
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 8, AUGUST 2002 2201

Closest Point Search in Lattices
Erik Agrell, Member, IEEE, Thomas Eriksson, Member, IEEE, Alexander Vardy, Fellow, IEEE, and

Kenneth Zeger, Fellow, IEEE

Abstract—In this semitutorial paper, a comprehensive survey of
closest point search methods for lattices without a regular structure
is presented. The existing search strategies are described in a uni-
fied framework, and differences between them are elucidated. An
efficient closest point search algorithm, based on the Schnorr–Eu-
chner variation of the Pohst method, is implemented. Given an ar-
bitrary point and a generator matrix for a lattice�, the al-
gorithm computes the point of� that is closest to . The algorithm
is shown to be substantially faster than other known methods, by
means of a theoretical comparison with the Kannan algorithm and
an experimental comparison with the Pohst algorithm and its vari-
ants, such as the recent Viterbo–Boutros decoder. Modifications of
the algorithm are developed to solve a number of related search
problems for lattices, such as finding a shortest vector, determining
the kissing number, computing the Voronoi-relevant vectors, and
finding a Korkine–Zolotareff reduced basis.

Index Terms—Closest point search, kissing number, Korkine–
Zolotareff (KZ) reduction, lattice decoding, lattice quantization,
nearest neighbor, shortest vector, Voronoi diagram.

I. INTRODUCTION

I N lattice theory, agenerator matrix is any matrix with real
entries whose rows are linearly independent over. We let

and denote the number of rows and columns of, respec-
tively. Hence . The lattice generated by is

The rows of are calledbasis vectorsfor , and the number
of basis vectors is said to be thedimensionof .

The closest point problemis the problem of finding, for
a given lattice and a given input point , a vector

such that

for all

where denotes the Euclidean norm. In channel coding, the
closest point problem is referred to asdecoding, and we adopt
this terminology herein. Note, however, that in source coding,
this problem is calledencoding(see below).

TheVoronoi regionof a lattice point is the set of all vectors
in that can be decoded to this point, namely

Manuscript received December 4, 2000; revised October 5, 2001. This work
was supported in part by the National Science Foundation, the David and Lucile
Packard Foundation, and Stiftelsen ISS ’90.

E. Agrell and T. Eriksson are with the Department of Signals and Systems,
Chalmers University of Technology, S-412 96 Göteborg, Sweden. (e-mail:
agrell@s2.chalmers.se; thomase@s2.chalmers.se).

A. Vardy and K. Zeger are with the Department of Electrical and Computer
Engineering, University of California, San Diego, La Jolla, CA 92093-0407
USA (e-mail: vardy@montblanc.ucsd.edu; zeger@ucsd.edu).

Communicated by P. Solé, Associate Editor for Coding Theory.
Publisher Item Identifier 10.1109/TIT.2002.800499.

where . The Voronoi diagramof a lattice is the set of
all its Voronoi regions. It is known [23] that the Voronoi regions

are convex polytopes, that they are symmetrical with re-
spect to reflection in, and that they are translations of ,
where is the origin of .

In communication theory, lattices are used for both modu-
lation and quantization. If a lattice is used as a code for the
Gaussian channel, maximum-likelihood decoding in the demod-
ulator is a closest point search. The decoding of space–time
codes is one example [16], [17], [25]. Analogously, if a lattice
is used as a codebook for vector quantization and the mean-
squared-error criterion is used, then the encoding of each input
vector is also a closest point search. Furthermore, if the lattice
is truncated into a so-called Voronoi code [21], another instance
of the closest point problem arises at the opposite end of the
communication system, in the source decoder and in the mod-
ulator. Typical for these applications in communications is that
the same lattice is decoded numerous times for different input
vectors.

Other applications where the closest point problem arises in-
clude lattice design [3] and Monte Carlo second-moment esti-
mation [22]. In both cases, random vectors are generated uni-
formly in a Voronoi region of a lattice using closest point search.

The closely relatedshortest vector problemhas been used in
assessing the quality of noncryptographic random number gen-
erators [50, pp. 89–113] and in decoding of Chinese remainder
codes [38], [40]. It also has important applications in cryptog-
raphy [5], [7]. Another related problem of paramount impor-
tance in cryptography [13], [70] is that of latticebasis reduction.
These search problems will be discussed in Section VI.

The choice of method for solving the closest point problem
depends on the structure of the lattice. Intuitively, the more
structure a lattice has, the faster can the closest point be found.
For many classical lattices, efficient search methods are known
[23, Ch. 20], [75]. A more general approach is to represent a lat-
tice by a trellis [72] and use a trellis decoding algorithm such as
the Viterbi algorithm [11], [33], [34], [76]. However, finite-state
trellises exist if and only if the lattice containsmutually or-
thogonal vectors, and even then decoding complexity quickly
becomes prohibitive [73].

Herein, we address the problem of finding the closest point
in a general lattice: we assume that it has no exploitable struc-
ture. One situation where this problem arises is when a generator
matrix is continuously adjusted, e.g., in numerical lattice design
[3]. Another important application of this problem is cryptanal-
ysis [13], [68]. Yet another example is frequency estimation and
phase unwrapping [19].

The complexity of the general closest point problem as
a function of the dimension was analyzed by van Emde

0018-9448/02$17.00 © 2002 IEEE

2202 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 8, AUGUST 2002

Boas [74] two decades ago, who showed that this problem
is NP-hard. Micciancio gave a simpler proof in [55]. Thus,
all known algorithms for solving the problem optimally have
exponential complexity. It is known [9] that finding an ap-
proximate solution, such that the ratio between the distance
found and the true distance is upper-bounded by a constant,
is also NP-hard. Even finding a suboptimal solution within a
factor for some constant is NP-hard [27].
Nevertheless, algorithms that find a suboptimal solution are
faster and can handle higher dimensions [52].

A common approach to the general closest point problem
is to identify a certain region in within which the optimal
lattice point must lie, and then investigate all lattice points in
this region, possibly reducing its size dynamically. The earliest
work in the field was done for the shortest vector problem (see
Section VI-A) in the context of assessing the quality of certain
random number generators (cf. [24], [26] and [50, pp. 89–101,
110]). The finite region searched in these algorithms is a paral-
lelepiped, with its axes parallel to the basis vectors.

In general, the development of closest point algorithms fol-
lows two main branches, inspired by two seminal papers: Pohst
[63] in 1981 examined lattice points lying inside a hypersphere,
whereas Kannan [46] in 1983 used a rectangular parallelepiped.
Both papers later appeared in revised and extended versions,
Pohst’s as [30] and Kannan’s (following the work of Helfrich
[42]) as [47]. The Pohst and Kannan strategies are discussed in
greater detail in Section III-A.

A crucial parameter for the performance of these algorithms
is the initial size of the search region. Some suggestions to this
point were given in [62], [78] for the Pohst strategy and in [12]
for the Kannan strategy. The latter reference also includes an ex-
tensive complexity analysis. Applications are discussed in [15],
[62], [78], [80].

Another, more subtle, difference between the two strategies
is implicit in their presentation. Grossly generalizing, the Pohst
method is intended as a practical tool while the method of
Kannan is intended as a theoretical tool. Papers dealing with
the Pohst strategy typically discuss issues of implementation,
whereas papers dealing with the Kannan strategy usually focus
on asymptotic complexity. This is probably the reason why
the two strategies, despite having so much in common, have
never been compared and evaluated against each other in the
literature.

Recently, Schnorr and Euchner [67] suggested an important
improvement of the Pohst strategy, based on examining the
points inside the aforementioned hypersphere in a different
order. In Sections V and VII-C, the strategies by Pohst, Kannan,
and Schnorr–Euchner are compared to each other, and it is
shown that the Schnorr–Euchner strategy is substantially faster
than the other two.

While the preceding discussion is distilled from the existing
literature, much of this literature is not directly accessible.
Often, the results are buried in the context of specific applica-
tions. For example, the Schnorr–Euchner algorithm is described
in [67] merely as a subroutine, called ENUM, in a function
that computes the so-called block Korkine–Zolotareff (KZ)
reduction, which itself serves as a tool for solving a certain type
of subset-sum problems [67] and attacking the Chor–Rivest

cryptosystem [68]. Thus, although the question “What is the
best (fastest) algorithm currently available for decoding a
general lattice?” frequently arises in communication practice,
the answer to this question is not immediately clear.

In this paper, we first describe the two main decoding
strategies, due to Pohst and to Kannan, in a unified framework,
which makes it possible to elucidate the similarities and the
differences between them. This is done in Section III-A, where
we also discuss the Babai nearest plane algorithm [10] and
the Schnorr–Euchner refinement of the Pohst strategy. In
Section III-B, we present a stand-alone implementation of
what we believe is the fastest closest point search algorithm
currently available for general lattices. The algorithm is based
on the Schnorr–Euchner [67] strategy, bootstrapped with the
Babai [10] nearest point. It is described in sufficient detail
to allow straightforward implementation, without knowledge
of the underlying theory. One of the main contributions of
this paper is a theoretical and experimental comparison of
the various closest point search algorithms, presented in
Sections V and VII, respectively. We also show in Section IV
how a carefully selected preprocessing stage can reduce the
complexity of the closest point search even further. Finally, we
describe in Section VI several modifications to the algorithm of
Section III-B designed to solve numerous related lattice-search
problems, such as finding a shortest vector, determining the
kissing number, computing the Voronoi-relevant vectors, and
finding a Korkine–Zolotareff reduced basis.

II. PRELIMINARIES

We say that two lattices areidentical if all lattice points are
the same. Two generator matrices and generate identical
lattices if and only if

(1)

where is a square matrix with integer entries such that
. A generator matrix is arotated and reflected

representation of another generator matrixif

(2)

where . This transformation can be regarded as
a change of the coordinate system. If is square and lower
triangular, it is said to be alower-triangular representationof

. Any generator matrix has a lower-triangular representa-
tion, which is unique up to column negation. How to find a
lower-triangular representation of a given generator matrix is
discussed in Section IV.

Two lattices are congruent, orequivalent, if one can be ob-
tained from the other through scaling, rotation, and reflection.
Two generator matrices and generate equivalent lattices
if and only if

(3)

where is a real constant, while and obey the same
conditions as in (1) and (2), respectively. The equivalence rela-
tion is denoted .

The process of selecting a good basis for a given lattice, given
some criterion, is calledreduction. In many applications, it is
advantageous if the basis vectors are as short as possible and

AGRELL et al.: CLOSEST POINT SEARCH IN LATTICES 2203

“reasonably” orthogonal to each other (for lattice-search prob-
lems, this was first noted by Coveyou and MacPherson [24]).
This property of the basis vectors can be formalized in a number
of ways, giving rise to several types of reduction. Simply se-
lecting the shortest nonzero vectors in the lattice is, however,
not a practicable approach, since these vectors do not in general
form a basis.

The problem was studied by Hermite in 1850, who sug-
gested [44, pp. 301–303] that a generator matrixwith
rows is reduced if the following holds for all

: , for all generator matrices with
rows such that and
for . In other words, a generator matrix is
reduced in this sense if the sequence comes
first in a lexicographically ordered list of the corresponding
sequences for all generator matrices of the same lattice. The
first basis vector is always a shortest nonzero lattice vector.
There exists at least one reduced basis in this sense for every
lattice, but Hermite gave no algorithm to compute it. Note
that this reduction criterion is usuallynot referred to as the
“Hermite reduction” in recent literature (see footnote 2).

Minkowski made extensive use of the above reduction crite-
rion in his earlier work [56] [57], [58]. In 1905, he suggested
a subtle but significant modification [61], defining the crite-
rion now known as theMinkowski reduction. A generator ma-
trix with rows is Minkowski-reduced if the fol-
lowing holds for all : for all with
rows such that and for

.1 This is in essence a “greedy” version of
the stricter criterion by Hermite. Suppose that a set of vectors

have been found that satisfy Minkowski’s criterion
up to a certain value of. Then there is always a Minkowski-re-
duced basis that contains these vectors, and the search can be
focused on finding the next vector in the basis. This is not
necessarily the case with the aforementioned criterion by Her-
mite. In particular, if there is more than one inequivalent shortest
nonzero vector, it may well be that only one of them can be in-
cluded in a reduced basis in the sense of Hermite, whereas there
is always at least one Minkowski-reduced basis for each of them.

Minkowski reduction has received much attention, particu-
larly in number theory [18, pp. 27–28], [28, pp. 83–84]. Algo-
rithms to compute a Minkowski-reduced basis of an arbitrary
lattice may be found in [1], [42].

Two types of reduction that are more widely used in prac-
tice are Korkine–Zolotareff (KZ) reduction and Lenstra–
Lenstra–Lovász (LLL) reduction. One reason for their pop-
ularity is that with both of those criteria, the-dimensional
reduction problem can be recursively reduced to an -di-
mensional reduction problem, which is not feasible with
Minkowski reduction.

The KZ reductionis named after the authors of [51], who
defined this reduction criterion in 1873. To determine whether
a given generator matrix is a KZ-reduced basis, it is convenient

1We disregard, as is commonly done in recent literature, that Minkowski
also required the scalar product betweenvvv andvvv to be nonnegative for all
i = 1; . . . ; n � 1.

to study its lower-triangular representation. A lower-triangular
square generator matrix

...
...

...
. . .

...
(4)

is defined, recursively, to be KZ-reduced if , or else each
of the following three conditions holds:2

is a shortest nonzero vector in (5)

for (6)

and the submatrix

...
...

... (7)

is KZ-reduced. An arbitrary generator matrix is KZ-reduced if
and only if its lower-triangular representation is KZ-reduced.
It is known [64], that every lattice has at least one KZ-reduced
generator matrix.

The LLL reduction is named after Lenstra, Lenstra, and
Lovász, who suggested the corresponding reduction criteria in
[53]. The LLL reduction is often used in situations where the
KZ reduction would be too time-consuming. A lower-triangular
generator matrix (4) is LLL-reduced if either , or else
each of the following three conditions holds:

(8)

for (9)

and the submatrix (7) is LLL-reduced. As before, an arbitrary
generator matrix is LLL-reduced if its lower-triangular repre-
sentation is LLL-reduced.

Any KZ-reduced matrix is clearly also LLL-reduced. The
motivation for the latter reduction is that there exists an effi-
cient algorithm [53] to convert any generator matrix into
an LLL-reduced one. This algorithm, which operates in polyno-
mial time in and , has become very popular. It was improved
upon in [69] and [66].

The LLL reduction algorithm has been modified in a number
of ways, see [20, pp. 78–104]. Hybrids between KZ and LLL
reductions have also been proposed [65].

III. CLOSESTPOINT SEARCH ALGORITHMS

We start with a conceptual description of various lattice
search algorithms in Section III-A. In this framework, we in-
troduce the Babai nearest plane algorithm, the Kannan strategy,
the Pohst strategy, and the Schnorr–Euchner refinement of
the Pohst strategy. In Section III-B, we present a detailed
pseudocode implementation of a closest point search algorithm
based on the Schnorr–Euchner strategy.

2Because the condition (6) was proposed by Hermite in his first and second
letters to Jacobi [44, pp. 269–271, 280–282], KZ reduction is sometimes called
“Hermite reduction” (cf. [42]). The terminology is further complicated by the
fact that in some contexts “Hermite reduction” refers to a criterion for so-called
indefinite quadratic forms, not immediately applicable to lattices [18, p. 29].

2204 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 8, AUGUST 2002

A. Conceptual Description

To understand lattice search algorithms, a recursive character-
ization of lattices is useful. Let be an generator matrix
for a lattice , and let us write as

where is an matrix consisting of the top
rows of . Furthermore, let us write as , with

in the row space of and in the null space. If is
lower triangular, as in (4), then this decomposition is particu-
larly simple, namely, and

.
With this terminology, any -dimensional lattice can be de-

composed as follows:

(10)

which is basically a stack of -dimensional translated sub-
lattices. The -dimensional hyperplanes that contain these
sublattices will be called -dimensionallayers. Thus, the
index denotes which layer a certain lattice point belongs to.
The vector is the offset by which one sublattice is translated
within its layer, with respect to an adjacent sublattice. The vector

is normal to the layers, and the distance between two adja-
cent layers is . For lower-triangular generator matrices, we
have . Recalling that any generator matrix can be
rotated into a lower-triangular form with , we let de-
note the distance between the -dimensional layers, even
when the triangular constraint is not explicitly imposed.

Now, all search algorithms for an-dimensional lattice will
be described recursively as a finite number of -dimen-
sional search operations. Let be a vector to decode
in the lattice , which is decomposed into layers according
to (10). The orthogonal distance fromto the layer with index

is given by

(11)

where

(12)

Let denote the closest lattice point to, and suppose that an
upper bound on is known. Then, in order to ensure
that will be found, it suffices to consider a finite number of
layers in (10). The indices of these layers are

(13)

since layers for which are not relevant. Of these, the
layer with has the shortest orthogonal distance to,
where denotes the closest integer to .

Four types of search methods will now be identified. They
each search the layers indexed in (13), but they differ in the order
in which these layers are examined and in the choice of the upper
bound to be used, recursively, in the -dimensional
search problems.

If only is considered, the-dimensional search
problem is reduced to just one -dimensional problem,
and no upper bound is needed. Recursive application of this
strategy [10] yields theBabai nearest plane algorithm, and we
call the returned lattice point theBabai point. The Babai nearest
plane algorithm is a fast method to find a nearby lattice point,
in time polynomial in the number of rows and columns of. In
general, the Babai point depends not only onand the lattice,
but also on the basis used to represent the lattice. It is not nec-
essarily the closest point, but the error can be bounded. A prob-
abilistic variant of the Babai nearest plane algorithm was pro-
posed by Klein [49].

The other three methods all find the optimal (closest) point.
Scanning all the layers in (13), and supplying each -di-
mensional search problem with the same value of regard-
less of , yields theKannan strategy.3 Variants of this strategy
[12], [42], [46], [47] differ mainly in how the bounds are
chosen for . In this context, a recent improvement
by Blömer [14] seems particularly promising. Geometrically,
the Kannan strategy amounts to generating and examining all
lattice points within a given rectangular parallelepiped.

The -dimensional decoding error vector consists, in
the given recursive framework, of two orthogonal components:
one in the row space of and one parallel to . The former
is the -dimensional decoding error while the length of
the latter is . Since varies with , the upper bound
can be chosen as

(14)

which is different for different layers in (13). The idea of let-
ting depend on is thePohst strategy[30], [62], [63],
[78], [80]. In geometrical terms, points inside a hypersphere,
not a parallelepiped, are investigated. When any lattice point
inside the sphere is found, the boundcan be immediately up-
dated to , since is an obvious upper bound on

and .
The Schnorr–Euchner strategy, proposed in [67], combines

the advantages of the Babai nearest plane algorithm and the
Pohst strategy. Assume that . Then the sequence

(15)

orders the layers in (13) according to nondecreasing distance
from . A trivial counterpart holds when . The
advantages of examining the layers in this order are subtle
but significant. Since the volume of a layer decreases with
increasing , the chance of finding the correct layer early is
maximized. Another advantage of the nondecreasing distance

is that the search can safely be terminated as soon as
exceeds the distance to the best lattice point found so far. Notice
that the very first lattice point generated will, by definition, be
the Babai point. Furthermore, since the ordering in (15) does
not depend on , no initial bound is needed. Instead, this

3In its original form [46], [47], Kannan’s strategy is described recursively
as a set of(i � 1)-dimensional search problems, wherei is the index of the
largest element in(v ; . . . ; v). This viewpoint may be useful for a com-
plexity analysis, but becauseu ; u ; . . . ; u can be selected sequentially,
the strategy is computationally equivalent to recursively eliminating just one di-
mension at a time.

AGRELL et al.: CLOSEST POINT SEARCH IN LATTICES 2205

bound can be updated dynamically during the search, with the
first finite value of being equal to the distance to the Babai
point.

B. Detailed Description

This subsection contains a stand-alone presentation of an ef-
ficient closest point search algorithm, based on the Schnorr–Eu-
chner strategy. It is intended to be sufficiently detailed to allow
a straightforward implementation, even without knowledge of
the underlying theory.

For efficiency, the recursive operations discussed in the pre-
vious subsection have been restructured into a loop. The vari-
ables and are used as input and output parameters, instead
of the more natural and . As discussed in
Section IV, this is motivated by the typical communication ap-
plication, where numerous input vectors are decoded in the same
lattice.

First, some notation needs to be defined. Matrix and vector
elements are named according to the following conventions:

for

...
...

...
...

. . .

The operation returns if and if
(which may deviate from most built-in sign functions). Ties in
the rounding operation are broken arbitrarily.

Input : an lower-triangular matrix with positive diag-
onal elements, and an-dimensional vector to decode
in the lattice .

Output : an -dimensional vector such that is
a lattice point that is closest to.
1 the size of dimension

2 current distance record

3 dimension of examined layer

4 distance to examined layer

5 used to compute , see (12)

6 examined lattice point

7 see (11)

8 offset to next layer in (15)

9 loop

10

11 if then {

12 if then {

13 for

14 move down

15

16 closest layer

17

18

19 } else {

20 best lattice point so far

21 update record

22 move up

23 next layer

24

25

26 }

27 } else {

28 if then return (and exit)

29 else {

30 move up

31 next layer

32

33

34 }

35 }

36 goto loop

In this algorithm, is the dimension of the sublayer struc-
ture that is currently being investigated. Each time the algo-
rithm finds a -dimensional layer, the distance to which is less
than the currently smallest distance, this layer is expanded into

-dimensional sublayers. This is done in Case A. Con-
versely, as soon as the distance to the examined layer is greater
than the lowest distance, the algorithm moves up one step in the
hierarchy of layers. This is done in Case C. Case B is invoked
when the algorithm has successfully moved down all the way to
the zero-dimensional layer (that is, a lattice point) without ex-
ceeding the lowest distance. Then this lattice point is stored as
a potential output point, the lowest distance is updated, and the
algorithm moves back up again, without restarting.

IV. PREPROCESSING ANDPOSTPROCESSING

The algorithm DECODE of the previous section requires
a representation of the lattice at hand by a lower-triangular gen-
erator matrix, whose diagonal elements are all positive. Such
a representation exists for any lattice, so this requirement does
not impose any constraints on the kind of lattices that can be
searched. Moreover, for any given lattice, a representation with
the required properties can be found in infinitely many ways,
which leaves the user with the freedom of choosing one of
them. The algorithm computes a closest vector regardless of the
representation choice, but the speed with which it reaches this
result varies considerably between different representations.

2206 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 8, AUGUST 2002

This is the topic of this section: How should a given search
problem be preprocessed, in order to make the most efficient
use of DECODE?

To address this question, we now present a general lattice
search algorithm. This algorithm can be regarded as a “front-
end” to DECODE, where explicit preprocessing and postpro-
cessing is performed to allow generator matrices that are not
lower triangular, possibly not even square. As with DECODE,
we first describe this algorithm conceptually, and then suggest
how to implement it.

Assume that a generator matrixand an input vector are
given. By linear integer row operations, we first transform
into another matrix, say , which generates an identical lattice.
The purpose of this transformation is to speed up DECODE; see
below. Next, we rotate and reflect into a lower-triangular
form , so that

It is essential to rotate and reflect the input vectorin the same
way, so that the transformed input vector, say, is in the same
relation to as is to . All this can be regarded as
a change of the coordinate system. Now the search problem has
a form that is suitable for DECODE, which will find the closest
lattice point in this coordinate system. Reversing the oper-
ations of rotation and reflection produces, the lattice point
closest to in . Following these steps, the algorithm is
detailed as follows.

Input : an generator matrix , and an -element vector
to decode in .

Output : a lattice point that is closest to .

Step 1.Let , where is an matrix with
integer entries and determinant .

Step 2.Compute an orthonormal matrix such that
, where is an lower-triangular matrix

with positive diagonal elements.
Step 3.Let .
Step 4.Let .
Step 5.Let .
Step 6.Return .

Step 1 is a basis reduction. This step is optional: it is pos-
sible to select as the identity matrix, which amounts to no
reduction at all. This works well for low-dimensional and not
too ill-conditioned generator matrices, as will be shown in Sec-
tion VII. However, the speed and the numerical stability of the
search can be improved significantly by an appropriate reduc-
tion, as discussed later in this section.

Step 2 implies rotation and reflection of into a lower-tri-
angular form, as in (2). The standard method to achieve this is by
QR decomposition. Given an arbitrary matrix , its QR
decomposition is a factorization of of the form ,
where is an upper-triangular matrix, and is an
orthonormal matrix, that is, one satisfying . It is well
known that a QR decomposition exists for any matrix; efficient

algorithms to compute it may be found in [41, pp. 208–236] and
[71, pp. 166–176], for example. In our context, QR decomposi-
tion of gives both and , with being equal to .
As an alternative to QR decomposition, can be obtained by
Cholesky decomposition of . Given an positive-def-
inite matrix , its Cholesky decomposition is a factorization of
the form where is an upper-triangular ma-
trix. In our context, is equal to , and the rotation ma-
trix is given by . Algorithms for computing the
Cholesky decomposition may be found in [20, pp. 102–104],
[41, pp. 84–93], and [71, pp. 332–334].

All these transformations can be thought of as a change of the
coordinate system. Measure the first coordinate along(the
first row of), the second in the plane spanned byand ,
and so on. The generator matrix in this coordinate system will
be square and lower triangular.

For DECODE to work, all diagonal elements of must be
positive. Some implementations of QR factorization do not do
this automatically; if this is the case, we multiply by all
columns of that contain a negative diagonal element, as well
as the corresponding rows of.

In Steps 4–6, the input vectors are processed. They are trans-
formed into the coordinate system of , decoded, and trans-
formed back again.

If a large set of vectors is to be decoded for the same lattice,
Steps 1–3 are, of course, carried out only once for the whole
set. In this case, the overall execution time may benefit substan-
tially from an effective but time-consuming reduction method
applied in Step 1. To understand precisely what kind of prepro-
cessing would improve the performance of the search algorithm,
recall the recursive representation of lattices in (10). An-di-
mensional lattice consists of parallel -dimensional sub-
lattices, translated and stacked on top of each other. This decom-
position into sublattices is controlled by the reduction method.
Two properties of the decomposition are desirable for a given
lattice.

a) The -dimensional layers should be as far apart
as possible. This minimizes the number of layers to be
investigated, as only the layers within a certain distance
range need to be scanned. As an extreme case, suppose
that the spacing between -dimensional layers is
much larger than any other-dimensional layer spacing
in the lattice. Then the closest point will always lie in the
closest -dimensional layer, and the dimensionality
of the problem is essentially reduced by one.

b) The zero-dimensional layers (lattice points) should be as
densely spaced as possible in the one-dimensional layers
(lines). The denser they are, the higher is the probability
that the closest lattice point will belong to the closest lat-
tice line. If the one-dimensional spacing is much smaller
than all other interlayer distances, then the closest point
will always lie in the closest line, so the dimensionality
of the problem is essentially reduced by one.

Both observations can, of course, be applied recursively. Thus,
high-dimensional layer spacing should be large, while low-di-
mensional spacing should be small. This suggests two greedy

AGRELL et al.: CLOSEST POINT SEARCH IN LATTICES 2207

algorithms: a) sequentially maximizing the distances between
-dimensional layers, starting at , and b) minimizing

the same distances, starting at .
These two goals are each other’s duals in a fairly strict sense.

Even though they may appear contradictory, they are, in fact,
very similar (cf. [50, pp. 94–98]). To see this, observe that a re-
duction algorithm can choose the numbers in many ways
for a given lattice, but their product is invariant: it equals the
volume of the Voronoi region. Now, a) is solved by maximizing
first , then , and so on. Because of the constant
product, this procedure forces low values for, , etc. Thus,
a good solution of a) is in general good for b) too. Conversely,
b) is solved by first minimizing , then , and so on, which
automatically produces a good basis in the sense of a) as well.

The smallest possible value of that can be selected for
a given lattice equals the length of the shortest vector in the lat-
tice. (Shortest vector problems can be solved by a variant of
the CLOSESTPOINT algorithm, as described in Section VI-A.)
On the other hand, the largest possible is the reciprocal of
the length of the shortest vector in the dual lattice, since

is a generator matrix for , provided that is square.
Applying these shortest vector criteria recursively, we conclude
that b) is solved optimally by KZ reduction of any basis for the
lattice. This follows immediately from the recursive definition
of KZ reduction in Section II. Similarly, a) is solved optimally
by KZ reduction of a basis for the dual lattice, followed by re-
versing the order of the rows and transposing the inverse of the
resulting matrix (hereafter, we refer to this procedure asKZ re-
duction of the dual). Finally, the LLL reduction yields an ap-
proximate (but faster) solution to both a) and b), because of its
inherent sorting mechanism.

Our recommendation is to use KZ reduction in applications
where the same lattice is to be searched many times, other-
wise use LLL. This recommendation is supported by the exper-
imental results in Section VII.

V. COMPLEXITY ANALYSIS

Banihashemi and Khandani [12] observed that the average
complexity of a search method for uniformly distributed input
vectors4 is proportional to the volume of the region being
searched. They used this observation to assess the complexity
of the Kannan algorithm. We adopt the same approach here
to analyze the CLOSESTPOINT algorithm and compare it with
the Kannan algorithm. A comparison between CLOSESTPOINT

and an algorithm based on the Pohst strategy is carried out
experimentally in Section VII.

For a given lattice, let denote the volume searched in
a -dimensional layer, when is the given upper bound on the
attainable distance. Since the CLOSESTPOINT algorithm does not
require an initial value for , the desired complexity measure is

.

4In this context, a “uniform distribution” is assumed to be uniform over a
region large enough to make boundary effects negligible. This is equivalent to
a uniform distribution over just one Voronoi region.

Theorem 1: Let for .
Then

(16)

(17)

Proof: As before, we let denote the upper bound used
by the CLOSESTPOINT algorithm when searching a-dimen-
sional layer. In view of (14), we have

for (18)

where is the distance accumulated within the-dimensional
layer, as in (11). Combining (11) and (13), we see thatvaries
from at least to at most . Thus, expressing as
an integral over , we obtain the following recursive
bound:

for

(19)
The bounds (16) and (17) follow from this recursion in conjunc-
tion with two different bounds on . In either case, we
use the initial condition

(20)

which is the volume of a line extending from to . To
derive (16), we first use (18) to transform (19) into the form

where the index of has been dropped. Solving this recursion
with the initial condition (20) yields

for (21)

Notice that the right-hand side of (21) is the volume of a-di-
mensional sphere of radius.

It is known [10] that for any input vector, the distance to
the Babai point in dimensions is at most , where

. Since the Babai point is the first lattice
point generated by the CLOSESTPOINT algorithm, we have

(22)

and for . Using this bound on in
conjunction with the recursion (19), we obtain

for (23)

regardless of the value of . This proves (16). Notice that the
right-hand side of (23) is the volume of a-dimensional paral-
lelepiped with sides .

To complete the proof of (17), we observe that by (21) and
(22), we have

(24)

2208 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 8, AUGUST 2002

where the last inequality follows from ,
which is the well-known Stirling inequality [29, p. 54].

Let denote the volume of the region being searched in the
Kannan algorithm for an -dimensional lattice. Since Kannan
[47] focused on proving the existence of an algorithm within
a certain complexity bound rather than presenting a single im-
mediately implementable algorithm, there is some ambiguity re-
garding what exactly is to be meant by “Kannan’s algorithm.”
We here adopt the same interpretation as in [12]. It is shown in
[12] that for every lattice, is in the range

(25)

where the lower bound is exact if the sequence
is increasing and the upper bound is exact if it is decreasing.
For a “good” lattice (say, one of the first 48 laminated lattices
[23, p. 158]), this sequence generally displays a decreasing
trend, although the decrease is not necessarily monotonic [48].
Thus, is often close to the upper bound. On the other hand,
the recursive cube searchalgorithm [12], an improved variant
of Kannan’s algorithm, attains the lower bound in (25) with
equality (cf. [12, eq. (19)]).

The CLOSESTPOINT algorithm is faster than the Kannan
algorithm for all dimensions and all lattices, since the upper
bound (16) coincides with the lower bound (25) for the Kannan
algorithm. The magnitude of the gain is suggested by (17).
For lattices such that the upper bound in (25) is exact, the
CLOSESTPOINT algorithm is faster by at least a factor of

. Notice that this factor is meant to indicate the
asymptotic relation for large. For low and moderate values of

, the first inequality in (24) yields a significantly better bound.

Also notice that in assessing the volume searched by the
CLOSESTPOINT algorithm, the general bound

for

may be useful. This bound includes (16) and (17) as two extreme
special cases. It follows straightforwardly from (19), (21), and
the fact that for .

Banihashemi and Khandani [12] point out that the covering
radii of the lattice and its sublattices, if known, can be exploited
to reduce the complexity of the Kannan algorithm. This option
can be incorporated into the CLOSESTPOINT algorithm as well.
However, it is difficult to determine the covering radius of a gen-
eral lattice. The only known method is the “diamond-cutting” al-
gorithm of [79], which, as detailed in Section VI-C, is confined
by memory limitations to low dimensions. If an upper bound on
the covering radius for the particular lattice is known, it can be
used as well, as proposed in [78]. Unfortunately, even though
there exist upper bounds on theminimal possiblecovering ra-
dius for packings in a given dimension [23, pp. 39–40], [39, p.
241], no method to upper-bound the covering radius of an arbi-
trary givenlattice is known.

VI. M ORE LATTICE SEARCH PROBLEMS

Other search problems involving lattices can be solved using
modifications and extensions of the CLOSESTPOINT algorithm.
These include computing lattice parameters such as the shortest
vector, the kissing number, and the Voronoi-relevant vectors.
The CLOSESTPOINT algorithm can be also used to perform the
key step in the KZ basis reduction.

A. Shortest Vector

Given a lattice , the shortest vector problemis to
find a vector in that has the smallest Euclidean norm.
The history of the shortest vector problem is closely interlinked
with that of the closest point problem. It has been conjectured
in [74] that the shortest vector problem (with) is
NP-hard, but, in contrast to the closest point problem, this is
still not proved. The conjecture of [74] is supported by the re-
sult of Ajtai [6], who showed that the shortest vector problem is
NP-hard under randomized reductions. Micciancio [54] further-
more proved that finding an approximate solution within any
constant factor less than is also NP-hard for randomized re-
ductions. It is known [37], [43], however, that the shortest vector
problem is not harder than the closest vector problem.

The CLOSESTPOINT algorithm can be straightforwardly mod-
ified to solve the shortest vector problem. The idea is to submit

as the input and exclude as a potential output.
Algorithmically, the changes needed to convert CLOSESTPOINT

into SHORTESTVECTORare as follows.

1. Omit as an input to DECODEand CLOSESTPOINT.
2. In CLOSESTPOINT, skip Step 4.
3. In DECODE, replace line 5 with “ .”
4. In DECODE, replace lines 20–22 with:

if then {

}

In any lattice, there is an even number of shortest vectors, be-
cause the lattice is symmetrical with respect to reflection in.
Hence, if is a shortest vector, then so is . A factor of two
in computation time can be gained by exploiting this symmetry.
This is achieved by rewriting DECODEto scan only half of the
candidates (say, the ones for which the first nonzero compo-
nent is positive).

Of course, when a KZ-reduced basis is used for the lattice
at hand, a shortest vector is directly available as the first basis
element, and the SHORTESTVECTORalgorithm becomes trivial.
However, one of the main applications of the SHORTESTVECTOR

algorithm, at least in our context, is precisely to compute a KZ-
reduced basis.

B. Kissing Number

The kissing numberof a lattice is defined as the number
of shortest nonzero vectors in. If the lattice has no regular
structure (say, if the basis vectors are drawn randomly from a

AGRELL et al.: CLOSEST POINT SEARCH IN LATTICES 2209

continuous distribution), there are typically exactly two shortest
nonzero lattice vectors, and the kissing number is. In general,
to compute the kissing number (say, for a structured lattice), it
is essential to use infinite precision: an arbitrarily small pertur-
bation of a generator matrix has the potential of reducing the
kissing number to , regardless of the original value. However,
we do not recommend implementing DECODEusing exact arith-
metic. The same goal can be achieved far more efficiently by
implementing the time-consuming operations, as before, using
finite-precision real numbers, followed by an infinite-precision
postprocessing stage, whereby a finite set of candidates is eval-
uated.

The new version of DECODE needs to keep track of a set
of potential shortest vectors, not just the single best candidate.
A margin of accuracy must be included in the comparisons, to
avoid missing some of the shortest vectors due to numerical er-
rors. Thus, the changes needed to convert CLOSESTPOINT into
KISSINGNUMBER are as follows.

1. Apply the changes 1–3 of Section VI-A.
2. In DECODE, include “ ” among the initial assign-

ments.
3. In DECODE, replace line 11 with:

if then {
where is a small positive number.

4. In DECODE, replace lines 20 and 21 with:
if then {

}
5. In DECODE, remove line 22.
6. In DECODE, replace in line 28 with . In CLOSESTPOINT,

replace in Step 5 with .
7. In CLOSESTPOINT, replace Step 6 with:

Step 6.Compute the exact value of for all
and return the number of occurrences of the lowest
value.

As for the shortest vector problem, a variant of the closest
point problem can be formulated that, in case of a tie, returns all
the lattice points that have minimum distance to a given input
vector, not just one of them. Specifically, CLOSESTPOINT can be
converted into ALLCLOSESTPOINTSthrough the following mod-
ifications.

Apply the changes 2–6 above.
In CLOSESTPOINT, replace Step 6 with:

Step 6.Compute the exact value of for all
and call the lowest value. Return

The main application of this algorithm lies in the solution of the
next problem.

C. Voronoi-Relevant Vectors

A facetis an -dimensional face of an -dimensional
polytope. Therelevant-vector problemis to find the facets of the

Voronoi region or, in other words, to find a minimal set
for which

The vectors in are calledVoronoi-relevant, or simplyrel-
evant.Our method to solve the relevant-vector problem is based
upon the following proposition.

Proposition 2: The Voronoi regions of any two distinct lat-
tice points and share a facet if and only if

(26)

for all , where

(27)

Proof: It follows from (26) that ,
and for all . It is known (cf.
[23, p. 33]) that if two Voronoi regions and intersect but
do not share a facet, then all points in also belong to
some other Voronoi region . Hence, the above property of the
point suffices to establish that and

share a facet.
To prove the “only if” part of the proposition, assume that

and have a common facet. Letbe any point
in the interior of this facet, so that

(28)

for all . In addition to (28), we will make use
of the following identity:

(29)

which holds for any three points . Now, for all
we have

where the equality follows from (29), while the inequality fol-
lows by applying (28) twice. This establishes (26).

This proposition was proved by Voronoï in a slightly dif-
ferent context [81, vol. 134, pp. 277–278], [23, p. 475], based on
a theory by Minkowski [59, pp. 81–85], [60]. Similar properties
have been established for the Voronoi regions of binary linear
codes [2] and of parallelepipeds [4].

In order to compute for a lattice , we now proceed
as follows. Consider a vector , and let . It
is obvious that any vector in (27) is of this form. Notice that

is symmetric with respect to reflection in. That is, if
is a lattice point, then so is .

Although there are infinitely many pairs of lattice points
that have as their midpoint, Proposition 2 implies that

at most one such pair can share a facet. A closest point search
in the lattice , with as the input vector, will find the pair,
if it exists. Therefore, we evaluate ALLCLOSESTPOINTS ,
while distinguishing between the following three cases.

Case 1. ALLCLOSESTPOINTS returns one point .
Since is also a lattice point at the same dis-
tance from , we conclude that and is itself

2210 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 8, AUGUST 2002

a lattice point. Obviously, this happens if and only if
, and no pair of lattice points can satisfy (26)

with respect to in this case.

Case 2. ALLCLOSESTPOINTS returns exactly two lattice
points and . Then these
points share a facet by Proposition 2. Notice that if

share a facet, then so do and
for all . This establishes an equivalence class
of pairs of points of that share a facet, whose
midpoint is of the form for some .
We are interested in only two pairs in this class,
namely

In other words, the points and are
the only Voronoi-relevant points derived from this
equivalence class.

Case 3. ALLCLOSESTPOINTS returns four or more lattice
points. Then no pair of points can satisfy (26).

The discussion in Cases 1 and 2 shows that in order to determine
for a given lattice , it suffices to investigate potential

midpoints in the finite set

For each such vector, we can use the ALLCLOSESTPOINTS al-
gorithm to check whether condition (26) of Proposition 2 is sat-
isfied. This leads to the following algorithm.

Input : an generator matrix .
Output : the set of the Voronoi-relevant vectors of .

Step 1.Let .
Step 2.For all vectors , do:

a) Let ;
b) If , let .

Step 3.Return .

Optional optimization includes moving Steps 1–3 of the
ALLCLOSESTPOINTS algorithm out of the loop, since all the
calls to ALLCLOSESTPOINTS concern the same lattice. Since
for each , the lattice is symmetric with respect to
reflection in , a factor of two in complexity can be gained
through the same symmetry argument as for SHORTESTVECTOR

in Section VI-A.
It follows from the preceding discussion that the maximum

number of facets that a Voronoi region can have in any-di-
mensional lattice is , which was proved
by Minkowski in 1897 [60]. Voronoï showed that this number
is attained with probability by a lattice whose basis is chosen
at random from a continuous distribution [81, vol. 134, pp.
198–211 and vol. 136, pp. 67–70].

Relevant vectors have been determined for many clas-
sical lattices [23, Chs. 4 and 21], but we believe that the
RELEVANTVECTORS algorithm proposed here is the fastest
known in the general case. The only alternative algorithm

known to the authors is the “diamond-cutting” algorithm of
Viterbo and Biglieri [79], which computes a complete geo-
metrical description of the Voronoi region of any lattice. This
description includes all vertices, edges, etc., which evidently
includes the information about the relevant vectors. However,
using the diamond-cutting algorithm for the sole purpose of
determining the relevant vectors is inefficient. Voronoï showed
in his classical work [81] that the number of -dimen-
sional faces of a Voronoi region of an-dimensional lattice is
upper-bounded by

(30)

and that there exist lattices whose Voronoi regions attain this
number for every [81, vol. 136, pp. 74–82, 137–143]. One
example of such a lattice, given by Voronoï, is the lattice usually
denoted by , which is the dual of the root lattice [23, p.
115]. Furthermore, the number of -dimensional faces is
lower-bounded by

(31)

This can be proved by induction, keeping in mind that the
Voronoi region, as well as all its -faces, are symmetric
polytopes. The lower bound (31) is attained for everyby the
cubic lattice . Evaluating (30) and (31) for
shows that the number of vertices is betweenand ,
inclusively, the number of edges is between and

, and so on. This implies that the memory
requirements for the diamond-cutting algorithm grow very
rapidly with dimension. This property limits the use of the
diamond-cutting algorithm to low dimensions, as the authors
of [79] themselves point out.

The RELEVANTVECTORSalgorithm, on the other hand, uses
negligible memory but does not fully determine the Voronoi re-
gions. In those cases where a complete description (vertices,
edges, etc.) is desired, we suggest preceding the diamond-cut-
ting algorithm with RELEVANTVECTORS, since the complexity
(both time and memory) of the diamond-cutting algorithm can
be reduced by incorporating knowledge of the relevant vectors.

D. KZ Reduction

The last problem we deal with here is thereduction problem.
This is the problem of finding a KZ-reduced basis, which has
been already mentioned in Sections II and IV. Theoretical re-
sults are available for specific lattices in [48]. Algorithms for
general lattices have been proposed by Kannan [47] and by
Schnorr [65]. Since KZ reduction essentially consists of solving

shortest vector problems, a closest point algorithm can be used
in this context too. In our experiments (see the next section), we
have computed KZ-reduced bases using this method.

The general strategy is to find a shortest vector in the lattice,
project the lattice onto the hyperplane orthogonal to this vector,
and find a KZ-reduced basis of the resulting -dimensional
lattice, recursively. In this application of the SHORTESTVECTOR

algorithm, Step 1 is performed using the LLL reduction, since a

AGRELL et al.: CLOSEST POINT SEARCH IN LATTICES 2211

KZ reduction is obviously not a usable prerequisite for KZ reduc-
tion. The implementation details, which we omit, follow straight-
forwardly from the definition of KZ reduction in Section II.

E. Closest Point in a Lattice Code

The primary focus of this paper is search problems for lattices
viewed as infinite point sets. Under some circumstances, the
methods discussed earlier in the paper can be modified to solve
search problems for finite subsets of lattices. This has important
applications in communications. Specifically, demodulation and
quantization both involve finding the closest vector to a given
input in a finite point set. One popular method to design such
a point set is to form alattice code, which is the intersection of
a lattice and a bounded region in . This bounded region is
usually called thesupportof the lattice code [35, pp. 470–479],
[36].

If a general closest point algorithm for lattices is applied to
such a problem, there is a risk that the returned lattice point
lies outside the support and hence does not belong to the lattice
code. This typically happens when the input vector lies outside
the support, but it may also happen in some cases when it lies
slightly inside the support boundary.

Several ways to handle this problem have been proposed. If
a lattice point outside the support is returned by the closest point
algorithm, an obvious option is to declare a failure or erasure,
if the application permits this. Otherwise, the algorithm can be
modified to disregard such points and output the closest point
found in the support, or if no such point is found, to increase
the size of the initial search region and try again [78], [80]. In-
creasing the size repeatedly ensures that the closest point in the
lattice code will eventually be found.

Alternatively, the input vector may be projected onto the
boundary of the support before the closest point search algo-
rithm is invoked [8], [31], [32], [45]. Quite often, the closest
lattice point to the projected input vector belongs to the lattice
code and is its closest point to the original input, but this is not
always the case. Hence, it might be advantageous to combine
this method with increasing the size of the search region, or
to project the vector onto a surface slightly inside the support
boundary instead. If the input vector is far outside the support
region, a much smaller search region needs to be considered
around the projected vector in order to find the closest point
in the lattice code, compared to the size of the search region
without projection.

The previously described methods are applicable for the
Kannan, Pohst, and Schnorr–Euchner strategies alike. It can
be argued that increasing the size of the initial search region
is useless for the Schnorr–Euchner strategy, because its initial
value of is unbounded. However, we recommend giving
an explicit finite value in the context of lattice codes, because
if for a certain input vector the Babai point lies outside the
support (and if the line through the Babai point in the direction
of does not pass through any point in the lattice code), then
the unmodified version of DECODE will never terminate. To
avoid this, line 2 of DECODEshould be appropriately modified.

VII. EXPERIMENTS

In this section, we report on experiments with the
CLOSESTPOINT algorithm of Section III-B. We evaluate
its performance for both low- and high-dimensional lattices.
We also compare it with other similar algorithms, and show
how the basis for the lattice at hand should be preprocessed in
order to achieve the best performance.

A. The Setup

To evaluate the performance of the CLOSESTPOINT algorithm,
we must decide what class of lattices to investigate. The closest
point search methods studied here are general. Thus, they do not
compete well with algorithms specially designed for searching
a particular lattice; such algorithms can exploit structure in the
lattice and are generally faster (see Section I). Here, we concen-
trate on experiments with random lattices without any apparent
structure that can be exploited in their decoding. However, for
comparison, we also include several experiments where the al-
gorithms were applied to classical, highly structured, lattices,
such as the Leech lattice in 24 dimensions and the cubic lat-
tice .

Following the discussion above, we use generator matrices
with random elements, drawn from independent and identically
distributed zero-mean, unit variance Gaussian distributions. For
each point in Figs. 1–3, 50 random matrices are generated, and
the mean search time for each matrix is computed by averaging
over a large number of random vectors. The exact number of
input vectors is dependent on dimension: for large dimensions
with long search times the average is computed over 200 vec-
tors for each of the 50 matrices, while for small dimensions the
number of vectors is much larger.

Then the median of the average search times for the 50 ma-
trices is computed. Occasionally, a random matrix with very
long search times is drawn. Computing the median rather than
the mean guarantees that these rare matrices do not totally dom-
inate the average search times. The search times for all the al-
gorithms are averaged using the same matrices and the same set
of input vectors. The results are given as average time (in sec-
onds), using a DELL computer based upon a 733-MHz Pentium
III processor, with Visual C++ running under Windows XP.

The random vectors were drawn according to a uniform dis-
tribution. Conway and Sloane [22] report on a method to gen-
erate uniform data within a Voronoi region, which is equivalent
to generating data uniformly distributed over a infinite-sized re-
gion. Uniform data is a reasonable assumption for applications
such as source coding and cryptography. In channel coding ap-
plications, a more reasonable assumption is a Gaussian distribu-
tion around a lattice point, but such experiments have not been
performed here.

B. The Preprocessing

An important question for a closest point algorithm is whether
the performance can be improved by preprocessing the gener-
ator matrix. Since the preprocessing needs to be performed only
once, while the processed basis is typically used many times (in
most communication applications), it is usually worthwhile to
invoke a good preprocessing procedure. In Section IV, three dif-

2212 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 8, AUGUST 2002

Fig. 1. Comparison of average search times among different reduction
methods for preprocessing of the generator matrix.

ferent preprocessing strategies were discussed: LLL reduction,
KZ reduction, and KZ reduction of the dual. All of these strate-
gies basically aim to find as short and as orthogonal basis vec-
tors as possible. Here, we present experiments designed to find
the best of these reduction methods.

In Fig. 1, the simulation results for the three reduction
methods are given (the time needed for the reduction itself is
not included in these results). We see that performance can be
improved significantly by selecting a good preprocessor. The
best methods in our study are the ones based on the two KZ
reductions; as expected, there is almost no difference between
the KZ reduction and the KZ reduction of the dual. For high
dimensions (30), the KZ reductions lower the average search
times by almost two orders of magnitude, as compared to
unreduced bases, and by about one order of magnitude as
compared to the LLL reduction. On the other hand, up to about
10–15 dimensions, the polynomial-time LLL reduction gives
good results.

C. Comparison With Other Algorithms

To assess the performance of the CLOSESTPOINT algorithm,
we have also implemented an algorithm described by Viterbo
and Boutros in [80], which is based on the Pohst strategy. The
Viterbo–Boutros algorithm requires an initial bound on the at-
tainable distance (see Section III-A). A natural choice is the
covering radius of the lattice, but it is not clear how to com-
pute the covering radius for random lattices. Viterbo [77] sug-
gests to use the length of the shortest basis vector as an initial
guess. If no lattice point is found within this distance from the
input vector, the distance is multiplied by some factor greater
than , and the search is repeated. We have performed some
experiments using factors between and . We have also
used the distance to the Babai point as an initial distance bound,
thereby ensuring that at least one point is found within the dis-
tance. The CLOSESTPOINT algorithm needs no initial bound for
the distance; the Babai point is by default the first point exam-
ined by this algorithm.

Fig. 2. Comparison of the average search times for the CLOSESTPOINT algo-
rithm and the Viterbo–Boutros algorithm.

Fig. 3. Average search times for classical and random lattices.

In Fig. 2, the average time for a single closest point
search operation is plotted as a function of dimension for the
CLOSESTPOINT and the Viterbo–Boutros algorithms (with sev-
eral values for the initial distance bound). For both algorithms,
KZ reduction was first applied to the generator matrices. We
see that the CLOSESTPOINT algorithm is faster for all tested
dimensions, by a factor of – in our implementation.

D. Comparison With Classical Lattices

To further illustrate the performance of the CLOSESTPOINT

algorithm, we evaluate its performance for classical lattices,
and compare it with the performance for random matrices
(chosen from an independent and identically distributed
Gaussian source). In Fig. 3, the average search times for
random lattices and for the cubic lattice are plotted as a
function of dimension, together with the search times for the
Leech lattice in 24 dimensions, and for the Barnes–Wall lattices
in dimensions 8, 16, and 32. For the classical lattices just as for

AGRELL et al.: CLOSEST POINT SEARCH IN LATTICES 2213

Fig. 4. Normalized mean squared distance as a function of allowed search
time, when the search is aborted before the optimal point is found. The Babai
point had a normalized mean squared distance of1:49 for this 45-dimensional
example.

random lattices, KZ reduction leads to faster search times, and
is therefore applied before the experiments.

We see that although the search times for the classical, highly
structured, lattices are slightly higher, the general curve is about
the same as that for random lattices. This is the strength as well
as the weakness of search algorithms of this type: they do not
rely on any particular structure.

E. Suboptimal Search

The search algorithms studied here always return a lattice
point that is closest to the input point. However, in certain ap-
plications (e.g., source coding), it may be necessary to abort the
search before the closest point has been found. Therefore, we
have included experiments where the CLOSESTPOINT algorithm
is aborted after a given time. The measure of performance in
these experiments is themean squared distanceto the point pro-
duced by an aborted algorithm.

In Fig. 4, the ratio between the suboptimal and the optimal
mean squared distances is given for a 45-dimensional example,
as a function of the time allotted for the search. From this figure,
we see that the CLOSESTPOINT algorithm quickly finds lattice
points fairly close to the optimal one.

We see that if a 10% higher mean squared distance than the
optimal can be tolerated, then the CLOSESTPOINT algorithm is
approximately 40 times faster than if the optimal point is re-
quired. We only report results for a single 45-dimensional ex-
ample, but the general conclusion is the same for all tested di-
mensions and lattices. If the search is aborted before the optimal
point is found, considerable time savings can be achieved at the
cost of a slightly increased mean squared distance. Note that the
good result relies on the layers being searched according to (13);
if the layers are searched according to (15), the convergence is
considerably slower.

ACKNOWLEDGMENT

The authors gratefully acknowledge helpful comments by
Daniele Micciancio, who brought several recent references

to their attention. They also thank Emanuele Viterbo and
Joseph Boutrous for valuable suggestions, especially regarding
optimization of the Viterbo–Boutros algorithm.

REFERENCES

[1] L. Afflerbach and H. Grothe, “Calculation of Minkowski-reduced lattice
bases,”Computing, vol. 35, no. 3–4, pp. 269–276, 1985.

[2] E. Agrell, “On the Voronoi neighbor ratio for binary linear block codes,”
IEEE Trans. Inform. Theory, vol. 44, pp. 3064–3072, Nov. 1998.

[3] E. Agrell and T. Eriksson, “Optimization of lattices for quantization,”
IEEE Trans. Inform. Theory, vol. 44, pp. 1814–1828, Sept. 1998.

[4] E. Agrell and T. Ottosson, “ML optimal CDMA multiuser receiver,”
Electron. Lett., vol. 31, pp. 1554–1555, Aug. 1995.

[5] M. Ajtai, “Generating hard instances of lattice problems,” inProc. 28th
Annu. ACM Symp. Theory of Computing, Philadelphia, PA, May 1996,
pp. 99–108.

[6] , “The shortest vector problem inL is NP-hard for randomized re-
ductions,” inProc. 30th Annu. ACM Symp. Theory of Computing, Dallas,
TX, May 1998, pp. 193–203.

[7] M. Ajtai and C. Dwork, “A public-key cryptosystem with worst-case/av-
erage-case equivalence,” inProc. 29th Annu. ACM Symp. Theory of
Computing, El Paso, TX, 1997, pp. 284–293.

[8] M. Antonini, M. Barlaud, and T. Gaidon, “Adaptive entropy constrained
lattice vector quantization for multiresolution image coding,”Proc.
SPIE, pt. 2, vol. 1818, pp. 441–457, Nov. 1992.

[9] S. Arora, L. Babai, J. Stern, and Z. Sweedyk, “The hardness of ap-
proximate optima in lattices, codes, and systems of linear equations,”
J. Comput. Syst. Sci., vol. 54, pp. 317–331, Apr. 1997.

[10] L. Babai, “On Lovász’ lattice reduction and the nearest lattice point
problem,”Combinatorica, vol. 6, no. 1, pp. 1–13, 1986.

[11] A. H. Banihashemi and I. F. Blake, “Trellis complexity and minimal
trellis diagrams of lattices,”IEEE Trans. Inform. Theory, vol. 44, pp.
1829–1847, Sept. 1998.

[12] A. H. Banihashemi and A. K. Khandani, “On the complexity of decoding
lattices using the Korkine–Zolotarev reduced basis,”IEEE Trans. In-
form. Theory, vol. 44, pp. 162–171, Jan. 1998.

[13] I. F. Blake, “Lattices and cryptography,” inCodes, Graphs and Sys-
tems, R. E. Blahut and R. Kötter, Eds. Norwell, MA: Kluwer, 2002,
pp. 317–332.

[14] J. Blömer, “Closest vectors, successive minima, and dual HKZ-bases of
lattices,” inProc. Int. Colloq. Automata, Languages and Programming,
U. Montanari, J. D. P. Rolim, and E. Welzl, Eds. Geneva, Switzerland,
July 2000, pp. 248–259.

[15] J. Boutros, E. Viterbo, C. Rastello, and J.-C. Belfiore, “Good lattice
constellations for both Rayleigh fading and Gaussian channels,”IEEE
Trans. Inform. Theory, vol. 42, pp. 502–518, Mar. 1996.

[16] L. Brunel and J. Boutros, “Euclidean space lattice decoding for joint de-
tection in CDMA systems,” inProc. Int. Workshop Information Theory,
Kruger Park, South Africa, June 1999, p. 129.

[17] , “Lattice decoding for joint detection in direct sequence CDMA
systems,”IEEE Trans. Inform. Theory, 2002, to be published.

[18] J. W. S. Cassels,An Introduction to the Geometry of Numbers. Berlin,
Germany: Springer, 1959.

[19] I. V. L. Clarkson, “Frequency estimation, phase unwrapping, and the
nearest lattice point problem,” inProc. Int. Conf. Acoustics, Speech and
Signal Processing, Phoenix, AZ, Mar. 1999, pp. 1609–1612.

[20] H. Cohen, A Course in Computational Algebraic Number
Theory. Berlin, Germany: Springer-Verlag, 1993.

[21] J. H. Conway and N. J. A. Sloane, “A fast encoding method for lat-
tice codes and quantizers,”IEEE Trans. Inform. Theory, vol. IT-29, pp.
820–824, Nov. 1983.

[22] , “On the Voronoi regions of certain lattices,”SIAM J. Algebraic
Discr. Methods, vol. 5, pp. 294–305, Sept. 1984.

[23] , Sphere Packings, Lattices and Groups, 3rd ed. New York:
Springer-Verlag, 1999.

[24] R. R. Coveyou and R. D. MacPherson, “Fourier analysis of uniform
random number generators,”J. Assoc. Comput. Mach., vol. 14, pp.
100–119, Jan. 1967.

[25] O. Damen, A. Chkeif, and J.-C. Belfiore, “Lattice code decoder for
space-time codes,”IEEE Commun. Lett., vol. 4, pp. 161–163, May
2000.

[26] U. Dieter, “How to calculate shortest vectors in a lattice,”Math. of
Comput., vol. 29, pp. 827–833, July 1975.

2214 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 8, AUGUST 2002

[27] I. Dinur, G. Kindler, R. Raz, and S. Safra. (2002) An improved
lower bound for approximating CVP. Preprint. [Online]. Available:
http://www.math.ias.edu/~iritd

[28] P. Erdös, P. M. Gruber, and J. Hammer,Lattice Points. Harlow, U.K./
New York: Longman/Wiley, 1989.

[29] W. Feller,An Introduction to Probability Theory and its Applications,
3rd ed. New York: Wiley, 1968, vol. 1.

[30] U. Fincke and M. Pohst, “Improved methods for calculating vectors
of short length in a lattice, including a complexity analysis,”Math. of
Comput., vol. 44, pp. 463–471, Apr. 1985.

[31] T. R. Fischer, “A pyramid vector quantizer,”IEEE Trans. Inform.
Theory, vol. IT-32, pp. 568–583, July 1986.

[32] , “Geometric source coding and vector quantization,”IEEE Trans.
Inform. Theory, vol. 35, pp. 137–145, Jan. 1989.

[33] G. D. Forney, Jr., “The Viterbi algorithm,”Proc. IEEE, vol. 61, pp.
268–278, Mar. 1973.

[34] , “Coset codes—Part II: Binary lattices and related codes,”IEEE
Trans. Inform. Theory, vol. 34, pp. 1152–1187, Sept. 1988.

[35] A. Gersho and R. M. Gray,Vector Quantization and Signal Compres-
sion. Boston, MA: Kluwer, 1992.

[36] J. D. Gibson and K. Sayood, “Lattice quantization,” inAdvances in Elec-
tronics and Electron Physics, P. W. Hawkes, Ed. Boston, MA: Aca-
demic, 1988, vol. 72, pp. 259–330.

[37] O. Goldreich, D. Micciancio, S. Safra, and J.-P. Seifert, “Approximating
shortest lattice vectors is not harder than approximating closest lattice
vectors,”Inform. Processing Lett., vol. 71, pp. 55–61, July 1999.

[38] O. Goldreich, D. Ron, and M. Sudan, “Chinese remaindering with er-
rors,” IEEE Trans. Inform. Theory, vol. 46, pp. 1330–1338, July 2000.

[39] P. M. Gruber and C. G. Lekkerkerker,Geometry of Num-
bers. Amsterdam, The Netherlands: North-Holland, 1987.

[40] V. Guruswami, A. Sahai, and M. Sudan, “‘Soft-decision’ decoding of
Chinese remainder codes,” inProc. 41st Annu. Symp. Found. Computer
Science, Redondo Beach, CA, Nov. 2000, pp. 159–168.

[41] W. W. Hager,Applied Numerical Linear Algebra. Englewood Cliffs,
NJ: Prentice-Hall, 1988.

[42] B. Helfrich, “Algorithms to construct Minkowski reduced and Hermite
reduced lattice bases,”Theor. Comput. Sci., vol. 41, no. 2–3, pp.
125–139, 1985.

[43] M. Henk, “Note on shortest and nearest lattice vectors,”Inform. Pro-
cessing Lett., vol. 61, pp. 183–188, 1997.

[44] C. Hermite, “Extraits de lettres à M. Jacobi sur différents objets de la
théorie des nombres” (in French),J. Reine und Angewandte Math., vol.
40, no. 3–4, pp. 261–315, 1850.

[45] D. G. Jeong and J. D. Gibson, “Uniform and piecewise uniform lattice
vector quantization for memoryless Gaussian and Laplacian sources,”
IEEE Trans. Inform. Theory, vol. 39, pp. 786–804, May 1993.

[46] R. Kannan, “Improved algorithms for integer programming and related
lattice problems,” inProc. ACM Symp. Theory of Computing, Boston,
MA, Apr. 1983, pp. 193–206.

[47] , “Minkowski’s convex body theorem and integer programming,”
Math. Oper. Res., vol. 12, pp. 415–440, Aug. 1987.

[48] A. K. Khandani and M. Esmaeili, “Successive minimization of the state
complexity of the self-dual lattices using Korkine–Zolotarev reduced
basis,” Dept. Elec. Comput. Eng., Univ. of Waterloo, Waterloo, ON,
Canada, Tech. Rep. UW-E&CE#97-01, Jan. 1997.

[49] P. Klein, “Finding the closest lattice vector when it’s unusually close,” in
Proc. 11th ACM-SIAM Symp. Discrete Algorithms, San Francisco, CA,
Jan. 2000, pp. 937–941.

[50] D. E. Knuth,The Art of Computer Programming, 2nd ed. Reading,
MA: Addison-Wesley, 1981, vol. 2.

[51] A. Korkine and G. Zolotareff, “Sur les formes quadratiques” (in French),
Math. Annalen, vol. 6, pp. 366–389, 1873.

[52] C. Lamy and J. Boutros, “On random rotations diversity and minimum
MSE decoding of lattices,”IEEE Trans. Inform. Theory, vol. 46, pp.
1584–1589, July 2000.

[53] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász, “Factoring polynomials
with rational coefficients,”Math. Annalen, vol. 261, pp. 515–534, 1982.

[54] D. Micciancio, “The shortest vector in a lattice is hard to approximate
to within some constant,” inProc. 39th Annu. Symp. Foundations of
Computer Science, Palo Alto, CA, Nov. 1998, pp. 92–98.

[55] , “The hardness of the closest vector problem with preprocessing,”
IEEE Trans. Inform. Theory, vol. 47, pp. 1212–1215, Mar. 2001.

[56] H. Minkowski, “Sur la réduction des formes quadratiques positives
quaternaires” (in French),C. R. Académie des Sciences, vol. 96, pp.
1205–1210, 1883. Also inGesammelte Abhandlungen von Hermann
Minkowski(D. Hilbert, Ed.). Leipzig, Berlin, Germany: Teubner, vol.
1, 1911, pp. 145–148 (in French).

[57] , “Über positive quadratische Formen” (in German),J. Reine und
Angewandte Math., vol. 99, no. 1, pp. 1–9, 1886. Also inGesammelte
Abhandlungen von Hermann Minkowski(D. Hilbert, Ed.). Leipzig,
Berlin, Germany: Teubner, vol. 1, 1911, pp. 149–156 (in German).

[58] , “Zur Theorie der positiven quadratischen Formen” (in German),
J. Reine und Angewandte Math., vol. 101, no. 3, pp. 196–202, 1887.
Also in Gesammelte Abhandlungen von Hermann Minkowski(D.
Hilbert, Ed.). Leipzig, Berlin, Germany: Teubner, vol. 1, 1911, pp.
212–218 (in German).

[59] , Geometrie der Zahlen(in German), Leipzig, Germany, 1896.
[60] , “Allgemeine Lehrsätze über die konvexenPolyeder” (in German),

Nachrichten der K. Gesellschaft der Wissenschaften zu Göttingen. Math-
ematisch-physikalische Klasse, pp. 198–219, 1897. Also inGesammelte
Abhandlungen von Hermann Minkowski(D. Hilbert, Ed.). Leipzig,
Berlin, Germany: Teubner, vol. 2, 1911, pp. 103–121 (in German).

[61] , “Diskontinuitätsbereich für arithmetische Äquivalenz” (in
German),J. Reine und Angewandte Math., vol. 129, no. 3–4, pp.
220–274, 1905. Also inGesammelte Abhandlungen von Hermann
Minkowski(D. Hilbert, Ed.). Leipzig, Berlin, Germany: Teubner, vol.
2, 1911, pp. 53–100 (in German).

[62] W. H. Mow, “Maximum likelihood sequence estimation from the lattice
viewpoint,” IEEE Trans. Inform. Theory, vol. 40, pp. 1591–1600, Sept.
1994.

[63] M. Pohst, “On the computation of lattice vectors of minimal length, suc-
cessive minima and reduced bases with applications,”ACM SIGSAM
Bull., vol. 15, pp. 37–44, Feb. 1981.

[64] S. S. Ryshkov and E. P. Baranovskii, “Classical methods in the theory
of lattice packings” (in Russian),Usp. Mat. Nauk, vol. 34, pp. 3–64,
July–Aug. 1979. Translated into English inRuss. Math. Surv., vol. 34,
no. 4, pp. 1–68, 1979.

[65] C. P. Schnorr, “A hierarchy of polynomial time lattice basis reduction
algorithms,”Theor. Comput. Sci., vol. 53, no. 2–3, pp. 201–224, 1987.

[66] , “A more efficient algorithm for lattice basis reduction,”J. Algo-
rithms, vol. 9, pp. 47–62, Mar. 1988.

[67] C. P. Schnorr and M. Euchner, “Lattice basis reduction: Improved prac-
tical algorithms and solving subset sum problems,”Math. Programming,
vol. 66, pp. 181–191, 1994.

[68] C. P. Schnorr and H. H. Hörner, “Attacking the Chor–Rivest cryp-
tosystem by improved lattice reduction,” inLecture Notes in Computer
Science. Berlin: Springer-Verlag, 1995, vol. 921, pp. 1–12.

[69] A. Schönhage, “Factorization of univariate integer polynomials by dio-
phantine approximation and an improved basis reduction algorithm,”
in Proc. Colloq. Automata, Languages and Programming, J. Paredaens,
Ed. Antwerp, Belgium, July 1984, pp. 436–447.

[70] J. Stern, “Lattices and cryptography: An overview,” inPublic Key Cryp-
tography, H. Imai and Y. Zheng, Eds. Yokohama, Japan, Feb. 1998,
pp. 50–54.

[71] G. Strang,Linear Algebra and Its Applications, 3rd ed. San Diego,
CA: Harcourt Brace Jovanovich, 1988.

[72] V. Tarokh and I. F. Blake, “Trellis complexity versus the coding gain
of lattices, Parts I and II,”IEEE Trans. Inform. Theory, vol. 42, pp.
1796–1816, Nov. 1996.

[73] V. Tarokh and A. Vardy, “Upper bounds on trellis complexity of lattices,”
IEEE Trans. Inform. Theory, vol. 43, pp. 1294–1300, July 1997.

[74] P. van Emde Boas, “Another NP-complete partition problem and the
complexity of computing short vectors in a lattice,” Mathematisch In-
stituut, Amsterdam, The Netherlands, Rep. 81-04, Apr. 1981.

[75] A. Vardy and Y. Be’ery, “Maximum-likelihood decoding of the Leech
lattice,” IEEE Trans. Inform. Theory, vol. 39, pp. 1435–1444, July
1993.

[76] A. J. Viterbi, “Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm,”IEEE Trans. Inform. Theory, vol.
IT-13, pp. 260–269, Apr. 1967.

[77] E. Viterbo, private communication, Jan. 2002.
[78] E. Viterbo and E. Biglieri, “A universal decoding algorithm for lattice

codes,” in Proc. GRETSI, Juan-les-Pins, France, Sept. 1993, pp.
611–614.

[79] , “Computing the Voronoi cell of a lattice: The diamond-cut-
ting algorithm,” IEEE Trans. Inform. Theory, vol. 42, pp. 161–171,
Jan. 1996.

[80] E. Viterbo and J. Boutros, “A universal lattice code decoder for fading
channels,”IEEE Trans. Inform. Theory, vol. 45, pp. 1639–1642, July
1999.

[81] G. Voronoï, “Nouvelles applications des paramètres continus à la théorie
des formes quadratiques,”J. Reine und Angewandte Math., vol. 133,
pp. 97–178, 1908. Also, vol. 134, pp. 198–287, 1908; and vol. 136, pp.
67–181, 1909 (in French).

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

