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Abstract—in this semitutorial paper, a comprehensive survey of
closest point search methods for lattices without a regular structure

is presented. The existing search strategies are described in a uni-

fied framework, and differences between them are elucidated. An
efficient closest point search algorithm, based on the Schnorr—Eu-
chner variation of the Pohst method, is implemented. Given an ar-
bitrary point & € R™ and a generator matrix for a lattice A, the al-
gorithm computes the point of A that is closest tae. The algorithm
is shown to be substantially faster than other known methods, by
means of a theoretical comparison with the Kannan algorithm and
an experimental comparison with the Pohst algorithm and its vari-
ants, such as the recent Viterbo—Boutros decoder. Modifications of
the algorithm are developed to solve a number of related search
problems for lattices, such as finding a shortest vector, determining
the kissing number, computing the Voronoi-relevant vectors, and
finding a Korkine—Zolotareff reduced basis.

Index Terms—Closest point search, kissing number, Korkine—
Zolotareff (KZ) reduction, lattice decoding, lattice quantization,
nearest neighbor, shortest vector, Voronoi diagram.

. INTRODUCTION

N lattice theory, @yenerator matri>G is any matrix with real

entries whose rows are linearly independent dvewe let
n andm denote the number of rows and columngfrespec-
tively. Hencen < m. Thelattice generated by7 is

AR E (uG:ue 1),
The rows of@G are calledbasis vectorgor A, and the numbe
of basis vectors is said to be thanensiorof A.
The closest point problenis the problem of finding, for

a given latticeA and a given input poing € R™, a vector
¢ € A such that

lz—¢| < |lz—¢, foralle € A

wheree € A. The Voronoi diagramof a lattice is the set of
all its Voronoi regions. It is known [23] that the Voronoi regions
Q(A, ¢) are convex polytopes, that they are symmetrical with re-
spect to reflection i, and that they are translations@fA, 0),
where0 is the origin ofR™.

In communication theory, lattices are used for both modu-
lation and quantization. If a lattice is used as a code for the
Gaussian channel, maximum-likelihood decoding in the demod-
ulator is a closest point search. The decoding of space-time
codes is one example [16], [17], [25]. Analogously, if a lattice
is used as a codebook for vector quantization and the mean-
squared-error criterion is used, then the encoding of each input
vector is also a closest point search. Furthermore, if the lattice
is truncated into a so-called Voronoi code [21], another instance
of the closest point problem arises at the opposite end of the
communication system, in the source decoder and in the mod-
ulator. Typical for these applications in communications is that
the same lattice is decoded numerous times for different input
vectors.

Other applications where the closest point problem arises in-
clude lattice design [3] and Monte Carlo second-moment esti-
mation [22]. In both cases, random vectors are generated uni-
formly in a Voronoi region of a lattice using closest point search.

The closely relateghortest vector problefnas been used in
assessing the quality of noncryptographic random number gen-
erators [50, pp. 89-113] and in decoding of Chinese remainder
codes [38], [40]. It also has important applications in cryptog-
raphy [5], [7]. Another related problem of paramount impor-
tance in cryptography [13], [70] is that of lattibasis reduction
These search problems will be discussed in Section VI.

The choice of method for solving the closest point problem
depends on the structure of the lattice. Intuitively, the more

where|| - || denotes the Euclidean norm. In channel coding, tietructure a lattice has, the faster can the closest point be found.
closest point problem is referred to dscoding and we adopt For many classical lattices, efficient search methods are known
this terminology herein. Note, however, that in source codinf23, Ch. 20], [75]. A more general approach is to represent a lat-

this problem is calleéncoding(see below).

tice by a trellis [72] and use a trellis decoding algorithm such as

The Voronoi regionof a lattice point is the set of all vectorsthe Viterbi algorithm [11], [33], [34], [76]. However, finite-state

in R™ that can be decoded to this point, namely

QA o) Lz eR™ |z —d <|x—¢|, V¢ €A}
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trellises exist if and only if the lattice contaimsmutually or-
thogonal vectors, and even then decoding complexity quickly
becomes prohibitive [73].

Herein, we address the problem of finding the closest point
a general lattice: we assume that it has no exploitable struc-
ture. One situation where this problem arises is when a generator
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Boas [74] two decades ago, who showed that this problemryptosystem [68]. Thus, although the question “What is the
is NP-hard. Micciancio gave a simpler proof in [55]. Thushest (fastest) algorithm currently available for decoding a
all known algorithms for solving the problem optimally haveyeneral lattice?” frequently arises in communication practice,
exponential complexity. It is known [9] that finding an apthe answer to this question is not immediately clear.
proximate solution, such that the ratio between the distanceln this paper, we first describe the two main decoding
found and the true distance is upper-bounded by a constatiategies, due to Pohst and to Kannan, in a unified framework,
is also NP-hard. Even finding a suboptimal solution within shich makes it possible to elucidate the similarities and the
factor n¢/ leglegn for some constané > 0 is NP-hard [27]. differences between them. This is done in Section IlI-A, where
Nevertheless, algorithms that find a suboptimal solution avee also discuss the Babai nearest plane algorithm [10] and
faster and can handle higher dimensions [52]. the Schnorr—Euchner refinement of the Pohst strategy. In
A common approach to the general closest point probleBection 11l-B, we present a stand-alone implementation of
is to identify a certain region i®™ within which the optimal what we believe is the fastest closest point search algorithm
lattice point must lie, and then investigate all lattice points iourrently available for general lattices. The algorithm is based
this region, possibly reducing its size dynamically. The earliest the Schnorr—Euchner [67] strategy, bootstrapped with the
work in the field was done for the shortest vector problem (s&abai [10] nearest point. It is described in sufficient detail
Section VI-A) in the context of assessing the quality of certaito allow straightforward implementation, without knowledge
random number generators (cf. [24], [26] and [50, pp. 89-10df, the underlying theory. One of the main contributions of
110]). The finite region searched in these algorithms is a par#this paper is a theoretical and experimental comparison of
lelepiped, with its axes parallel to the basis vectors. the various closest point search algorithms, presented in
In general, the development of closest point algorithms fobections V and VII, respectively. We also show in Section IV
lows two main branches, inspired by two seminal papers: Pohsw a carefully selected preprocessing stage can reduce the
[63] in 1981 examined lattice points lying inside a hyperspheregmplexity of the closest point search even further. Finally, we
whereas Kannan [46] in 1983 used a rectangular parallelepipdéscribe in Section VI several modifications to the algorithm of
Both papers later appeared in revised and extended versidsggtion IlI-B designed to solve numerous related lattice-search
Pohst’s as [30] and Kannan’s (following the work of Helfricrproblems, such as finding a shortest vector, determining the
[42]) as [47]. The Pohst and Kannan strategies are discusse#ligsing number, computing the Voronoi-relevant vectors, and

greater detail in Section IlI-A. finding a Korkine—Zolotareff reduced basis.
A crucial parameter for the performance of these algorithms
is the initial size of the search region. Some suggestions to this Il. PRELIMINARIES

point were given in [62], [78] for the Pohst strategy and in [12] \ye say that two lattices aidenticalif all lattice points are

for the Kannan strategy. The latter reference also includes an 86 same. Two generator matri@s andG, generate identical
tensive complexity analysis. Applications are discussed in n%tticesA(.G'l) — A(G>) if and only if

[62], [78], [80].

Another, more subtle, difference between the two strategies G = WG, 1)
is implicit in their presentation. Grossly generalizing, the Pohsthere W is a square matrix with integer entries such that
method is intended as a practical tool while the method pdlet W| = 1. A generator matriX@, is arotated and reflected
Kannan is intended as a theoretical tool. Papers dealing wigpresentation of another generator ma¥ixif
the Pohst strategy typically discuss issues of implementation, G = GQ )
whereas papers dealing with the Kannan strategy usually focu],?e
on asymptotic complexity. This is probably the reason wh
the two strategies, despite having so much in common, hah.
never been compared and evaluated against each other in

literature. tion, which is unique up to column negation. How to find a
Recently, Schnorr and Euchner [67] suggested an import Q. Wi q b o €9 ' L
wer-triangular representation of a given generator matrix is

improvement of the Pohst strategy, based on examining td|ecussed i Section IV.

points inside the aforementioned hypersphere in a differen . . :
. . wo lattices are congruent, equivalent if one can be ob-
order. In Sections V and VII-C, the strategies by Pohst, Kannan . . .
JTalned from the other through scaling, rotation, and reflection.
and Schnorr—Euchner are compared to each other, and it Is ; . i
: ; WO generator matrice&; andG- generate equivalent lattices
shown that the Schnorr—Euchner strategy is substantially faster .
Ifand only if
than the other two.
While the preceding discussion is distilled from the existing G, = WG-Q (3)
literature, much of this literature is not directly accessible.
Often, the results are buried in the context of specific applicasherec > 0 is a real constant, whil# and@ obey the same
tions. For example, the Schnorr—Euchner algorithm is describezhditions as in (1) and (2), respectively. The equivalence rela-
in [67] merely as a subroutine, called&v, in a function tion is denoted\(G2) = A(Gy).
that computes the so-called block Korkine—Zolotareff (KZ) The process of selecting a good basis for a given lattice, given
reduction, which itself serves as a tool for solving a certain ty@®me criterion, is callededuction In many applications, it is

of subset-sum problems [67] and attacking the Chor—Rivesdvantageous if the basis vectors are as short as possible and

reQQ’ = I. This transformation can be regarded as
hange of the coordinate system@$ is square and lower
ggular, it is said to be bwer-triangular representatiowf

1- Any generator matrix has a lower-triangular representa-
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“reasonably” orthogonal to each other (for lattice-search proto study its lower-triangular representation. A lower-triangular
lems, this was first noted by deyou and MacPherson [24]).square generator matrix

This property of the basis vectors can be formalized in a number vy vy O
of ways, giving rise to several types of reduction. Simply se- v, Vo1 Uyy e
lecting then shortest nonzero vectors in the lattice is, however, G — - (4)
not a practicable approach, since these vectors do not in general : : s :
form a basis.
Un Unl Un2 "+ VUnn

The problem was studied by Hermite in 1850, who su
gested [44, pp. 301-303] that a generator mat@xwith
rows vy, ..., v, is reduced if the following holds for all
i=1,...,n | < |, for all generator matrice§’ with
rowsw,, ..., v, such thatA(G") = A(G) and||v.|| = ||v; V11
for j :1 1,...,¢—1.1In othc(ar V\)/ords,(a g)jenergt(;ymatuﬁtji! o | < %’ fork=2,....n 6
reduced in this sense if the sequefge, ||, ..., ||v,||) comes and the submatrix
first in a lexicographically ordered list of the corresponding vz e 0
sequences for all generator matrices of the same lattice. The . : @
first basis vectow; is always a shortest nonzero lattice vector. ) ’ )

There exists at least one reduced basis in this sense for every Upn2 " Upn

lattice, but Hermite gave no algorithm to compute it. Notés KZ-reduced. An arbitrary generator matrix is KZ-reduced if
that this reduction criterion is usuallyot referred to as the and only if its lower-triangular representation is KZ-reduced.
“Hermite reduction” in recent literature (see footnote 2).  Itis known [64], that every lattice has at least one KZ-reduced

Minkowski made extensive use of the above reduction critgenerator matrix.
rion in his earlier work [56] [57], [58]. In 1905, he suggested The LLL reductionis named after Lenstra, Lenstra, and
a subtle but significant modification [61], defining the criteLovasz, who suggested the corresponding reduction criteria in
rion now known as thélinkowski reductionA generator ma- [53]. The LLL reduction is often used in situations where the

% defined, recursively, to be KZ-reducednif=1, or else each
of the following three conditions holds:

v1 is a shortest nonzero vector M(G) (5)

trix G with rows w1, ..., v,, is Minkowski-reduced if the fol- KZ reduction would be too time-consuming. A lower-triangular
lowing holds for alli = 1, ..., n: [|lv;|| < ||| for all G’ with ~ generator matrix (4) is LLL-reduced if either = 1, or else
rowsv,, ..., ¢, such thatA(G') = A(G) andv;, = v, for each of the following three conditions holds:
j=1,...,i— 11 This is in essence a “greedy” version of < 2 8

! . : [[oa]] < —= llwal| 8)
the stricter criterion by Hermite. Suppose that a set of vectors V3
vy, ..., v; have been found that satisfy Minkowski's criterion o]
up to a certain value af Then there is always a Minkowski-re- lvr1| < o fork=2,....n )

duced basis that contains these vectors, and the search cagieethe submatrix (7) is LLL-reduced. As before, an arbitrary
focused on finding the next vecter,, in the basis. This is not generator matrix is LLL-reduced if its lower-triangular repre-

necessarily the case with the aforementioned criterion by Hegntation is LLL-reduced.

mite. In particular, if there is more than one inequivalent shortestany Kz-reduced matrix is clearly also LLL-reduced. The

nonzero vector, it may well be that only one of them can be ifyotivation for the latter reduction is that there exists an effi-
cluded in a reduced basis in the sense of Hermite, whereas thgggt algorithm [53] to convert any x m generator matrix into

is always at least one Minkowski-reduced basis for each of thegy | | -reduced one. This algorithm, which operates in polyno-
larly in number theory [18, pp. 27-28], [28, pp. 83-84]. Algoypon in [69] and [66].

rithms to compute a Minkowski-reduced basis of an arbitrary The LLL reduction algorithm has been modified in a number
lattice may be found in [1], [42]. of ways, see [20, pp. 78-104]. Hybrids between KZ and LLL

Two types of reduction that are more widely used in pragsguctions have also been proposed [65].
tice are Korkine—Zolotareff (KZ) reduction and Lenstra—
Lenstra—Lovasz (LLL) reduction. One reason for their pop- . CLOSESTPOINT SEARCH ALGORITHMS
ularity is that with both of those criteria, the-dimensional . o ) .
reduction problem can be recursively reduced téran 1)-di- We start Wlth a.conceptual descrlptl.on of various Iatt_lce
mensional reduction problem, which is not feasible Witﬁearch algorlthm_s in Section llI-A. In_thls framework, we in-
Minkowski reduction. troduce the Babai nearest plane algorithm, the Kannan strategy,

The KZ reductionis named after the authors of [51], whothe Pohst strategy, and the Schnorr—Euchner refinement of

defined this reduction criterion in 1873. To determine whethdf€ Pohst strategy. In Section 1Il-B, we present a detailed

a given generator matrix is a KZ-reduced basis, it is convenidigeudocode implementation of a closest point search algorithm
based on the Schnorr—Euchner strategy.

2Because the condition (6) was proposed by Hermite in his first and second
letters to Jacobi [44, pp. 269-271, 280-282], KZ reduction is sometimes called
1we disregard, as is commonly done in recent literature, that Minkowskilermite reduction” (cf. [42]). The terminology is further complicated by the
also required the scalar product betweerandv; ., to be nonnegative for all fact that in some contexts “Hermite reduction” refers to a criterion for so-called
i=1,....,n—1. indefinite quadratic forms, not immediately applicable to lattices [18, p. 29].
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A. Conceptual Description If only w,, = |,] is considered, the-dimensional search
Reblem is reduced to just orf@ — 1)-dimensional problem,

To understand lattice search algorithms, a recursive charac s . ar )
and no upper boung, is needed. Recursive application of this

ization of lattices is useful. L&® be ann x m generator matrix

for a latticeA, and let us write as strategy [10] yields th8abai nearest plane algorithnand we
o call the returned lattice point tligabai point The Babai nearest
G = { } plane algorithm is a fast method to find a nearby lattice point,
Up in time polynomial in the number of rows and columngafin

whereG" is an(n — 1) x m matrix consisting of the top — 1 general, the Babai point depends not onlyaoand the lattice,
rows of G. Furthermore, let us write,, asv,, = v 4+ v, with but also on the basis used to represent the lattice. It is not nec-
v) in the row space of¥* andv, in the null space. IfG is essarily the closest point, but the error can be bounded. A prob-

lower triangular, as in (4), then this decomposition is partic@bilistic variant of the Babai nearest plane algorithm was pro-

larly simple, namelyy| = (vn1, ..., Un,n—1, 0) andv, = POSed by Klein [49].

(0, ..., 0, Vpp). The other three methods all find the optimal (closest) point.
With this terminology, any:-dimensional lattice can be de-Scanning all the layers in (13), and supplying eaeh- 1)-di-

composed as follows: mensional search problem with the same valug,of; regard-

Foo less ofu,,, yields theKannan strategy.Variants of this strategy

AG) = U {c—i—un'v” tuv,ice A(G*)} (10) [12], [42], [46], [47] differ mginly in how the bo_und;ak are
00 chosenfolk = 1, ..., n. In this context, a recent improvement
by Blémer [14] seems particularly promising. Geometrically,

which is basically a stack @i — 1)-dimensional translated sub—the Kannan strateqv amounts to aeneratina and examining all
lattices. Then — 1)-dimensional hyperplanes that contain these 9y 9 9 9

sublattices will be calle¢n — 1)-dimensionalayers Thus, the attice points within a given rectangular paralielepiped.

indexu,, denotes which layer a certain lattice point belongs t Then-dimensional decoding error vectsr— & Consists, in

The vectom, is the offset by which one sublattice is translateﬁqe given recursive framework, of two orthogonal components:

H %
within its layer, with respect to an adjacent sublattice. The vectdre N the row space .(ﬁ and one parallel tau.. The former
: ) 1S the (n — 1)-dimensional decoding error while the length of
v, is normal to the layers, and the distance between two adja- . : : .
e latter isy,,. Sincey,, varies withu,,, the upper boung,, _;

cent layers iglv ||. For lower-triangular generator matrices, we
yersigfv | gularg can be chosen as

have||v || = |v.n|- Recalling that any generator matrix can be

rotated mtpalower-trlangular form Wl_mn >_O, we letv, de- Pt = /p% — 2 (14)
note the distance between tfie— 1)-dimensional layers, even

when the triangular constraint is not explicitly imposed. which is different for different layers in (13). The idea of let-

Now, all search algorithms for am-dimensional lattice will ting p,,—1 depend on.,, is the Pohst strategy30], [62], [63],
be described recursively as a finite numberef— 1)-dimen- [78], [80]. In geometrical terms, points inside a hypersphere,
sional search operations. Let € R™ be a vector to decode not a parallelepiped, are investigated. When any lattice point
in the latticeA(G), which is decomposed into layers accordingnside the sphere is found, the boyndcan be immediately up-
to (10). The orthogonal distance fraeto the layer with index dated to|a’ — ||, since||a’ — || is an obvious upper bound on

u, IS given by |Z — z|| and||z’ — z|| < pn.
def R The Schnorr—Euchner strategproposed in [67], combines
Un = Jun —in| - oLl (11) the advantages of the Babai nearest plane algorithm and the
where Pohst strategy. Assume thiat < |4, ]. Then the sequence
i, ||.:v%2' (12) Up = [Up], [On] — 1, |Gn] + 1, |Gn] — 2, ... (15)
L

orders the layers in (13) according to nondecreasing distance
Let £ denote the closest lattice point#o and suppose that anfrom z. A trivial counterpart holds wher,, > |i,|. The
upper boung,, on||z — || is known. Then, in order to ensureadvantages of examining the layers in this order are subtle
thatz will be found, it suffices to consider a finite number ofout significant. Since the volume of a layer decreases with

layers in (10). The indices of these layers are increasingy,,, the chance of finding the correct layer early is
maximized. Another advantage of the nondecreasing distance

Up = [an - p_"w R {an + p_"J (13) wx is that the search can safely be terminated as soap, as
[o] [[o. ] exceeds the distance to the best lattice point found so far. Notice

layer withu,, = |4,,] has the shortest orthogonal distance to the Babai point. Furthermore, since the ordering in (15) does
Four types of search methods will now be id'entif_ied' They 3In its original form [46], [47], Kannan's strategy is described recursively
each search the layers indexed in (13), but they differ in the ordera set ofi — 1)-dimensional search problems, wheéris the index of the
in which these layers are examined and in the choice of the upf§ggest element iftv,,, ... ., v,..,). This viewpoint may be useful for a com-
boundp,,_; to be used, recursively, in tf(e _ 1)-dimensional lexity analysis, but because,, «,_1, ..., u; can be selected sequentially,
n— L] 1

the strategy is computationally equivalent to recursively eliminating just one di-
search problems. mension at a time.
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bound can be updated dynamically during the search, with thel5
first finite value of p,, being equal to the distance to the Babai g

point.
17

18
This subsection contains a stand-alone presentation of an ef-

ficient closest point search algorithm, based on the Schnorr—Eu- g
chner strategy. It is intended to be sufficiently detailed to allow 20
a straightforward implementation, even without knowledge of
the underlying theory. 21

B. Detailed Description

2205

disty := newdist
up = | ek /* closest laye/
Crk — Uk
P
step,, = sgn*(y)

Case B

}else{

U =4

/ * best lattice point so far /

bestdist :=newdist /* update recore/

For efficiency, the recursive operations discussed in the pre-22 ki=k+1 /* move upx/
vious subsection have been restructured into a loop. The varing uk 1= U + step,, /% next layers/
ablesH and are used as input and output parameters, instead Crk — U
of the more naturafy = H™' andz = @@. As discussed in 24 =
Section 1V, this is motivated by the typical communication ap- 25 ._

- . : step, := —step, — sgn*(step,)
plication, where numerous input vectors are decoded in the same

; 26 }
lattice.
First, some notation needs to be defined. Matrix and vector Case C
; ; oo 27 Yelse{
elements are named according to the following conventions:
( ) 28 if £ = n then return 4 (and exit)
U= ’ yrery ¥
otz “ 29 else {
€ I(le,CkQ,...,Gkk), fOI‘k‘Il,...,TL 30 E=k+1 /* moveupvk/
hiy O -+ 0O 31 up 1= U + step,, /* next layer«/
. Crk — Uk
. : 32 — &k R
H— hoy hy2 v ' ok
0 33 step,, := —step, — sgnk(step,,)
hnl hn? hnn 34 }
. . . 35
The operatiorsgn=(z) returns—1 if 2 < 0Oandlif z > 0 )
(which may deviate from most built-in sign functions). Ties in 36 goto (loop)

the rounding operatiohz] are broken arbitrarily.

In this algorithm,% is the dimension of the sublayer struc-

Algorithm Drcope(H, )

Input: ann x n lower-triangular matrixd with positive diag-
onal elements, and andimensional vectat € R™ to decode

ture that is currently being investigated. Each time the algo-
rithm finds ak-dimensional layer, the distance to which is less
than the currently smallest distance, this layer is expanded into
(k — 1)-dimensional sublayers. This is done in Case A. Con-

in the latticeA(H ™).

Output: ann-dimensional vectof: € Z" such thatiH ' is

a lattice point that is closest ta
1n :=the size ofH

2bestdist ;= oo

/ + dimensionx /
/ * current distance record/

3k:=n / = dimension of examined layer/
4disty =0 / x distance to examined layer/
S5¢,:=zH / *used to computé,,, see (12} /
6 uy := | e | / * examined lattice point /
7y::w / =see (11} /
Pk

8 step,, := sgnx(y) / = offset to next layer in (15} /
9 (loop)

10 newdist := disty + 3>
11 if newdist < bestdist then {

Case A

12 if k#1then{
13 Ck_177;:=6k7;—yhk7;f0ri=1,...,k—l
14 ki=k—1 / * move downx /

versely, as soon as the distance to the examined layer is greater
than the lowest distance, the algorithm moves up one step in the
hierarchy of layers. This is done in Case C. Case B is invoked
when the algorithm has successfully moved down all the way to
the zero-dimensional layer (that is, a lattice point) without ex-
ceeding the lowest distance. Then this lattice point is stored as
a potential output point, the lowest distance is updated, and the
algorithm moves back up again, without restarting.

IV. PREPROCESSING ANCPOSTPROCESSING

The algorithm [EcoDE of the previous section requires

a representation of the lattice at hand by a lower-triangular gen-
erator matrix, whose diagonal elements are all positive. Such
a representation exists for any lattice, so this requirement does
not impose any constraints on the kind of lattices that can be
searched. Moreover, for any given lattice, a representation with
the required properties can be found in infinitely many ways,

which leaves the user with the freedom of choosing one of

them. The algorithm computes a closest vector regardless of the
representation choice, but the speed with which it reaches this
result varies considerably between different representations.
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This is the topic of this section: How should a given searddgorithms to compute it may be found in [41, pp. 208—236] and
problem be preprocessed, in order to make the most efficigit, pp. 166—176], for example. In our context, QR decomposi-
use of DECODE? tion of G2 gives bothQ” andGs, with G being equal taR” .

To address this question, we now present a general lattisg an alternative to QR decompositidélz can be obtained by
search algorithm. This algorithm can be regarded as a “froi@holesky decomposition (GQG';F. Given am x n positive-def-
end” to DECODE, where explicit preprocessing and postpromite matrix.4, its Cholesky decomposition is a factorization of
cessing is performed to allow generator matrices that are nioé formA = UU* wherel is ann x n upper-triangular ma-
lower triangular, possibly not even square. As witBd®DE  trix. In our context,G's is equal toU/”', and the rotation ma-
we first describe this algorithm conceptually, and then suggésk is given by @ = GglGQ. Algorithms for computing the
how to implement it. Cholesky decomposition may be found in [20, pp. 102-104],

Assume that a generator mat&and an input vectae are [41, pp. 84-93], and [71, pp. 332-334].
given. By linear integer row operations, we first transfoffn Al these transformations can be thought of as a change of the
into another matrix, sa¥», which generates an identical lattice coordinate system. Measure the first coordinate akngthe
The purpose of this transformation is to speed BECODE see  first row of G,), the second in the plane spannediyandws,
below. Next, we rotate and refle@; into a lower-triangular and so on. The generator matrix in this coordinate system will
form G, so that be square and lower triangular.

AGs) = A(G,) = A(G). For Decobeto work, all diagonal elements (ﬂ'?f must be
positive. Some implementations of QR factorization do not do

It is essential to rotate and reflect the input veatdn the same this automatically; if this is the case, we multiply byl all
way, so that the transformed input vector, ggyis in the same columns ofG; that contain a negative diagonal element, as well
relation toA(G) asz is to A(G). All this can be regarded asas the corresponding rows ¢X.
a change of the coordinate system. Now the search problem hals Steps 4-6, the input vectors are processed. They are trans-
a form that is suitable for ECoDE which will find the closest formed into the coordinate system 6%, decoded, and trans-
lattice pointzs in this coordinate system. Reversing the opefermed back again.
ations of rotation and reflection producgsthe lattice point f 5 Jarge set of vectors is to be decoded for the same lattice,
closest tox in A(G). Following these steps, the algorithm issieps 1-3 are, of course, carried out only once for the whole
detailed as follows. set. In this case, the overall execution time may benefit substan-
tially from an effective but time-consuming reduction method
Algorithm CrosestPoNT(@, ) applied in Step 1. To understand precisely what kind of prepro-

: cessing would improve the performance of the search algorithm,
Input: ann x m generator matrix, and anm-element Vector reca| the recursive representation of lattices in (10)./Adi-

z € R™ to decode iN\(G). mensional lattice consists of parallel — 1)-dimensional sub-
Output: a lattice pointz € A(G) that is closest te. lattices, translated and stacked on top of each other. This decom-
Step 1.Let G» := W@, whereW is ann x n matrix with position into sublattices is controlled by the reduction method.
integer entries and determinast. Two properties of the decomposition are desirable for a given
Step 2.Compute am x m orthonormal matrixQ such that lattice.
Gy = G5Q, whereG; is ann x n lower-triangular matrix a) The(n — 1)-dimensional layers should be as far apart
with positive diagonal elements. as possible. This minimizes the number of layers to be
Step 3.Let H3 := G':?T : investigated, as only the layers within a certain distance
Step 4.Letzz := 2Q". range need to be scanned. As an extreme case, suppose
Step 5.Letus := Drcope (H3, z3). that the spacing betwedm — 1)-dimensional layers is
Step 6.Returnz := u3G>. much larger than any othérdimensional layer spacing

) ] ) ] ) . o in the lattice. Then the closest point will always lie in the
Step 1 is a basis reduction. This step is optional: it is pos- closestn — 1)-dimensional layer, and the dimensionality
sible to selec as the identity matrix, which amounts to no of the problem is essentially reduced by one.

reduction at all. This works well for low-dimensional and not
too ill-conditioned generator matrices, as will be shown in Sec-
tion VII. However, the speed and the numerical stability of the
search can be improved significantly by an appropriate reduc-
tion, as discussed later in this section.

Step 2 implies rotation and reflection &G, into a lower-tri-
angular form, asin (2). The standard method to achieve this is by
QR decomposition. Given an arbitraty x n matrix M, its QR
decomposition is a factorization & of the formM = QR,
whereR is ann x n upper-triangular matrix, an@ is anm xn  Both observations can, of course, be applied recursively. Thus,
orthonormal matrix, that is, one satisfyi@@” = I. Itis well high-dimensional layer spacing should be large, while low-di-
known that a QR decomposition exists for any matrix; efficiemhensional spacing should be small. This suggests two greedy

b) The zero-dimensional layers (lattice points) should be as
densely spaced as possible in the one-dimensional layers
(lines). The denser they are, the higher is the probability
that the closest lattice point will belong to the closest lat-
tice line. If the one-dimensional spacing is much smaller
than all other interlayer distances, then the closest point
will always lie in the closest line, so the dimensionality
of the problem is essentially reduced by one.
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algorithms: a) sequentially maximizing the distances betweenTheorem 1:Let 3, = /v, +---+v3, fork=1,..., n.
k-dimensional layers, starting At= n — 1, and b) minimizing Then

the same distances, startingkat 0. n
These two goals are each other’s duals in a fairly strict sense. Va(oo) < [] 8w (16)
Even though they may appear contradictory, they are, in fact, k=1
very similar (cf. [50, pp. 94-98]). To see this, observe that a re- o\ ~?
duction algorithm can choose the numbgsg; } in many ways Vi(oo) < <%> B a7

for a given lattice, but their product is invariant: it equals the

volume of the Voronoi region. Now, a) is solved by maximizing ~ Proof: As before, we lej;, denote the upper bound used

first v, thenw,_;_,_1, and so on. Because of the constarfly the QOSESTPOINT algorithm when searching &-dimen-

product, this procedure forces low valuesdgr, v, etc. Thus, Sional layer. In view of (14), we have

a good solution of a) is in general good for b) too. Conversely, 5 4

b) is solved by first minimizing; 1, thenwvs,, and so on, which PR=L S\ Ph ~ Y

automatically produces a good basis in the sense of a) as wellherey, is the distance accumulated within thelimensional
The smallest possible value of; that can be selected forlayer, as in (11). Combining (11) and (13), we see thataries

a given lattice equals the length of the shortest vector in the l&em at least—p;, to at most+-p.. Thus, expressingi(px) as

tice. (Shortest vector problems can be solved by a variantasf integral oved,,_1 (px—1 ), we obtain the following recursive

the Q.0sesTPOINT algorithm, as described in Section VI-A.)bound:

On the other hand, the largest possiblg is the reciprocal of () < /Pk

K PK) X

fork=2....,n (18)

the length of the shortest vector in the dual latticé, since Vi—1(pr—1) dy, fork =2,...,n.

(G™1)T is a generator matrix fak, provided that? is square. o (19)
Applying these shortest vector criteria recursively, we concludée bounds (16) and (17) follow from this recursion in conjunc-
that b) is solved optimally by KZ reduction of any basis for th&on with two different bounds opy, ..., p,. In either case, we

lattice. This follows immediately from the recursive definitioruse the initial condition

of KZ reduction in Section II. Similarly, a) is solved optimally Vi _ 20
by KZ reduction of a basis for the dual lattice, followed by re- 1(p) PL (20)
versing the order of the rows and transposing the inverse of tlthich is the volume of a line extending fromp; to +p;. To
resulting matrix (hereafter, we refer to this procedur&zise- derive (16), we first use (18) to transform (19) into the form

duction of the dudl Finally, the LLL reduction yields an ap- p
proximate (but faster) solution to both a) and b), because of its Vi(p) < / Vi1 (\/ p? — yQ) dy
inherent sorting mechanism. =

Our recommendation is to use KZ reduction in applicationghere the index op has been dropped. Solving this recursion
where the same lattice is to be searched many times, oth#ith the initial condition (20) yields
wise use LLL. This recommendation is supported by the exper- k2
imental results in Section VII. Vi(p) < DL fork =1,...,n. (21)

Notice that the right-hand side of (21) is the volume df-di-
mensional sphere of radiys

It is known [10] that for any input vectae, the distance to

Banihashemi and Khandani [12] observed that the average Babai point ink dimensions is at mosty. /2, wheres;, =
complexity of a search method for uniformly distributed inpu@vfl NS v,%k)l/Q. Since the Babai point is the first lattice
vectorg is proportional to the volume of the region beingoint generated by theL©SESTPOINT algorithm, we have
searched. They used this observation to assess the complexity
of the Kannan algorithm. We adopt the same approach here V(o) = Va(Bn/2) (22)
to analyze the QOSESTPOINT algorithm and compare it with gnq ,, < Br/2for k = 1, ..., n. Using this bound omy in
the Kannan algorithm. A comparison betweernSESTPOINT  conjunction with the recursion (19), we obtain
and an algorithm based on the Pohst strategy is carried out
experimentally in Section VII.

For a given lattice, le¥},(p) denote the volume searched in
a k-dimensional layer, whep is the given upper bound on the
attainable distance. Since thed®ESTPOINT algorithm does not regardless of the value @f.. This proves (16). Notice that the
require an initial value fop, the desired complexity measure igight-hand side of (23) is the volume oftadimensional paral-
Vi (o0). lelepiped with sideg, ..., 5.

To complete the proof of (17), we observe that by (21) and
(22), we have

4In this context, a “uniform distribution” is assumed to be uniform over a n/2gn 9 —n/2
region large enough to make boundary effects negligible. This is equivalent to A% (oo) < m /n < “n 387 (24)
a uniform distribution over just one Voronoi region. " = 2"F(n/2 + 1) =\ re n

V. COMPLEXITY ANALYSIS

k
Vilor) < [[ v fork=1,....n (23)
j=1
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where the last inequality follows fromi(x + 1) 2 (z/e)%, VI. MORELATTICE SEARCH PROBLEMS

which is the well-known Stirling inequality [29, p. 54]. O
Other search problems involving lattices can be solved using

Let &, denote the volume of the region being searched in the, ifications and extensions of the GESTPOINT algorithm.
Kannan algorithm for am-dimensional lattice. Since Kannantege include computing lattice parameters such as the shortest
[47] focused on proving the existence of an algorithm withige oy the kissing number, and the Voronoi-relevant vectors.

a certain complexity bound rather than presenting a single ifire q oSESTPOINT algorithm can be also used to perform the
mediately implementable algorithm, there is some ambiguity rgéy step in the KZ basis reduction.

garding what exactly is to be meant by “Kannan’s algorithm.”
We here adopt the same interpretation as in [12]. It is shown in
[12] that for every latticeK,, is in the range A. Shortest Vector

Given a latticeA C R™, the shortest vector probleris to
n find a vector inA — {0} that has the smallest Euclidean norm.
1[5 <K< (25) ' The history of the shortest vector problem is closely interlinked
k=1 with that of the closest point problem. It has been conjectured
in [74] that the shortest vector problem (with C 7™) is
where the lower bound is exact if the sequencg ..., von  NP-hard, but, in contrast to the closest point problem, this is
is increasing and the upper bound is exact if it is decreasingill not proved. The conjecture of [74] is supported by the re-
For a “good” lattice (say, one of the first 48 laminated latticesult of Ajtai [6], who showed that the shortest vector problem is
[23, p. 158]), this sequence generally displays a decreasiNg-hard under randomized reductions. Micciancio [54] further-
trend, although the decrease is not necessarily monotonic [48bre proved that finding an approximate solution within any
Thus, K, is often close to the upper bound. On the other hangbnstant factor less thap2 is also NP-hard for randomized re-
the recursive cube searcalgorithm [12], an improved variant ductions. Itis known [37], [43], however, that the shortest vector
of Kannan's algorithm, attains the lower bound in (25) witlproblem is not harder than the closest vector problem.
equality (cf. [12, eq. (19)]). The Q.osesTPOINT algorithm can be straightforwardly mod-
The Qoses™PoINT algorithm is faster than the Kannanified to solve the shortest vector problem. The idea is to submit
algorithm for all dimensions and all lattices, since the uppgf = 0 as the input and exclude = 0 as a potential output.
bound (16) coincides with the lower bound (25) for the Kannamigorithmically, the changes needed to convert€ESTPOINT
algorithm. The magnitude of the gain is suggested by (17jo SHORTESTVECTORare as follows.
For lattices such that the upper bound in (25) is exact, the ) )
CLOSESPOINT algorithm is faster by at least a factor of L~ OMitz asaninputto Bcobeand Q.OSESTPOINT.
(2n/me)™/2. Notice that this factor is meant to indicate the 2. In QLOSESTROINT, sk|.p Step_4. .
asymptotic relation for large. For low and moderate values of 3. In DECODE replace I!ne 5 with &, = 0.
n, the firstinequality in (24) yields a significantly better bound. 4. In DECODE, replace lines 20-22 with:

. . . if dist # 0then
Also notice that in assessing the volume searched by the newdist 7 {

CLOSESTPOINT algorithm, the general bound :e::t:ist — pewdist
k=k+1
7r’“/2[3’“ n }
Vi(00) € gt 3, fork=0,1,...
(%) S ST+ 1) H Pi o _ _
J=k+1 In any lattice, there is an even number of shortest vectors, be-

cause the lattice is symmetrical with respect to reflectio@.in

may be useful. This bound includes (16) and (17) as two extrefidence, ifz is a shortest vector, then so-st. A factor of two
special cases. It follows straightforwardly from (19), (21), anith computation time can be gained by exploiting this symmetry.
the fact thalp, < pr/2fork =1, ..., n. This is achieved by rewriting BCODEto scan only half of the

Banihashemi and Khandani [12] point out that the coveringandidatesa: (say, the ones for which the first nonzero compo-
radii of the lattice and its sublattices, if known, can be exploitatent is positive).
to reduce the complexity of the Kannan algorithm. This option Of course, when a KZ-reduced basis is used for the lattice
can be incorporated into thet,GSESTPOINT algorithm as well. at hand, a shortest vector is directly available as the first basis
However, itis difficult to determine the covering radius of a gerelement, and theF®RTESTVECTORalgorithm becomes trivial.
eral lattice. The only known method is the “diamond-cutting” alHowever, one of the main applications of thedRTESTVECTOR
gorithm of [79], which, as detailed in Section VI-C, is confinedhlgorithm, at least in our context, is precisely to compute a KZ-
by memory limitations to low dimensions. If an upper bound oreduced basis.
the covering radius for the particular lattice is known, it can be
used aslwell, as proposed in [7.8].. Unfortur)ately, even thou%h Kissing Number
there exist upper bounds on th@nimal possiblecovering ra-
dius for packings in a given dimension [23, pp. 39-40], [39, p. The kissing numbenpf a lattice A is defined as the number
241], no method to upper-bound the covering radius of an arbif shortest nonzero vectors k. If the lattice has no regular
trary givenlattice is known. structure (say, if the basis vectors are drawn randomly from a
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continuous distribution), there are typically exactly two shorteSbronoi region€2(A, 0) or, in other words, to find a minimal set
nonzero lattice vectors, and the kissing numbeér. is general, N(A) C A for which
to compute the kissing number (say, for a structured lattice), itQ(A 0) = {z € R™: |jz]| < |z —¢| Yee M(A).

is essential to use infinite precision: an arbitrarily small pertur-

bation of a generator matrix has the potential of reducing glde vectors inV'(A) are calledvoronoi-relevantor simplyrel-

kissing number t@, regardless of the original value |_|Oweverevant.0ur method to solve the relevant-vector problem is based

we do not recommend implementingeoDEUSIng exact arith- upon the following proposition.
metic. The same goal can be achieved far more efficiently byProposition 2: The Voronoi regions of any two distinct lat-
implementing the time-consuming operations, as before, usitige pointse; € A ande, € A share a facet if and only if
finite-precision real numbers, followed by an infinite-precision

o Y g ls—eill = lls—eall < lls—¢]| (26)

postprocessing stage, whereby a finite set of candidates is eval-
foralld € A — {e1, e}, where

uated.
The new version of BCODE needs to keep track of a set g Xf cl_+c?, (27)
of potential shortest vectors, not just the single best candidate. 2

A margin of accuracy must be included in the comparisons, to Proof: Itfollows from (26) thats € (A, €1)NQ(A, ¢2),
avoid missing some of the shortest vectors due to numerical 8Rds £ (A, &) forall ¢ € A —{e;;, e>}. Itis known (cf.
rors. Thus, the changes needed to conved<ESTPOINT into [23, p. 33]) that if two Voronoi region&; andf2, intersect but

KIsSINGNUMBER are as follows. do not share a facgt, then all pointstin N 2, also belong to
) some other Voronoi regiafls. Hence, the above property of the
1. Apply the changes 1-3 of Section VI-A. _ points = (e; + ¢2)/2 suffices to establish th&(A, ¢;) and
2. In DECODE include U := &” among the initial assign- Q(A, e,) share a facet.
ments. _ _ To prove the “only if’ part of the proposition, assume that
3. In DeCoDE replace line 11 with: Q(A, ¢1) andQ(A, ¢;) have acommon facet. Letbe any point
if newdist < (1 + ¢)bestdist then { in the interior of this facet, so that

wherec is a small positive number.

_ _ _ /
4. In DECODE, replace lines 20 and 21 with: |z — el = |lz — e < [le—¢]| (28)
if newdist # 0 then { forall¢ € A — {e1, ¢2}. In addition to (28), we will make use
U = U U {u} of the following identity:
bestdist := min(bestdist, newdist) s — ef? = lz—¢l|*  |lz—28+¢|? -8l (29)
} 2 2
5. In DECODE, remove line 22. R which holds for any three pointg ¢, z € R™. Now, for all
6. In DECODE, replacei: in Iing 28 withi{. In CLOSESTPOINT, ¢ € A — {¢;, €2} we have
replaceits in Step 5 withi/fs. ) o lz — el = ||z — €2
7. In CLOSESTPOINT, replace Step 6 with: o s—alr=lls=€l” = 5
Step 6.Compute the exact value pG.|| for allu € ifs ) 2
and return the number of occurrences of the lowest Lol —le—(at+e-dIF _
value. 2
where the equality follows from (29), while the inequality fol-
As for the shortest vector problem, a variant of the closel@Wws by applying (28) twice. This establishes (26). O

point problem can be formulated that, in case of a tie, returns allyp;g proposition was proved by Voronoi in a slightly dif-
the lattice points that have minimum distance to a given inpilrent context [81, vol. 134, pp. 277—278], [23, p. 475], based on

vector, not_just one of them. SpecificaIIyLO‘sEsPom_T can be a theory by Minkowski [59, pp. 81-85], [60]. Similar properties
converted into AL CLOSESTPOINTS through the following mod- \ae been established for the Voronoi regions of binary linear

ifications. codes [2] and of parallelepipeds [4].
e Apply the changes 2—6 above. In order to computd/(A) for a latticeA(G), we now proceed
e In CLOSESTPOINT, replace Step 6 with: as follows. Consider a vecter € (Z/2)", and lets = 2G. It
Step 6.Compute the exact value 4G, — x| for all is obvious that any vectarin (27) is of this form. Notice that
u € U, and call the lowest value. Return A(G) is symmetric with respect to reflection  That is, if
- . 8 + x is a lattice point, then so is— .
X = {“G% u € Us, ||[uG> —z|| = ’Y} Although there are infinitely many pairs of lattice points

(e1, ¢2) that haves as their midpoint, Proposition 2 implies that

at most one such pair can share a facet. A closest point search
The main application of this algorithm lies in the solution of the, the latticeA (G), with s as the input vector, will find the pair,
next problem. if it exists. Therefore, we evaluateL ACLOSESTPOINTS(G, 8),

while distinguishing between the following three cases.

C. Voronoi-Relevant Vectors Casel. ALCLOSESTPOINTS returns one poist+z € A.

A facetis an(m — 1)-dimensional face of am-dimensional Sinces—« is also a lattice point at the same dis-
polytope. Theelevant-vector problerns to find the facets of the tance froms, we conclude that = 0 ands is itself
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a lattice point. Obviously, this happens if and only iknown to the authors is the “diamond-cutting” algorithm of
z€ 7", and no pair of lattice points can satisfy (26)iterbo and Biglieri [79], which computes a complete geo-
with respect tas in this case. metrical description of the Voronoi region of any lattice. This

Case2. ALCLOSESTPOINTS returns exactly two lattice description includes all vertices, edges, etc., which evidently
pointse, = s+ ande, = s — . Then these includes the information about the relevant vectors. However,

points share a facet by Proposition 2. Notice that ising the diamond-cutting algorithm for the sole purpose of
¢1, ¢ € A share a facet, then so dp+¢ ande,+-¢  determining the relevant vectors is inefficient. Voronoi showed

for all ¢ € A. This establishes an equivalence clad§ his classical work [81] that the number ¢f — k)-dimen-
of pairs of points ofA that share a facet, whosesional faces of a Voronoi region of ardimensional lattice is

midpoint is of the form(z+u)@ for someu € z". Upper-bounded by
We are interested in only two pairs in this class,

k
'k
namely h+1)) (1) <>(k i) (30)
(e1 — e, e2—c1) = (0, 2¢; — 28) i=0 ¢
(e2 — €2, €1 — ) = (0, 2¢; — 28). and that there exist lattices whose Voronoi regions attain this

In other words, the pointde; — 2s and2¢, — 2s are numbelr fofr evehrycl [8.1’ VOI.‘ 13% bp- 74_.5.3.2' 1]37(1.43]' One"
the only Voronoi-relevant points derived from thisexamp eotrsucha att|_ce, given by Voronoi, ist e attice usually

: denoted byA?, which is the dual of the root latticd,, [23, p.
equivalence class.

~115]. Furthermore, the number @f — &)-dimensional faces is
Case 3. ALCLOSESTPOINTS returns four or more lattice |ower-bounded by

points. Then no pair of points can satisfy (26).

The discussion in Cases 1 and 2 shows that in order to determine 2k <n> . (31)
N(A)foragiven lattice\ (@), it suffices to investigate potential k

midpointss in the finite set This can be proved by induction, keeping in mind that the

M(@) e re = 2G : 2 € {0, 1/2}* — {0}}. Voronoi region, as well as all its:-faces, are symmetric

B polytopes. The lower bound (31) is attained for evedyy the
For each such vectar, we can use the A CLOSESTPOINTS al- | pic |atticez”. Evaluating (30) and (31) fde = n, n — 1, ...

_go_rithm t(_) check whether conc_iition (26_) of Proposition 2 is salhows that the number of vertices is betwegrand (n + 1)!,
isfied. This leads to the following algorithm. inclusively, the number of edges is betweez™ ! and
(n/2)(n + 1)}, and so on. This implies that the memory
Algorithm RELEVANTVECTORS(G) requirements for the diamond-cutting algorithm grow very
rapidly with dimension. This property limits the use of the
diamond-cutting algorithm to low dimensions, as the authors
of [79] themselves point out.

Input: ann x m generator matriG.
Output: the set\V of the Voronoi-relevant vectors ¢f(G).

Step 1.Let N = @. The RELEVANTVECTORSalgorithm, on the other hand, uses

Step 2.For all vectorss € M(QG), do: negligible memory but does not fully determine the Voronoi re-
a) Lett := ALLCrosestPoiNTs(@, 8); gions. In those cases where a complete description (vertices,
b)If | X| =2, letN =N U{22—2s:2 € X}. edges, etc.) is desired, we suggest preceding the diamond-cut-

Step 3.Return/V. ting algorithm with RELEVANTVECTORS since the complexity

Optional optimization includes moving Steps 1-3 of thioth time and _memory) Qf the diamond-cutting algorithm can
ALLCLOSESTPOINTS algorithm out of the loop, since all the be reduced by incorporating knowledge of the relevant vectors.

calls to ALLCLOSESTPOINTS concern the same lattice. Since )
for eachs € M(Q), the lattice is symmetric with respect toP- KZ Reduction
reflection in s, a factor of two in complexity can be gained The last problem we deal with here is tfeeluction problem
through the same symmetry argument as f@0RresS\VECTOR This is the problem of finding a KZ-reduced basis, which has
in Section VI-A. been already mentioned in Sections Il and IV. Theoretical re-
It follows from the preceding discussion that the maximuraults are available for specific lattices in [48]. Algorithms for
number of facets that a Voronoi region can have in anyi- general lattices have been proposed by Kannan [47] and by
mensional lattice i2| M(G)| = 2"+ — 2, which was proved Schnorr [65]. Since KZ reduction essentially consists of solving
by Minkowski in 1897 [60]. Voronoi showed that this number shortest vector problems, a closest point algorithm can be used
is attained with probability by a lattice whose basis is choserin this context too. In our experiments (see the next section), we
at random from a continuous distribution [81, vol. 134, phave computed KZ-reduced bases using this method.
198-211 and vol. 136, pp. 67-70]. The general strategy is to find a shortest vector in the lattice,
Relevant vectors have been determined for many clgsoject the lattice onto the hyperplane orthogonal to this vector,
sical lattices [23, Chs. 4 and 21], but we believe that thend find a KZ-reduced basis of the result{mg- 1)-dimensional
RELEVANTVECTORS algorithm proposed here is the fastedfttice, recursively. In this application of theiSRTESTVECTOR
known in the general case. The only alternative algorithalgorithm, Step 1 is performed using the LLL reduction, since a
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KZ reductionis obviously not a usable prerequisite for KZ reduc- VII. EXPERIMENTS
tion. The implementation details, which we omit, follow straight-

. o . In this section, we report on experiments with the
forwardly from the definition of KZ reduction in Section II. b P

CLOSESTPOINT algorithm of Section IlI-B. We evaluate
its performance for both low- and high-dimensional lattices.
We also compare it with other similar algorithms, and show
E. Closest Point in a Lattice Code how the basis for the lattice at hand should be preprocessed in
order to achieve the best performance.
The primary focus of this paper is search problems for lattices
viewed as infinite point sets. Under some circumstances, tAe The Setup

methods discussed earlier in the paper can be modified to solvg eyaluate the performance of thedSESTPOINT algorithm,
search problems for finite subsets of lattices. This has importgit st decide what class of lattices to investigate. The closest
applications in communications. Specifically, demodulation anghint search methods studied here are general. Thus, they do not
quant!zatlo_n.both !nvolve finding the closest vector t0 a givefhmpete well with algorithms specially designed for searching
input in a finite point set. One popular method to design su¢fiaticylar lattice; such algorithms can exploit structure in the
a point set is to form &ittice code which is the intersection of |4tice and are generally faster (see Section I). Here, we concen-
a lattice and a bounded regionfi*. This bounded region is (4te on experiments with random lattices without any apparent
usually called thesupportof the lattice code [35, pp. 470-479],gtrcture that can be exploited in their decoding. However, for
[36]. comparison, we also include several experiments where the al-
If a general closest point algorithm for lattices is applied tgorithms were applied to classical, highly structured, lattices,
such a problem, there is a risk that the returned lattice po#lch as the Leech lattice in 24 dimensions and the cubic lat-
lies outside the support and hence does not belong to the lattice 7.
code. This typically happens when the input vector lies outsideFollowing the discussion above, we use generator matrices
the support, but it may also happen in some cases when it kgish random elements, drawn from independent and identically
slightly inside the support boundary. distributed zero-mean, unit variance Gaussian distributions. For

Several ways to handle this problem have been proposede#ch point in Figs. 1-3, 50 random matrices are generated, and
alattice point outside the support is returned by the closest pdii@ mean search time for each matrix is computed by averaging
algorithm, an obvious option is to declare a failure or erasur@ver a large number of random vectors. The exact number of
if the application permits this. Otherwise, the algorithm can Heput vectors is dependent on dimension: for large dimensions
modified to disregard such points and output the closest poWith long search times the average is computed over 200 vec-
found in the support, or if no such point is found, to increaders for each of the 50 matrices, while for small dimensions the
the size of the initial search region and try again [78], [80]. Ifumber of vectors is much larger.
creasing the size repeatedly ensures that the closest point in thehen the median of the average search times for the 50 ma-
lattice code will eventually be found. trices is computed. Occasionally, a random matrix with very

Alternatively, the input vector may be projected onto thl@ng search times is drawn. Computing the median rather than

boundary of the support before the closest point search aléla@ mean guarantees that t_hese rare matrices_do not totally dom-
rithm is invoked [8], [31], [32], [45]. Quite often, the closesfnat_e the average search_tlmes. The search times for all the al-
lattice point to the projected input vector belongs to the Iattitgsp,rlthms are averaged using the same matrices and. the same set
code and is its closest point to the original input, but this is n8{ input v_ectors. The results are given as average time (in Sec-
always the case. Hence, it might be advantageous to comb s), using a [,)ELL, computer basgd upona 73,3'MHZ Pentium
this method with increasing the size of the search region, brProcessor, with Visual C++ running under Windows XP.

to project the vector onto a surface slightly inside the suppart | N€ random vectors were drawn according to a uniform dis-
boundary instead. If the input vector is far outside the suppdfPution. Conway and Sloane [22] report on a method to gen-
region, a much smaller search region needs to be considetiate uniform data within a Voronoi region, which is equivalent

around the projected vector in order to find the closest poim generating data uniformly distributed over a infinite-sized re-

in the lattice code, compared to the size of the search regféiﬂn' Uniform data is a reasonable assumption for applications

without projection. such as source coding and cryptography. In channel coding ap-

The previously described methods are applicable for tchations,amore reasonable assumption is a Gaussian distribu-
Kannan, Pohst, and Schnor—Euchner strategies alike. It i) around a lattice point, but such experiments have not been

be argued that increasing the size of the initial search regiBfi'formed here.

is useless for the Schnorr—Euchner strategy, because its initial )

value ofp,, is unbounded. However, we recommend giving 5 1€ Preprocessing

an explicit finite value in the context of lattice codes, because Animportant question for a closest point algorithm is whether
if for a certain input vector the Babai point lies outside ththe performance can be improved by preprocessing the gener-
support (and if the line through the Babai point in the directioator matrix. Since the preprocessing needs to be performed only
of v, does not pass through any point in the lattice code), thence, while the processed basis is typically used many times (in
the unmodified version of BEcobe will never terminate. To most communication applications), it is usually worthwhile to
avoid this, line 2 of Ecobeshould be appropriately modified. invoke a good preprocessing procedure. In Section 1V, three dif-
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Fig. 1. Comparison of average search times among different reductibg- 2. Comparison of the average search times for thesEsTPOINT algo-
methods for preprocessing of the generator matrix. rithm and the Viterbo—Boutros algorithm.

ferent preprocessing strategies were discussed: LLL reductio 10°

KZ reduction, and KZ reduction of the dual. All of these strate- -~ Cubic

i i i 1 i Random ’
gies basically aim to find as short and as orthogonal basis ve: o'l | = Bames-wais, 16,2 ]
tors as possible. Here, we present experiments designed to fil o Leech24 .

the best of these reduction methods.
In Fig. 1, the simulation results for the three reduction_w, |
methods are given (the time needed for the reduction itself i'e
not included in these results). We see that performance can 1=
improved significantly by selecting a good preprocessor. Th<§1o‘3—
best methods in our study are the ones based on the two K*
reductions; as expected, there is almost no difference betwes
the KZ reduction and the KZ reduction of the dual. For high 107
dimensions (36-), the KZ reductions lower the average search
times by almost two orders of magnitude, as compared t 1ol
unreduced bases, and by about one order of magnitude : : s s . : ; . :
compared to the LLL reduction. On the other hand, up to abot 0 5 18 zc?imensffn % % 4 4
10-15 dimensions, the polynomial-time LLL reduction gives
good results. Fig. 3. Average search times for classical and random lattices.

C. Comparison With Other Algorithms In Fig. 2, the average time for a single closest point

h ;  theoe laorith search operation is plotted as a function of dimension for the
To assess the performance of t ESTPOINT algorithm,  , e s1poiNT and the Viterbo—Boutros algorithms (with sev-

we have alsq implemer?ted' an algorithm described by Viter%?al values for the initial distance bound). For both algorithms,
and Boutros in [80], which is based on the Pohst strategy. TR% reduction was first applied to the generator matrices. We

Viterbo—Boutros algorithm requires an initial bound on the ee that the SESTPOINT algorithm is faster for all tested
tainable distance (see Section IlI-A). A natural choice is thtﬁmensions by a factor & 5-3 in our implementation

covering radius of the lattice, but it is not clear how to com-

pute the covering radius for random lattices. Viterbo [77] sug- . . . :

gests to use the length of the shortest basis vector as an inﬂ?aICompanson With Classical Lattices

guess. If no lattice point is found within this distance from the To further illustrate the performance of the GSESTPOINT
input vector, the distance is multiplied by some factor greatalgorithm, we evaluate its performance for classical lattices,
than 1, and the search is repeated. We have performed soam compare it with the performance for random matrices
experiments using factors between and1.6. We have also (chosen from an independent and identically distributed
used the distance to the Babai point as an initial distance bou@dussian source). In Fig. 3, the average search times for
thereby ensuring that at least one point is found within the dissndom lattices and for the cubic latti@" are plotted as a
tance. The CoseESTPOINT algorithm needs no initial bound for function of dimension, together with the search times for the
the distance; the Babai point is by default the first point exarheech lattice in 24 dimensions, and for the Barnes—Wall lattices
ined by this algorithm. in dimensions 8, 16, and 32. For the classical lattices just as for
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example.

(8]

random lattices, KZ reduction leads to faster search times, and
is therefore applied before the experiments. ¥

We see that although the search times for the classical, highly
structured, lattices are slightly higher, the general curve is abo#0l
the same as that for random lattices. This is the strength as w 1I
as the weakness of search algorithms of this type: they do not
rely on any particular structure. 12
E. Suboptimal Search

The search algorithms studied here always return a Iattic%g']
point that is closest to the input point. However, in certain ap-
plications (e.qg., source coding), it may be necessary to abort tH&#
search before the closest point has been found. Therefore, we
have included experiments where thedSESTPOINT algorithm
is aborted after a given time. The measure of performance 5]
these experiments is tineean squared distande the point pro-
duced by an aborted algorithm. [16]

In Fig. 4, the ratio between the suboptimal and the optimal
mean squared distances is given for a 45-dimensional exampl[g7
as a function of the time allotted for the search. From this figure,
we see that the I©SESTPOINT algorithm quickly finds lattice (18]
points fairly close to the optimal one. [19]

We see that if a 10% higher mean squared distance than the
optimal can be tolerated, then theSESTPOINT algorithm is
approximately 40 times faster than if the optimal point is re-2°)
quired. We only report results for a single 45-dimensional ex{21]
ample, but the general conclusion is the same for all tested di-
mensions and lattices. If the search is aborted before the optimgh;
point is found, considerable time savings can be achieved at the
cost of a slightly increased mean squared distance. Note that &S]
good result relies on the layers being searched according to (1%}'4]
if the layers are searched according to (15), the convergence is
considerably slower.

(29]
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