X J R+P] ( ) Cd—f{CGCSQZ()>O}
i R Pz def
PjAQi +RA21 SRR], |f PJ + P] S 1. (64) .1 - {C € C: SQJ( ) > 0}
7 J
Then (54), in conjunction with (67) and (68), yields
Proof: The proof relies on the following lemma that re- 4). J (67) (68).y
lates the sizes of two shell; (¢) and S, (c). IC| A = Z |S2i(e)| + Z |S2i(e)|
Lemma18:Leti, j € {6, ..., w},withi # j;and lete € C. eceinG; ectinG;
If |S2;(e)| 2 1, then (71)
|S2(e)] ST (A4, 5 — A,n —w—14,25 — 2A) whereA denotes the complement of a sétSimilarly, we have

forj < n —6— ¢, andS,;(e) = & elsewhere. IC|Az; < |Ci NC;|P; + |Ci N Cy| Py (72)
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in the latter case by (62) and (63). Note tha#jf = F; and

P;; = P;in (62) and (63), then the polygon becomes a rec-
tangle and Proposition 17 reduces to Proposition 15. In all other
cases, Proposition 17 gives a stronger constraint on the distance
distribution Azs, Assto, ..., Az, than Proposition 15.

Remark: It would suffice to evaluate Proposition 17 for
¢ andj such thatmax{é, A + 1} < j < ¢ < w. The lower
bound comes from the earlier remark regarding Lemma 18,
while ¢ > j can be assumed without loss of generality.
Example 8: Suppose thatn, d, w) = (27, 10, 11), and
consider(z, ) = (11, 10). We have
P, =3 =1T(11, 11, 11, 16, 10)
P; =13 > T(10, 11, 10, 16, 10)
Py =2=1T'(6, 10, 5, 6, 10)
P =7>T'(6,11,4,5,8)
from Examples 16, 17, 11, and 13, respectively. Then Proposi-

tion 17 yieldSAQO + 7420 € 21 andAQO + 342 < 13. This
example will be concluded in Example 10. O

The following proposition gives another useful constraint on
the distance distribution of constant-weight codes derived from
bounds for doubly-bounded-weight codes.

Proposition 19: Forallj =6, 6 +1, ..., w — 1, we have

ZA% <T'(w—j,w,j,n—w,26). (73)
=i

Fig. 3. Theinequalities (67)—(70) define the region enclosed by the thick lines.
Its convex hull (shaded) is the domain(efz;, A- ;). Dashed lines indicate the
well-known bound of Proposition 15.

Proof: For any cod& € ®(H(n, w), 26) and any code-
word ¢ € C, the setUE":j So;(e) is a doubly-bounded-weight

We multiply both sides of (71) by; — P;; and both sides of C0de with parameters as in (73). .
(72) by P;;. Adding the results then yields Having established the constraints on the distance distribu-
(P; — P;)|C| As; + P,;|C|As; tion, we now state the linear programming bound itself.
7~ Ly i T L 3
<|CUC|P Py — |C:NC,;|(PPy; + PPy — PP;) Theorem 20:1f w < /2, then
< [C|P; Py, if P;Pj;+P;F;; —F,P; 20

where we have used some elementary set relations to establish

A(n, 26, w) < \‘maXZAQiJ +1
the firstinequality. This proves (63). The bound (62) follows by

=6

symmetry. To prove (64), we take a different linear combinatiofinere the maximum is taken over &, Azsz, ..., Azw)

of (71) and (72), namely, that satisfy the constraints in Propositions 15-17 and 19.

Pi[C|As; + Pi[C| Ag; Example 9: For (n, d, w) = (20, 8, 9), the linear program-
J % % J

ming bound, using the constraints developed in Propositions 17
G UGIPE; = 6N CGI(PE; = PiPji — Pilij). gpg 19, yieldsA(20, 8, 9) < 195. This improves upon the best
Finally, the bound (57) foi+j > n — & follows from the above Previously known upper bound @t 5. U

by observing that; N C; is empty in this case. u Example 10: Using the constraints oA, and A»» derived

From a geometrical viewpoint, the inequalities (67)—(70) cdA Example 8, linear programming yields the upper bound
be regarded as lines bounding a region in the plane. Two e27, 10, 11) < 900. O
amples are shown in Fig. 3. The definition of the distance dis- .
tribution in (54) implies that a pointA,;, A,;) is formed by D- Specific Bounds
averaging the point§|Sz;(c)|, |Sz;(e)|) for all e € C. Hence  In this subsection, bounds that hold only for specific values
the domain of(Ay;, As;) is the convex hull of the domain of of n, d, andw are collected and discussed. The following the-
(|S2:(e)], |S2;(e)]). This convex hull is a polygon with either orem lists all the relevant specific bounds that we are aware of.
three or four sides, depending on the valuestpf P;, F;;, This theorem does notinclude all specific bounds that have ever
andPy;. This is illustrated in Fig. 3 (top) and (bottom), respecbeen proposed; some of them have later been reproduced or su-
tively. In the former case, the polygon is bounded by (64) amrseded by general bounds.
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Theorem 21: for these parameters. In a similar manner, Honkala [34, Sec. 5]
obtained (91)—(95).

A(15,4,5) < 272 (74) A full search algorithm by Brouwer, Shearer, Sloane, and
A(13,6,5) = 18 (75) Smith [17] has contributed several exact valuesioh, d, w)

T compiled in [17, Table Ill]. The cases in Theorem 21 obtained
A(14,6,7) = 42 (76)  from this source are (76), (80), (85), (87), and (90). See also Ap-
A(17,6,4) = 20 (77) pendix A regarding the exact value of (90).

A(18,6,6) < 203 (78) The bounds (81) and (83) have been reported as results of
A(19,6,4) = 25 (79) linear programming [42, p. 688] and the Freiman—-Berger—
Johnson bound [37], respectively. Both [42] and [37] apparently
A(17,8,7) = 24 (80) ' used undisclosed constraints to obtain these bounds.
A(21,8,10) < 399 (81) Finally, the bound (82) is from [17, Table IlI], where the only
A(22,8,5) = 21 (82) justi_fication is: “By the Bose—Connortheorem asquare divisible
A(23,8,10) < 1109 83) designGD(5, 1, 2; 11 x 2) does not exist.” We believe it would
be useful to provide a more elaborate argument, as follows. Let
A(26.8,5) = 30 (84) (n, 26, w) = (22, 8, 5) and proceed in a manner similar to the
A(20,10,8) = 17 (85) proof of Theorem 13. From (52), we hal@ f; < 5 for all 4,
A(21,10,7) < (86) Which implies that
A(22,10,7) = 16 (87) .
_~N- el
A(22,10,10) < 73 (88) cl=> — <22
A(22,10,11) < 81 (89) = v
A(23,10,7) = 20 0)  For a code that attains this bound, we must h&y¢ = 5 for
A(26,12,11) < 69 (91) all i. Thet-tuples in this case are simply pairs, and out of all
A(26,12,12) < 83 (92) (%) = 231 pairs of positions, 220 are covered by the 22 code-
A(26,12,13) < 92 (93) words, in such_a way that each position i; c;ontained_in exaptly
A(27.12,10) < 65 o4 20 covered pairs. It follows that the remaining 11 pairs, which
( ) < 65 (94) are not covered by any codeword, are disjoint. This structure is
A(27,12,11) < 100 (95)  known, in the terminology of design theory, as a group divisible
A(28,12,8) < 20. (96) incomplete block design with parameters

We have not verified all the values in Theorem 21. Ingeneral, (v, 7, b, k, m, n, A1, A2) = (22, 5, 22, 5, 11, 2, 0, 1)
it is very difficult to check specific upper bounds found by
others. (As pointed out in [17], an extreme case of this is theit no such design exists [14].
celebrated result of Lam, Thiel, and Swiercz [38] that there
is no projective plane of ordei0, which is equivalent to E. Redundant Bounds

A(111, 20, 11) < 110. The proof of [38] is based on years wmany bounds for constant-weight codes have been proposed,
of research and thousands of hours of computer time.) Thyig not all of them remain competitive today. Our intent in this
Theorem 21 relies on the published literature. We now proviggyr s to listall the upper bounds for constant-weight codes
references for each bound listed in Theorem 21. known to us. Thus for completeness, we briefly mention in this
The bounds (77) and (79) were obtained by Brouwer [16] ar@ction those bounds that were evaluated in the present study
Stinson [51], respectively. The method used was assuming #i did not contribute to our tables in Section VII.
existence of a code with a higher value-&fn, d, w), identi-  Two standard bounds that we have so far omitted are [42,
fying properties of this hypothetical code, and arriving at a cop: 525 Theorems 1(d), 2]. As already mentioned, both are con-
tradiction. The bound (75) is given as a problem in [42, p. 53%hined in Corollary 5, and are often improved upon by this corol-
where it is suggested that it can be proved using a similar te¢firy. The upper bound version of [8, Theorem 20] also does not
nique. need to be separately considered. It can be shown that this the-
The bounds (74) and (78) follow from the nonexistence @frem is weaker than Theorem 10.
certain Steiner systems, while (86) and (96) follow from the Levenshtein’s bound [39, eq. (4)] relates constant-weight
nonexistence of certai2rdesigns [21], [25], [32] (see [17] and codes to doubly-constant-weight codes in precisely the same
the discussion following Theorem 12). These four bounds c@ay as the Bassalygo—Elias inequality (1) relates unrestricted
each be decreased by one using Theorems 11 or 13. codes to constant-weight codes. It yields, in conjunction with
The value in (84) was derived in [13] from the nonexistenage linear programming bound of [43], the best known upper
of a certain instance of what is known as a partial linear spaseund onA(n, d, w) asymptotically, as, d, andw tend to
[18, pp. 68—70, 435, 650]. infinity [4], [5], [48]. Nevertheless, neither [39, eq. (4)] nor its
The bounds (88) and (89) were obtained by van Pul [45, p. 3@fengthened version [39, eq. (5)] improve on any of the values
using linear programming with constraints specifically deriveith our tables. Neither does [41, Theorem 6.25], which has the
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same asymptotical performance. Apparently,< 28 is not Theorem 23:
large enough to do these bounds justice.

Known results on Steiner systems yield exact values of o
A(n, d, w) in a number of cases [35, p. 207], [8, p. 90], [17, T'(wy, n1, w2, n2, 2(wy +wa)) = w_QJ
pp. 1339, 1341]. All such values were also obtained by some owy W
other means in our investigation. if n < g (98)
The linear programming bound suggested by van Pul [45, ny + no
Sec. 3.3]was implemented, and we also combined his constraifit (w1, 71, w2, n2, 2(wy +ws)) = 7J
. . . . w1 + w2
[45, p. 20] with the constraints of Section IV-C. No improve- D owy e
ments were obtained from this general approach, but including if n 2 o (99)
constraints specific for each instance/of d, w) has led to in- n
teresting results; see Section IV-D. T'(wy, ny, w2, n2, 2(ng + wy — wy)) = g ngJ ’
. W1 wo
V. BOUNDS ONT’(wl, niy, Wz, N2, d) it ni + no <1 (100
All the bounds for doubly-bounded-weight codes derived7” (wy,ny, wa, na, 2(ns +w; — w)) = EJ ;
here are new. Our motivation for introducing and studying L W1
these codes is that they have strong connections to con- if L Y259 (101)
stant-weight codes. Several methods for bounding the size of o 2
constant-weight codes based on doubly-bounded-weight codeg; (v, ny, wy, na, 2(ny + ny — w1 — ws)) = { ny J ’
either directly or indirectly, via doubly-constant-weight codes, ny —wy
are presented in Sections IV and VI. These relations are also if WL <2 (102)
summarized in Fig. 1. ny - n2
T (w1, n1,wa, ng, 2(n1 + N2 — wi — w2))
A. Elementary Bounds _ { (2 Sl J R (103)
As defined in Section Il, a doubly-bounded-weight code , L™ F 2 — Wy — Wy noone
is any subset oft’(wi, ny, w2, n2). Thus doubly-bounded- T (w1, n1,w2,m2,d) = 1,
weight codes are a subclass of constant-weight codes obtained if d>2min{w;+ws, no+w; —wy,
by imposing an upper bound on the weight of the head or n14ng—wy—wsy}. (104)

a lower bound on the weight of the tail. Let

Proof: The distance between two codewords of a code
p Eminfw;, na — ws}. (97) i H'(wi, ny, wa, m2) €quals 2wy + 2wy if and only
if their ones are in disjoint positions. The total number
of codewords with disjoint ones is upper-bounded b
It follows immediately from the definition (3)thatforanyvectorL(n1 ¥ one)/(wn + wQ)JJ Similarly, the tgfal number of y
in H'(wy, ny, wa, n2), t'he weight qf the head ranges f_romcodewords with disjoint ones in the tails is upper-bounded
wi —ptowy, and thewelghtofthetallranges,correspond|ngl¥jy lna/ws]|. Thereby the upper bound versions of (98)
frog w2 10 thJFf' he relations in the following. th and (99) are proved. To prove that these bounds are attain-
!n;:]ef eac do the re Emons 'P the following theorem gy, e \yith equality, we consider two constructions. First, let
straightforward, we omit the proofs. C. € ®(H(ni, w), 2w;) andCo € ®(H(na, we), 2ws)
Theorem 22: with |C1]| = |C2| = |n2/w2]. Such codes exist, according to
(37), if [na/ws| < |ni/wi]. The code formed by joining
each codeword i¢; with a unique codeword if; belongs to

! —
T'(0,n1, we, n2, d) = A(nz, d, w2) O(H (w1, n1, we, n2), 2w + 2ws), which proves (98). Now,
T’ (n1,n1, w2, ne, d) = A(ny + ne, d,n1 +wa) letC be a code ifP(H(ny + na, w1 + we), 2wy + 2ws) with
T'(wi,n1,0,n2,d) = A(n1 + n2,d,wr)
T/(wlv ni,n2,na, d) = A(nlv d7 wl) |C| = L(TLl + ﬂg)/(wl + IUQ)J .
T/(T,Ul, ny,wz,n2, d) = T/(TLQ — W2, N2,N1 — WL, N1, d)
T (w1, n1, wa,n2,d) =T (wy, n1,we,n2,d+ 1), Then reordering the positions so that all codewords have at most

if dis odd wy ones in their heads (which can be don@ifC| < ni) com-
n N pletes the proof of (99).
T'(wi,n1,w,m2,2) = Z <w _ L) <w 1 L) The proofs of the remaining cases, except (104), are similar.
i=0 N1 2 The distance between codewords whose ones in the heads and
zeros in the tails are in disjoint position<i&:» +w; —w-), and
In the following cases, simple expressions exist for the exabe distance between codewords with disjoint zeros in all posi-
value of T’(wy, n1, wa, no, d). tions is2(ny + ny — w1 — we). The details of these proofs are
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omitted. Finally, (104) follows from the foregoing two observa-  Proof: The bound (110) is obvious from (3). To prove
tions, along with the fact that the distance between two codd-11), let

words cannot be greater tham; + 2w,. u ) — (1 1,0 0)
Cc = PRI g Uy ey
Example 11:From (102), we havé”(6, 10, 5, 6, 10) = 2 wi 44 w1
(this example is continued in Example 8). U e

H !
The simple nature of the next bound may suggest that it is and consider a codé € (7' (wy, n1, uf2’,n2)’ 25). Now
. ! . = CU{¢} is a constant-weight code witfi’| = |C| + 1. Its
very strong. It is, however, useful in certain cases, as deman- . o .
. minimum distance is
strated later in Example 12.
d(C’) = min {d(C), min d(e, c’)} . (112)
Theorem 24: ceC

To derive a lower bound oi(e, ¢'), we consider two cases. If
, , wi + wo < m1, then the tail ofd is all-zero, which implies
T’ (w1, n, wa, ng, d) ST (wy + 1m0, wy — 1,n9,d), that heads and tails each contribute at leasto the distance.

if w; < npandwe >0 (105) Analogously, ifw; +ws > n1, then the head af contains only
!

T (wy,ny,way g, d) <T'(wi,ny +1,ws,np,d)  (106) ONes, and heads and tails contribute at least w, each to the
T'( d) <71 1 1 4 (107 distance. Hence _

wi,ny, w2, 2, d) ST (witlni+l wa, na,d) (107) d(e, ) 2 2w, if wy +wa <y
(w1, 1, w2,z d) ST (wy, 1, w2,m2 +1,d)  (108) de, &) > 2 —2wy,  fw twy >
T (wy,n1, w2, d) < T'(wy, n1, we+1,np+1,d). (109) ©F equivalently,

d(e, d) 2 2min{n; — wy,ws}
_ ) forall ¢ € C. Thusd(C’) =z 2min{é, ny — w1y, wa}.
/ Proof: The bound (/105) is a consequence of the fa}ct that-l-0 prove the equality part of (111), consider any constant-
M (wi, na, w2, n2) © H(witl, ny, wo—1, n2). Appending \eight code that attaind(n, 26, w). If we reorder the bits so

a zero or a one to all codewords of a douny-bounded-weigllﬂt(.ﬂ(1 ...,1,0,...,0)is a codeword and then remove this
code yields (106)—(109). ®  codeword, then all of the remainind(n, 26, w) — 1 code-
Theorem 25:Let p be as defined in (97). Then words have at leasgtzeros in the firstv positions. The doubly-
bounded-weight code formed by these codewords demonstrates
that

T'(wy, ny, wa, n2, d) < T(wy, n1 +p, w2 +p, nz +p, d).
A(n,26,w) — 1 < T (w — §,w,8,n — w,26).

Proof: Extending the head of a doubly-bounded-weightekingn: = w, ny = n —w, w1 = w — 6, andw, = é inthe

code withp bits, suitably chosen for each codeword, assures ti#0ve expression completes the proof. =
the weight of the. head is a constant. An additionalp extra  Example 12:77(1, 5, 5, 13, 10) < A(18, 10, 6) = 4 di-
bits make the weight of the tai; + p. B rectly by Theorem 27. If, however, Theorem 24 is used as an
Theorem 26:Foralli =0, ..., p—1 intermediate step, the bound can be improved to
T'(1, 5,5, 13, 10) < T'(1, 5, 6, 13, 10)
T/(w17n17w27n27d)ST/(wl_i_17n17w2+i+17n27d) <"4(197 107 6)_1:3 U

+T(w1an1 +i,UJ2 +'l:,712 +1’?d) Theorem 28:

1

!
T (wlanl_lanaTLQa d)J ’
ni—w

Proof: We partition a code i (H' (w1, n1, we, na), d) T' (w1, n1, w2, 2, d) < {
into two subcodes. Let the codewords with weight at most if w, < ny
wy — ¢ — 1 in the heads form one subcode and the remaining
codewords form another. The former subcode belongs fb’(wl,nl,wQ,m,d)S{
H(w; — ¢ — 1, n1, we + ¢ + 1, n2). In the latter subcode,
the weight in the heads ranges fromy — ¢ to w;, and
in the tails fromws to ws + i. Extending the latter code Proof: Consider a cod€ € ®(H'(wy, n1, wa, n2), d)
with 2¢ bits as in the proof of Theorem 25 yields a code iand form a new cod€; by shorteningC in the jth position,
H(wy, ni+4, wati, na+1). m wherel € j < ni (this consists of selecting all codewords

Theorem 27: for which thejth bit is zero and thereafter deleting tjté bit).

) The total number of zeros in the heads of all codeword§ of
T (w1, n1,w2,n2,28) < A(ny + n2, 286, w; +we)  (110) equaIsZ;’;1 |C;]. On the other hand, the same number is lower-
T (wy, ny, wa, na, 26) bounded by(n: — w1)|C|. Since

ET/(wlvnlvru)Q_lvnQ_lv d)J )
wa

if wy > 0.

< A(ny 4 n9,2min{é,n1 — wy, we}, w1 + wa) — 1. C; € O(H (w1, n1 — 1, wa, na), d), for all 5
(111) we have
The latter bound holds with equalitydf= ny — w; = wo. (n1 —w)|C| € mT (w1, n1 — 1, w2, n2,d).
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This proves the first inequality in Theorem 28. Similarly, th€”(1, 11, 10, 16, 10) < 13. Similarly, Theorem 29 reduces the
second inequality is proved by counting in two ways the numbepper bound fofl”’(6, 11, 4, 5, 8) from 8 (Example 14) tor.
of ones in the tails. m This example continues in Examples 17 and 8. O

The next bound is similar to a bound for doubly-constanf; Doublv-Bounded-Weight Cod Zonal Cod
weight codes, given by both Levenshtein [39] and Johnson [37, nary Loubly-solincec-ivelg odes as conalL-odes

eq. (20)]. We use the notation of [39], which shows the connec-In Section 1lI-A, bounds on unrestricted binary codes, con-

tion with (28). stant-weight codes, and doubly-constant-weight codes were ob-
tained by mapping these codes into Euclidean space and ap-
Theorem 29:1f b > 0 andw; /ny < w2 /n2, then plying known bounds for spherical codes. Now, an analogous
, § bound will be derived for doubly-bounded-weight codes. We
T (wy,ny, we, ng, 26) < {ZJ (113)  have found this bound to be particularly successful in conjunc-
here tion with Proposition 17.
w The new bound depends on the existence of upper bounds on
p=g_ M (n —wy) wa(ng —ws) the cardinality of zonal codes. One such bound for zonal codes
n1 n2 will be presented in the next subsection.
n w ny —w
+ MIQ {M—l} {M : - } Theorem 30:
1 1
+ﬂ_22{M%} {MHQ—U/Q} T/(w17”17w27”27d) , _ ,
M n2 n2 <Az +ne— 1,1 —=2d/r", vp, i), ifd<r
M =T (wy,n1, w2, n2,26) T'(wy,ny, w2, ne,d) =1, if d>r?
and{z} denotes the fractional part— |x|, as in (41). where
Proof: The proof is based upon Proposition 7. We take 9e
n = n1 + ng and letC € ®(H (w1, n1, wa, n2), 26). Then ~r = arcsin <f(n1w2 — n2w1)>
the following constraints hold fofi, ..., fu,4+n,: 27
. C
0< f; €1, fori=1,...,n1 +no (114) YH = arcsin <7(n1w2 — nawy + pny +pn2)>
Mf, el, fore=1,...,n1+n 115 o 1
f 1 2 (115) o def (120)
ot nina(ny +n2)
> fi<w (116)
o1 . def o [ (w1 +w2)(ng + 12 — wy — wa) (121)
ni+ns ny + no
i =Wy + ws. 117 . . .
; fi=wn +un (17 andp is as defined in (97).

) s _ ) Proof: Letn = n; + no andw = w; + wy. Then
The maximum of ;2™ fi(1 — f;) subject to the constraints o (7¢(5, 1)) is a subset of thén — 1)-dimensional sphere,

(114)-(117) is whose radius; and centere; are given by (19) and (20).
wi(ng —wy)  wa(ng — wa) Every codeworde of a doubly-bounded-weight code belongs
+ to H i iti isfi i

ny N (n, w) and, in addition, satisfies a constraint en w;
n wy ny — wn given in (3). To translate this constraint into a constraint in
M2 {Mn_l} {M n } Euclidean space, we first define a normalized “north pole”
o wo N — ws vector e in the (n — 1)-dimensional subspace that contains
e {Mn—} {M " } (118) Q(H(n, w)). A vectoru € R™ belongs to this subspace if and

2 2

only if (v — ¢1) - 1 = 0. Thus we take
if wl/nl < UJQ/TLQ, and

e lef cniy — cenql
(w1 +w2)(ny +n2 —wy — wo) o ! !

n1 + no wherew, is given by (4) and: is given by (120). Notice that
n1 + no w1y 4+ wo N1+ ne — w1 — Wo (e—¢;1)-1 = 0 and the constant in (120) is chosen so that
B v anE Elearaml & Kl —m— (119) |i¢)|> = 1. Now, from (17) and (97), it follows that any ¢

/
otherwise. Substituting (118) for the sum in (32) completes tﬁé (
proof. | ny — 2wy < Ux) -ug <ny — 2w +2p (122)

wi, N1, we, no) satisfies

Remark: An alternative bound is obtained if (119) is substiand (16) shows that
tuted for the sum in (32), but this bound has already been cov-
ered by a combination of Theorems 10 and 27. Qz)-1=n—2w=mn; +n2— 2w — 2ws.

Example 13: From Example 14 in the next subsection, wdVe create the Euclidean code
have?”(1, 11, 10, 16, 10) < 14. Suppose that equality holds. of [ Q@) —c
(1,11, 10, 16, 10) PP q y Cd:f{i( )7 1::(:6H’(IU1,ﬂ1,IU27712)}

Then Theorem 29 yieldd/ < 13, a contradiction. Hence, (123)
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wherer = 7 is given by (121). It is obvious from the normal- We point out that the bound of Theorem 31 depends on
ization in (123) that|y||> = 1 andy -1 = 0 forally € C,and As(n, s), the maximum possible cardinality of a spherical
the fact that codeC € Pr(S(n), v2—-2s). Fors < 0, the value of
As(n, s) is known exactly (see (11)—(13)) and this is the case
sinyr SyY-e<sinyy where we have found Theorem 31 to be most useful; through

follows from (122). This proves th&t, and every subset thereof, Theorem 30 and one of the paths in Fig. 1, numerous upper

is a zonal code. To complete the proof, the maximum cosingdgunds onA(n, d, w) were improved. Fos > 0, we have
obtained from (10) withl = 2v/d. used Levenshtein’s upper bound [40], which resulted in some

additional improvements fofl” (w1, ni, we, na, d) at the
Example 14: It follows from Theorem 31 (as shown in Ex-expense of higher complexity. However, these improvements
ample 15) that did not propagate tel(n, d, w) or T(wy, n1, wa, na, d), for
Az(26, 41/176, arcsin(47/88), arcsin(11/16)) = 14. n=mng+n2 < 28

Thus Theorem 30 implies th&’(1, 11, 10, 16, 10) < 14.

_ . VI. BOUNDS ONT d
Similarly, Theorems 30 and 31 yielff'(6, 11, 4, 5, 8) < 8. (wr, mu, w2, 2, d)

This example continues in Example 13. O Doubly-constant-weight codes were introduced by Johnson
[37] and, independently, by Levenshtein [39] in the early
C. A Bound on Zonal Codes 1970s. Both Johnson [37] and Levenshtein [39] used these

des as a tool to obtain sharper bounds for constant-weight
godes, although the specific methods derived in [37] and
] differ from each other. Best, Brouwer, MacWilliams,

Odlyzko, and Sloane [8] gave a linear programming bound

In this subsection, an upper bound on the cardinality of zonal
codes is presented. The proof is deferred to Appendix B. T
principal application of this bound is in conjunction with The+

orem 30. for doubly-constant-weight codes. They also applied this and
Theorem 31:1f 0 < v, < vy < 7/2, then other bounds for doubly-constant-weight codes to sharpen
Az(n, s,v0,vi) < F, if vir > e (124) g]gggseiigr?rfg)rammmg bound for constant-weight codes (cf.
Az(n, sy, vm) =1, !f § < s 271 (125) | this section we list all known bounds on doubly-constant-
Az(n,s,ye,yu) =1+L, if s=sinyy, vy =7/2 weight codes, including several new ones. Another useful bound
(126) is given in Section llI-B as Corollary 6.
A =L herwi 127
25,71, v1) ’ otherwise (127) A. Elementary Bounds
where As for A(n, d, w) andT” (w1, n1, wa, n2, d), we begin the
Pt Inin{AZ(n,s,fyG,fyH) +L, exposition of bounds for doubly-constant-weight codes with
some straightforward equalities, given without proof.
s — sin~yg sin vy
Asn—-1, ———— | ¢, Theorem 32:
COS YL, COSYH
if s <cos(yw — L) T(wy, 1, wa,n2,d) =T (w2, n2,w1,n1,d)
F defAZ(n $,YG,YH) + L, if s 2 cos(vw — vr.) T(wy, ny, w2, n2,d) =T(ny — wi,ny,wa, 2, d)
t =
Ve def ™+ — 2arctan cor L (128) T(0,n1,wp, n2, d) = A(na, d, w2)
9 -5 T(w17n1707n27 ):A(nl d wl
def s —sin vy, n
L=A -1, ——=. 129 (™
S <7’L " cos2 vr ) ( ) T(wl,ﬂl,UJQ,TLQ, ) = <w1> < )
AlthoughF"in (124) depends on the value 8% (), the fore-  7'(w; ny, w, ng, 2w1 + 2w,) = V_lJ , w2 < wi
going theorem yields a finite bound otz (n, s, vr, vi) for w nz2 M
any0 < v €< vy < n/2and—1 < s < 1. Typically, case T 9 9 _ | P2 w2 Wi
(124) would be applied recursively, each time increasjag (w1, w2, nz, 2wy + 2ws) 2|’ T2 > n1
until one of the other cases holds. T(wy,ny,wa,ne,d) =T(wy,ni,w,ne, d+ 1),
Example 15: Considern = 26 ands = 41/176. Then for if d is odd
~vr = arcsin(47/88) andyy = arcsin(11/16), we obtain T(wi,n1,wa,ne,d) =1, if d> 2w; + 2ws.
Yo =7 — arcsin (3;1’?2) > YH- The first two equalities in Theorem 32 are the two basic “re-
Since none of (124)—(126) is applicable, we conclude that (12ﬂ;90t|on operations” for doubly-constant-weight codes. Alter-
must hold. Thus nating these operations generates an eightfold symmetry in the

4 7" domain, and thereby partitions this domain into eight octants.
Az (26, {75, arcsin (55) , arcsin (15)) = L = As (25, T) Thus for all sets of parametefs;, n1, wo, no, d), there ex-
which, from Example 1, is equal tol. This example continues ists another set that belongs to a given octant and has the same
in Example 14. O T value. For the sake of brevity, all the theorems in this section
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are given only for parameters within the octant wheyes no, Proof: Consider a cod€ € ®(H (w1, n1, wa, na), 28)
wi < n1/2, andwz < n2/2. and define’ < ¢ U {¢}, where
Example 16: From Theorem 32, we have ,
¢=(0,...,01,...,1). (138)
—— S——

T(11, 11, 11, 16, 10) = T(0, 11, 11, 16, 10) e T
= A(16, 10, 11).
There are two cases, depending on whether wy < no Or

Recall thatA(16, 10, 11) = 3, as was shown in Example 5.not. It is easily verified tha€’ € H'(w:, n1, w2, nz) in both

This example continues in Example 8. L cases. The minimum distance@fis given by (112), where
The following theorem consists of four inequalities, all of , )
which can potentially improve upon an upper bound for doubly- d(e, ) > 2wy, if wy + w2 <np - (139)
constant-weight codes. Hence, all four inequalities should be d(e, €) > 2ny — 2w, if wi +wy =2n2  (140)
considered, even when the parameters are confined to one oc-
tant only. or, equivalently,
Theorem 33: d(e, ¢) = 2min{wi,ny — wa} (141)
T(wy,n1, wa,n2,d) < T'(wy, n1, w2, m2, d) (130) forall ¢ € ¢/, which completes the proof of (134). The bounds
T(wi,ny, w2, n2,d) < T (ny —wy,ni, we,n2,d) (131) (135)—(137) follow from repeated application of the first two
T(wy,ny,w, g, d) < T (w1, ny, ng—ws, na, d) (132) equalities in Theorem 32. ]
T(w1,n1,wa,n2,d) < T'(ny —wi,n1,ne—wa,na, d) (133) The following theorem is due to Levenshtein [39]. Note that

the right-hand sides are independent.ofandn., respectively.

X CH .
Proof H(wl, ni, wa, 712) C H (wl, ny, wa, 712) || Theorem 35:

Example 17: We have
T(wy,ni,we,n2,d) < A(nz, d — 2w, wa), if d> 2w,
A

(nl,d—ZwQ,wl), if d> 2w2

N IN

7(10, 11, 10, 16, 10) < T'(1, 11, 10, 16, 10) < 13 T(wr, ny, ws, i, d)

where the lastinequality comes from Example 13. This exampleThe following bounds, analogous to Theorems 9 and 28, were

continues in Example 8. U first given by Johnson [37].
Example 18: Combining (130) with (110) yields Theorem 36:
T(wy,ni,we,n2,d) < A(ng + n2,d, wy + w2). T(wy,ny, w2, n2,d) < ET(wl—l,ﬂl _ 1’w2’n2’d)J ,
L W1
Of course, this is also immediately clear from the definition of if w>0 (142)
T(w1, n1, we, na, d). This trivial bound, which was known to n1
Levenshtein [39] in 1971, nevertheless updates some of the bektw 11, Wz, N2, d) < P T(wy,n—1,wz,n2,d) |
known specific upper bounds for doubly-constant-weight codes. if wi<ny (143)
For example (2, 6, 5, 15, 10) < 13, an improvement from Ny
15in[8]. O  T(wi,ny,w2,n2,d) < w—QT(w17ﬂ17w2—1,ﬂ2—17d)J
In analogy with (111), the inequalities in Theorem 33 can be ] if wa>0 (144)
improved upon in some cases, which is our next theorem.
P P (w17n17w27n27d) < e T(w17n17w27n2_17d)J ’
Theorem 34: L2 — W2

if wo <ng. (145)

T(UJ1,711,UJ2,712,26) i
< T (wi, e, wa, o, 2108, w1, ne—ws} ) — 1 (134) Remark: Bounds ana_logous to (14_12) and (145) do not eX|s_t
for doubly-bounded-weight codes, since the number of ones in
the heads and the number of zeros in the tails are not lower-
< T'(n1—wi, n1, w2, ne, 2 min{é, ny —wi,n2 —wa2})—1  pounded in this case.
(135)

T(w17 g, ws,n2, 26)

T(wy,n1, wa, N2, 28) B. Linear Programming

< T'(wi,ny,n2 —wz, 2, 2min{6, wy, wy})—1 (136) A distance distribution can be defingd for doubly—congtant-

weight codes, whose components are indexed by two variables.

) . We refer the reader to [8] for more details. Based on this distri-

< T'(n —wi, n1, n2—wa, n2, 2min{, n1 —wi, wa})— 1. bution, the following linear programming bound was given
(137) in[8].

T(w17 ny,ws,n2, 26)
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Theorem 37: of obtaining upper bounds based on other bounds yields
a complicated pattern of dependencies, as shown in Fig. 1. To

w1 w2 provide each theorem with the best possible input, the loops in
T(wy,ny, w2, n2,26) < 1+ |max Z Z Agi,2; this figure were evaluated iteratively until a steady state was
=i j=jo reached.

The tables also reference the number of the theorem from
which each bound was obtained. Although, in many cases, the
same bound can be obtained using more than one method, we
mention only one method for each bound. In this regard, we have
given precedence to universal methods (as opposed to methods
applicable to certain parameters only), to analytical methods

The main set of constraints for this linear programming bourt@s opposed to computerized search methods), and to relatively
is given by the following proposition [8]. simple methods. We have also tried to keep the total number of

methods used in the production of the tables at a minimum.

whereiy = max{0, 6 — w2} andj, = max{0, 6 — ¢}. The
set of optimization variables consists of alb; »; for which
0<i<wy, 0<j < ws, andi+j = 6, while the maximization is
carried out over all sets of these variables that satisfy.; > 0
and Proposition 38.

Proposition 38: For all k. = 0, ..., w; and for alll = Tables I-VI give upper and lower bounds €fin, d, w) for
0, vvvy w2 all n < 28 and all evend € 14. For eachn andd, w ranges
wy wo fromd/2+1to [n/2]. The values ofA(n, d, w) for w outside
Z q(k,i,ny,wy) Z q(l, §,na,wa)Agiaj = —1 this interval or for odd] are given by Theorem 8. Finally, for
i—in =0 n < 28 andd = 16 or 18, exact values ofi(n, d, w) are given
in [17].
whereg is defined by (56) and, jo are as in Theorem 37. All the lower bounds in Tables I-VI are taken from
http://www.research.att.com/~njas/codes/Andw/, an updated
C. Specific Bounds and extended version of [17]. Boldface indicates updates to the

To the best of our knowledge, the only specific upper bouriPper bounds in the tables of [34] and http://www.research.
for doubly-constant-weight codes has been reported in [3@ff.com/~njas/codes/Andw/. Those tables cowers 24 for
namely,7(1, 6, 6, 15, 10) < 7. This was later identified as ad < 10 andn < 27 for d = 12. Superscripts refer to theorem

typographical error in [17]. numbers in this paper.
One can conclude that most progress since similar tables were
D. Redundant Bounds last published has been made tbr> 8. Out of the 23 unre-

We now list bounds on doubly-constant-weight codes th’i’\?lved instances fof = 8 in [17]'.[34] fourteen have now been
were evaluated but did not yield any competitive values withﬁﬁpdat.ed' Forl = 10, ten out of eighteen mstancgs are updated,
the studied range of parameters. of which two are settled exactly. The cor'respondlng nymbers for

The bounds [39, eq. (8)] and [37, eq. (19)], which despite dig—: 12 andd = 14 are, respectively, Six out of 13 with three
parate notation are completely equivalent, are inferior to Cor&g(act values and three out of three with two exact values.
lary 6. The bounds [39, eq. (11)] and [37, eq. (20)] are also
equivalent to each other, and they are precisely what one gets
by combining Theorems 29 and 33.

Theorem 3 is a strong bound, but only when< 0. This

special case is Corollary 6. When> 0, Theorem 3 can be . . . .
evaluated using the bound of Levenshtein [40lAdr., s). This, . As pqmted outin [37], there exist errors in some of the pub-
U ' lished literature on constant-weight codes. Johnson [37] pro-

however, does not improve upon the values obtained throu\%ﬁaes a list of known errata. A similar but more extensive list
Theorems 32-37 within the studied range of parameters. . : ' : . . '
covering more recent literature, was included in [17]. In this sec-

tion, we supplement these two lists with many newly discovered

errata, and also comment on some of the known ones. We do not,
This section contains tables of the best known bounds bowever, listall errata previously reported.

A(n, d, w), which were obtained using the results presented The boundsA(9, 4) < 20, A(10, 4) < 39, A(11, 4) < 82,

in this paper. The authors would appreciate hearing of any imnrd A(12, 4) < 154, which were claimed by Wax [55], cannot

provements to the tables. To conserve space, our tables of ugpeobtained by the methods proposed in [55]. This was proved in

bounds for7”(wy, ny, we, ne, d) and T'(w1, n1, wa, na, d) [8]. In fact, no useful contributions remain today from the

are published electronically only [3]. On the same website [3]Vax [55] bound.

we will also keep record of any updates or corrections that areJohnson [35] claimed without proof that(15,6) < 127,

brought to our attention. A(16,6) < 248, A(14,6,5) < 27,andA(16,6,5) < 40. These
Most of the theorems in this paper yield upper boundse incorrect, as these bounds do not agree with the exact values

that depend onA(n, d, w), T'(wi, ni1, wa, no, d), or thatare well known today [42, pp. 674, 686].

T(wy, n1, we, na, d). However, these entities are in general The following corrections relate to the well-known paper of

not known exactly. This problem is easily overcome by sulBest, Brouwer, MacWilliams, Odlyzko, and Sloane [8]. In [8,

stituting any upper bound for the exact value. This strateg¢ggend of Table IIA], “From Theorem 9 ...” and®From The-

APPENDIX A
ERRATA IN EARLIER WORK

VIl. THE TABLES
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TABLE |
BOUNDS ON A(n, 4, w)

T w
3 4 5 6 7 8 9

6 45

7 78

8 85 147

9 129 189
10 139 309 369
11 17° 359 66
12 20° 519 80 — 84° 1329
13 269 65 123 — 1329 166 — 182°
14 289 91° 169 — 1829 278 — 3089 325 — 3649
15 359 1059 237 — 27118 389 — 4559 585 — 6607
16 379 140° 315 — 336° 615 — 7229 836 — 1040° 1170 — 13207
17 || 44° 156 — 157° 441 — 476° 854 — 9529 1416 — 1753° 1770 — 2210°
18 489 1989 518 — 5659 1260 — 1428° 2041 — 24489 3186 — 39449 3540 — 44207
19 579 2289 692 — 7529 1620 — 17899 3172 — 38769 4667 — 58149 6726 — 83269
20 60° 2859 874 —912° 2304 — 25062 4213 — 51119 7730 — 9690° 10039 — 129209
21 709 3159 1071 — 1197° 2856 — 31929 6156 — 7518° 10753 — 134169 16897 — 22610°
22 739 3859 1386° 3927 — 4389° 8252 — 10032° 16430 — 20674° 25570 — 327949
23 839 418 —419° 17719 5313° 11638 — 14421° 23276 — 288429 40786 — 52833°
24 889 4989 1895 — 2011° 7084° 15656 — 182162 34914 — 43263° 59387 — 76912°
25 || 100° 5509 2334 — 2490° 7772 — 8379° 21106 — 25300° 46872 — 56925° 88748 — 120175°
26 || 104° 650° 2670 — 2860° 10010 — 10790° 26920 — 31122° 65364 — 822259 128050 — 164450°
27 || 1179 702° 3276 — 3510° 12012 — 12870° 35510 — 41618° 87709 — 105036° 186058 — 246675°
28 || 1219 8199 3718 — 3931% 15288 — 16380° 44747 — 51480° 121403 — 145663° 260224 — 326778°
n w

10 11 12 13 14

20 13452 — 16652°
21 20188 — 27132°
22 36381 — 49742° 39688 — 542647
23 57436 — 75426° 73794 — 104006°
24 96496 — 1267999 116937 — 164565° 146552 — 2080127

228901 — 3428437
398381 — 624387°
675262 — 1022580°
1154541 — 1789515°

196449 — 288179°
315700 — 454480°
510571 — 766935°
806303 — 1130220°

25 || 140605 — 1922807
26 || 218905 — 312455°
27 || 330347 — 444015°
28 || 502068 — 690690°

425050 — 6856867
778872 — 1296803°
1400118 — 2202480°

1520224 — 2593606°

orem 6 ...” should both be replaced by a reference to the un-Furthermore, in [17, Table 1], A(23, 10, 7) = 21" should
named theorem immediately before [8, Sec. IV-A]. In the sanfe “A(23, 10, 7) = 20" and the corresponding entries in [17,
legend to [8, Table 11A], the referencé@See [31], [34]” does Tables I-D and XVI] should give0 as an exact value [49]. The
not apply forA(12, 6, 5) and A(13, 6, 5); see Example 3 and value A(21, 10, 8) = 21 in [17, Table I-D] is not explained
Theorem 21 in the present paper. To quote [17], all the lineiar[17, Table Ill]. It appears possible that [17, Table I-D] was
programming bounds fof = 10 in [8, Table IID] should “be wrong in stating that the value fe¥(21, 10, 8) was exact rather
regarded with suspicion” until further checks are made. Othlran a lower bound [49]. Alsd(2, 4, 7, 16, 10) > 19 [17, p.
checks and Honkala’s [34] together verify all of these bound$359, line 11] should b&'(2, 4, 7, 16, 10) < 19 and “line 3"
There are three more errors in [8, Table IlI], in addition to th|iL7, p. 1360, line 13] should be “line 23.”

five errors reported in [17]. The bound¥2, 5, 7,16, 10) < 30 Finally, in [1, eq. (3)], <" should be =.”

andT(3, 6, 7, 16, 10) < 60 originate from the known error  As demonstrated by this list of errata, and by the lists in [37]
T(2,4,7,16,10) < 18, which was corrected in [17]. Our and [17], it is very difficult to collect a large number of bounds
best upper bounds in these cases&f®, 5, 7, 16, 10) < 31 without introducing some errors. We would welcome reports of
andT7'(3, 6, 7, 16, 10) < 62. In [8, Table 1lIC], the value of any corrections and updates to this work.

(3, 8, 3, 7, 10) should be3, not2. Also, in the last two lines
of [8, p. 85], “B;” should be “4;,” while “ A(}})"in [8, Theorem
20] should be A(%).”

In [42, p. 689], the values o&(16, 10, 7) and A(16, 10, 9)
should bet, not3. The linear programming bounds fér= 10 In this appendix, we prove the bound on the cardinality of
are as unreliable in [42] as in [8]; see above. zonal codes given as Theorem 31 in Section V-C. We distinguish

The foregoing comments on [42] apply to [31] as wellbetween two casesy < /2 andvyy =7 /2. Upper bounds for
In addition, “[13, (29)]" in [31, p. 40, line 32] should bethese two cases will be derived separately in Lemmas 43 and 44,
“[13, (27)]" and “[5, Table llIA]" three lines later should be respectively. These two lemmas, along with the lower bound of
“[3, Table IlIA].” Lemma 45, yield Theorem 31.

APPENDIX B
PROOF OFTHEOREM 31
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TABLE I

BOUNDS ON A(n, 6, w)
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T w
4 5 6 7 8 9

R 210

9 3%
10 55 6°
11 65 118
12 95 128 225

13 135 1821 269

14 145 2820 4220 4971
15 155 429 7020 69 — 789
16 20° 489 1129 109 — 138° 120 — 15029

17 || 202! 689 112 — 1367 166 — 2349 184 — 28320

18 229 69 — 729 132 — 20213 243 — 3499 260 — 42820 304 — 42570
19 || 252t 76 — 83° 172 — 228° 338 — 52020 408 — 73414 504 — 78920
20 30° 84 — 100° 232 — 2769 462 — 6519 588 — 110714 832 — 136320
21 319 108 — 126° 269 — 3509 570 — 8289 774 — 169514 1184 — 236420
22 379 132 — 136° 319 — 462° 759 — 1100° 1139 — 22779 1792 — 377520
23 40° 147 — 170° 399 — 5219 969 — 1518° 1436 — 31629 2271 — 5819°
24 || 42° 168 — 192° 532 — 680° 1368 — 17869 1882 — 45549 3041 — 84329
25 509 2109 700 — 8007 1900 — 2428° 2590 — 5581° 4127 — 12620'%
26 529 2609 9109 2600 — 2971° 3532 — 7891° 5703 — 16122°
27 549 260 — 280° 1170° 3510° 4786 — 10027° 7727 — 23673°
28 || 63° 280 — 302° 1170 — 1306° 4680° 6315 — 12285° 10313 — 31195°

n w

10 11 12 13 14

20 944 — 142170
21 1454 — 270220
22 2182 — 441620 2636 — 506420
23 2970 — 752120 3585 — 795320
24 4200 — 1218614 5267 — 14682° 5616 — 1590620
25 || 6036 — 1903714 7960 — 246302° 9031 — 305877
26 8695 — 2889314 12037 — 4208120 14836 — 5020420 15977 — 61174°
27 12368 — 435299 18096 — 6607920 23879 — 8457420 27553 — 9108020
28 || 17447 — 637561% 29484 — 1042312° 40188 — 142117 49462 — 16422020 52395 — 1697402°

Throughout this appendix,denotes the maximum cosine be- Lemma 39:If s < sin vy, thenvyg > 1. + arccos s > 7 /2.
tween points of a zonal code, as defined in (10). Thus If s =sin~r, thenyg = 1. + arccoss = 7 /2. If s > sin~yy,
thenyg < v + arccos s < 7 /2.

-1<s<l. Proof: Follows by rewriting (147) as

We will make use of the functioyi(-) and the angle;, de-

fined as follows. For any-7/2 < «, 3 < 7 /2 NG =7 g, — 2 arctan tan arcsin s .tanw m
tan vy, 2
s 3
s, gyt S Smasmp Sm“Sl;/ (146)
COS (x COS
The next three lemmas will be proved independently of each
and for anyyr, € (0, 7/2) the anglé other, and then combined in Lemma 43. The main idea of the
cot following lemma is that the “latitudes” of points in a zonal code
ve & 7+, — 2arctan SOIL (147) are bounded by a function ef, ands, rather than byy, pro-

vided s is within a certain range.
The angley was already defined in (128) of Theorem 31. Here
we point out that this definition is motivated by the following
property. As will be shown in Lemma 42, fat; as defined in
(128) and (147), we have

"Lemma40:If —yg < v € v < 7/2, then

Az(n, s,vr, i) =Az(n, s, yr, ™ — 1, — arccos s),

if —cos2yr < s< —cos(yp +vm)
(148)
(149)

f(87 YL, ’YL) = f(87 YL, rYG)

Also note that as decreases from to sin~vy, the angleye  Az(n,s,vrL,vmg) =1, if s < —cos2vy,
increases monotonically fromy, to #/2. The following lemma

gives some important bounds q@- Proof: Consider a zonal cod@ with |C| > 2, and letz

2We intentionally avoid the inverse cotangent, since there is no uniform agr@andy be two arbitrary pollnts "?C' Now Y and the north
ment on the definition ofirccot z for 2 < 0. pole vectore form a spherical triangle with sidesccosz - e,
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TABLE Il
BOUNDS ON A(n, 8, w)

T w
5 6 7 8 9 10
10 2°
11 210
12 35 4’
13 310 410
14 410 75 8P
15 65 108 155
16 610 165 16° 30°
17 710 175 2421 349
18 910 21° 33 — 39° 46 — 54° 48 — 68
19 125 289 52 — 579 78 — 929 88 —114°
20 165 40° 809 130 — 142° 160 — 19520 176 — 2289
21 215 569 120° 210° 280 — 32020 336 — 39921
22 2121 779 1769 3309 280 — 49314 616 — 64120
23 235 77 — 80° 2539 5069 400 — 79620 616 — 110921
24 245 78 — 929 253 — 2749 7599 640 — 114314 960 — 163920
25 30° 1009 254 — 328% 759 — 856° 829 — 16101¢ 1248 — 244820
26 3021 130° 257 — 3719 760 —1066° 883 — 2160'* 1519 — 37192°
27 || 31 —32° 130 —135° 278 —500° 766 —1252° 970 — 2914!% 1597 — 526020
28 339 130 — 149° 296 — 540° 833 —1750° 1107 — 3895° 1820 — 736820
T w
11 12 13 14
22 672 — 76627
23 1288 — 132820
24 1288 — 218820 257620
25 1662 — 357520 2576 — 416920
26 1988 — 531520 3070 — 683420 3588 — 716479
27 2295 — 783720 3335 — 105472 4094 — 1199120
28 || 2756 — 1193914 4916 — 1729920 4805 — 2173920 6090 — 2326870

Proof: LetC = {x1, 2, ..., )/} be a zonal code, and
let e be its north pole vector. Far=1, 2, ..., M, we lety; =
arcsing; - e denote the “latitudes” of the points 6f Consider
the codeCs = {y,, ¥s, -- -, Yps }, Where

arccos ¥-¢, andarccos & -y. The triangle inequality for spherical
triangles [46, p. 75] implies that

arccos& - € 22 arccos& - Y — arccosy - €
2

™
arccos s — (— — '7L> .
2 defl &X; —€esIny;
, = ——

(152)
or, equivalently, Cos7;

fori = 1,2,..., M. Itis easy to verify that|y;| = 1 and
y; - e = 0 for all i. Furthermorey, - y; = f(x: - ;, v, ;)
If s < —cos2yg, then (150) yieldst - e < sin~y, which for all distinctl <4, j < M. Hence(s is a spherical code in
is a contradiction. Thus in this casé,cannot contain two or 7 — 1 dimensions with a maximum cosine given by

more points, which proves (149). §f> — cos(vyr, + ~vgr) or if
~r + v < 0, then the inequality (150) is weaker than

arcsin - e < m — -y, — arccos s. (150)

9 T 2 m<.x/.’ s -
maxy; -y Igl#“gxf( i X, Yis Vi)

f(s, @, B).

< max
v <, 8<YH

z-e< sinyy (151)

which follows directly from the definition of a zonal code. OnThe constraints om in the statement of the lemma ensure that
the other hand, foy;, > —vz and fors in the range specified in —1 < max f(s, «, 8) < 1. =
(148), the bound (150) is stronger than (151), which completesthe eyt lemma is concerned with the maximization of the
the proof of the lemma. ®  function f(-) defined in (146).

The main idea of the following lemma is the construction of | aryma 42: For all0 <

spherical codes from zonal codes. This makes it possible to use
bounds for spherical codes in the case of zonal codes.

< vy < 7w/2, we have

max if v < v¢

oS8

max
YL S@,B8€ v

f(87 v, [3) :f(sv YL, ’YL)v

L 41:F Il —7/2 < 2 f [
emma orall—n/2 < v, < vy < w/2and fors in Fls, a0, B) = F(5, v, va),

if > Yo
the range- cos 2L < s < cos(yy — L), we have H 206

Proof: Regardf(s, «, /) as a function ofx, keepings

max and3 fixed. Sincedf /do is well-defined, the maximum occurs

oS8

AZ(”?&’YL?’YH) < AS <7’L - 17

Fsa).
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TABLE IV
BOUNDS ONA(n, 10, w)

2393

T w
6 7 8 9 10
12 25
13 25
14 210 21U
15 35 35
16 310 45 210
17 310 55 65
18 410 6° 95 10°
19 410 85 1210 195
20 || 510 1010 1721 20° 38
21 75 1311 215 27 — 359 38 — 42°
22 75 1621 24 — 33° 35 —51° 46 — 7321
23 85 2021 33 — 46° 45 — 8120 54 —117°
24 910 245 38 — 60° 56 — 11920 72 — 17120
25 || 101° 28 — 32° 48 — 75° 72 — 15820 100 — 26220
26 135 28 — 361% 54 —104° 91 — 21420 130 — 410°
27 || 14 36 —48!% 66 —121° 118 — 29920 162 — 577°
28 || 1610 37 — 56° 78 — 168° 132 — 376° 210 — 82120
n w
11 12 13 14
22 46 — 8171
23 65 — 13520
24 95 — 22320 122 — 24770
25 125 — 38820 132 — 464°
26 168 — 58120 195 — 72820 210 — 86920
27 222 — 90020 351 — 128920 405 — 146020
28 || 286 — 143420 365 — 198120 756 — 243820 790 — 2629%°
TABLE V
BOUNDS ONA(n, 12, w)
T w
7 8 9 10 11 12 13 14
14 25
15 25
16 25 210
17 210 210
18 35 35 45
19 35 310 45
20 || 310 55 55 6°
21 || 310 55 75 75
22 45 65 85 115 125
23 || 410 610 1010 1610 235
24 || 410 95 165 245 245 465
25 || 510 105 25% 28 — 3820 36 — 429 509
26 || 510 135 26° 33— 4820 39 — 692! 54 — 8321 58 — 9271
27 || 610 1510 399 39 — 6521 54 —100%1 82 —140%° 86— 1562
28 85 19!l 394520 499920 5514920 84 — 19920 99 — 24520 172 — 26520

either at an endpoint of the intervg), < « < vy oratanin- Thusitremainsto compat&s, vr,, vr) andf(s, v, vu). We
terior pointa for which df /da = 0 andd? f /da? < 0. By dif-  factorize the difference. Omitting the tedious details, the result
ferentiatingf (s, «, 3) twice with respect tax and observing can be written as

that0 < 8 < #/2, itis straightforward to verify that the max- 1 —cos(yg — L)

f(37 YL, ,VL) - f(37 YL, rYH) =

imum does not occur at an interior point. Henges, «, 3) is

maximum for eitherr = ~;, or « = yy. The same argument
proves that the maximum occurs f8r= v, or 3 = vg. Thus

the functionf(s, «, ) attains its global maximum at one of th
four corners of the feasibility regiofi, < «, 8 < vy in the

(e, B)-plane.

Since f(s, «, ) is a symmetric function ofr and 3, we

have f(s, vu, v) = f(s, vL, vu). Also, it is obvious that

S(s, v, yi) < f(s,vp, vo) forall 0 < v < vy < 7/2.

. <(1 — s)tanyy, tan

®rhis expression is positive if and only if the last factor is posi-
tive. The lemma now follows directly from the definition of:
in (147).

COS Y[, COS Vi
T+ 8)
— .

Remark: It follows from Lemma 39 thatf(s, v, vo) >

f(s, vp, vur) for all yg < 7/2 whenevers < sin~yy,.
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TABLE VI we have
BOUNDS ON A(n, 14,
(n, w) AZ(”7577L7W/2) <AZ(”75777W/2)+AZ(”7577L77)

n w and (158) follows by applying (149) and (155), respectively,
= 285 o 10 1 12 13 1 to the two terms. To prove (159) and (160), we observe that if
17 95 s < Sin’}/L, then

18 2: 215’0 7 — 7y, —arccos s < /2 < yq-

;g 2210 310 510 Letting vy = #/2 in Lemma 40 and using (155) to bound
21 || 35 35 35 Az(n, s, yr, ™ — v, — arccos s) completes the proof. m

22 || 35 310 45 45

23 || 35 310 410 40 The last component in the proof of Theorem 31 is a lower
24 || 310 410 510 6° 610 bound, given in the next lemma. This lemma is the counterpart
25 || 310 5% gl 7V o _ to Lemma 41: we now reverse the mapping in (152) to construct
3‘; fm (fm 25 11??10 19 i‘o’zom ;‘;5 zonal codes from spherical codes.

28 || 40 7wl 219 28° 28° 58 Lemma 45:For all —7/2 < v < vy < 7/2 and alls in

the ranges > — cos 2y, we have
The next lemma combines Lemmas 40-42 to summarize the Az(n,s,vp,vg) = As(n — 1, f(s,vp,7L)).
bounds that hold fofyy < 7/2. There is an intentional overlap

: Proof. LetCs be a spherical code with maximum cosine
between some of the cases in the lemma.

s’ in an(n — 1)-dimensional subspace &". Lete € R" be

Lemma 43:1f 0 < vy < yg < /2, then a unit vector orthogonal to this subspace. For any givenve
construct the code

¢t {ycos~r +esinvyr:y € Cs}.
Itis easy to verify thaflz|| = 1 andz-e = siny, forallz € C.

AZ(”? 5, ’7L77H)
< Az(TL7S7’YG,’yH) + As(TL - 17 f(syf}/L;’YL));

if v > g (153) Furthermoreg; - z» < s for all distinctz+, z» € C, where
AZ(”? 37’YL7’7H) < AS(TL - 17 f(serLvryH))v s=3g C082 L + SiIl2 YL

if s < cos(ym —yr)andyu >y (154) o, equivalently,s’ = f(s, vr, vz). HenceC is a zonal code
AZ(TL,S,’}/[”’}/H) <"45(71_ 17f(877L77L))7 andAZ(TL, S, YL, ’YH) 2 As(n—l, S/)' n

if s > —cos2yr andyn <o (155)  Theorem 31 now follows by combining Lemmas 43-45,
Az(n,s,vp,ve) =1, if s < —cos2vyg. (156)

Proof: The bounds (154) and (155) follow from Lemmas

41 and 42. Note thatg < vy < 7/2 implies thats > sin~z, _ ] _
in view of Lemma 39. This, in turn, is a stronger condition The authors are indebted to T. Ericson, T. Etzion, K. Metsch,

thans > — cos2vr. Hence, the constraint > —cos2y; in  J- B- Shearer, N. J. A. Sloane, the reviewers, and, in particular,
Lemma 41 would be redundant in (154). Similarly, the con2- Litsyn, for helpful discussions and for pointing out relevant

straints < cos(ys — ~7.) in Lemma 41 would be redundantéferences. They also thank P. Boyvalenkov and P. Kazakov,
in (155). This is so becausesf> cos(yy —~z,) andyy < g, Who kindly sent their program for generating upper bounds on
thens > sinvyz, ands > cos(ve — v), which contradicts the size of spherical codes, and Zs. Nagy whose help in ob-
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