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Abstract: The asymptotically minimal distortion of vector quantizers (VQ's) in the presence of channel
noise is studied via random coding techniques. First, an upper bound is derived for l.h? average r* -power
distortion of channel optimized VQ. The upper bound decays approximately as O(N™ r**) for small bit

error probabilities, as compared to OV ™") in Zador’s generalization of Beanett's integral for noiseless
channels. Next, we consider high resolution regular VQ's, with randomly chosen index assignments. A
useful formula is derived that provides a lower bound on the SNR of optimal noisy channel VQ’s. In addi-
tion, it is shown that the mean-square distortion of a noisy channel VQ is in probability asymplotically

-

bounded away from zero.

1. Introduction

Recent interest in combined source/channel coding for
bandlimited radio channels has motivated research toward
quantifying the affects of channel noise on quantization sys-
tems. In [1,2] algorithms are introduced for finding locally
optimal codevector index assignments (or labelings) to
quantizer codevectors, so as to minimize the average distor-
tion resulting from a particular assignment Using the
assumption of a "greedy” index assignment, some numeri-
cal high resolution bounds for noisy channel vector quanti-
zation were given in [3] in terms of integrals of point den-
sity functions.

Zador's [4] generalization of Benneit's integral shows
that the asymptotic mean r* -power distortion of an optimal
N-point, k-dimensional vector quantizer decays as
O(N~'*), assuming a noiseless channel. No such explicit
formula has yet been displayed for quantizers in the pres-
ence of channel noise.

In the study of asympiotic VQ, it is implicitly assumed
that as N grows, there exists an ever increasing bandwidth
available for transmission. The binary transmission from
N -point quantization corresponds to making log,N uses of
a channel. On one hand, Shannon's channel coding
theorem indicates that one could hope to reliably convey at
most Clog,N of these bits, where C is the channel’s capa-
city. However, minimizing average quantization error does
not necessarily imply one should convey the maximal
amount of binary data. In fact, it might be desirable to
tolerate some bit errors in order to increase the effective
resolution of the quantization component. It can be shown
that the minimal average r* -power distortion for VQ on a
noisy channel decays to zero as the number of transmitted
bits per sample grows, provided one is willing 1o block
together multiple input samples before transmission and
thus incur delay. It has been an open problem, however, to
find the rate of decay of the minimum distortion for zero
delay quantizers (if it decays at all). Part of the difficulty
in determining this lies in the complexity of mathematically
analyzing the index assignment problem.

In this paper we present several results that help to
answer these questions. First, we show that for opumal
high resolution vector quantization on a Binary Symmetric

Channel with bit error probability € the MSE decays to zero
at least as fast as some negative power of N. The decay
rate bound approaches ON~"**) as €> 0 decreases, as
opposed to the O(N™'*) decay rate when €=0. As the
vector dimension k grows, the decay rate of the noisy
channel bound approaches that of the noiseless channel
bound.

Second, we introduce a random coding technique to
analyze the MSE of noisy channel VQ’s. Here we average
the MSE of a given regular VQ over all possible index
assignments. (Recall that regular VQ's, such as those
designed optimally for noiseless channels, have the property
that every codevector lies in its associated encoder cell.)
The expected MSE thus obtained gives an asymptotic upper
bound on the MSE of any VQ  having a
bertter than avcrafc index assignment. It thus provides a
mathematical tool analogous to Zador's formula for analyti-
cally describing the MSE. Of theoretical interest, we also
show that the average mean-square distortion on a BSC is,
in probability, asymptotically bounded away from zero.

2. Upper Bound on Asymptotic Channel Optimized YQ
Distortion

Bennett's formula provides a useful rule of thumb of
"6 dB/bit" increase in SNR for each bit added to a scalar
quantizer. It turns out that this is reasonably accurate for
many low resolution cases as well. Below, it is shown that
on a noisy channel (and small €) an oftimal quantizer's
average distortion decreases asymptotically at least as fast
as about O(N™""*). It is important to point out that this
result does not assume that the centroid condition is neces-
sarily satisfied.

Theorem 1: Let f be the pdf of a k-dimensional random
vector with compact support. The minimum average r'*-
power distortion of an N-point noisy channel vector quan-
tizer on a Binary Symmemmc Channel with crossover proba
bility € is asympiotically bounded above by O(N#(®),
where g is a continuous and monotonically decreasing
function from g(0) = r/r+k 10 g(1/2) = 0.

Proof: To derive the stated upper bound it suffices to exhi-
bit any noisy channel quantizer that satisfies the bound.
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positive integers n 2m, and consider an N-point, k-
dimensional vector quantizer Qy that is a cascade of an
optimal noisecless channel M -point quantizer Qy and an
(n sn) error correcting coder v,.,,:[O.l.]"'—b[O,l.‘;'. More
precisely, if Ey and Dy are the encoder and decoder of Qy
(similarly for Qp), then Ey= Vam®Ey, and
Dy = ¢, ,°Dy, where ¢ is the channel decoder, typically
a maximum likelihood decoder and Qy = DyoEy,.

The capacity of a BSC with crossover probability € is
C = In2 +¢elne+ (1-€)In(1-€) in nats per channel use. For
any R < C, Shannon’s channel coding theorem guarantees
the existence of functions v, , such that m = [Rn/In2]
information bits can be reliably transmitied for every block
of n total bits sent, as n becomes asympiotically large.
More precisely, [Rn/In2] bits can be conveyed with a pro-
bability of emor

P, s e""E’m,

w!lcrc E,(R) is the error exponent function [5]. On a BSC

with
Ve
R <In2-—H[‘E+m]
H (8) = —8logd—(1-8)log(1-8)

the error exponent is given by
E,(R) = In2-2In(Ve +V1-€)-R. (n

The mean r** -power error of a noisy channel vector
quantizer, averaged over both the source and channel statis-
tics is given by D =Elx-y;I". By conditioning the
expectation over the events that either a channel error does
or doesn't occur, the MSE can be written as

D =E(lx-y;¥V 1j =il0-P)+E[lx-y;V" 1j=ilP,
SElx-y, V +E[Ix-y; 1" li #jIP,
S$D, 2G 2™k 4Ge™ER), )
where
G! = r.tlf IHI:-H"
G, = diam(supp(f)),

b, is a constant independent of f and m, diam(supp(/))
is the diameter of the support of f, and

Ifl, 2 [J.If P]w.

For each n we minimize the upper bound D, over all
possible rates R. If one mansmits at a ratc R very closc 10
capacity C, then the number of information bits Rn/In2
will be large and thus the quantization emor, E Ix-y; I,
will be small; however, the probability of a channel error
going uncorrected can not be as tightly upper bounded for
large R’s so that the term P, will contribute more to the
overall distortion D. Thus, there is an important tradeoff in
this case between (1) designating more of the transmitted
bits as information bits to reduce quantization error, and (2)
devoting more of the transmitted bits toward error control
coding to drive the probability of an uncorrected channel
emor to zero faster. We find the rate R that optimizes this
tradeoff in the bound D, and show that it is best in this
case to transmit information at a rate slightly less than
k/k+r bits per channel use for small values of € Setting
aD, /3R = 0 gives

dE,

iL‘—n(rRM-Erw» = - —
G, k R

Solving for R using (1) yields

__k | I
R=— M-Zln(ﬁ+ﬁ)+;lnlafjj 3

L

and substituting this optimal value of R into (2) gives

[ G k G r]-L
Ch [T] H }'h"”"m
r
where
o | 2n(e+VI¢)
8(51-(“’)[1 n2 ]

The function g is clearly continuous and it is easy to show
that g’ (e) < 0 for ee [0, 1/2), implying that g is monotonic
as stated.
O

On channels with low bit error probability €, a Taylor
series approximation of g gives

©= r 1_245 .
¢ k+r In2 | k+r’

Furthermore, from (3) it can be seen that to achieve the
average distortion upper bound D,, we must convey infor-
mation across the channel at a rate of R=g(g) which is
approximately r/k+r bits per channel use for good chan-
nels.

As the dimension k of the input vectors grow, the
upper bound for small e, D, =O(N~"*¥) approaches
ON~"), the asymptotic decay rate of optimal VQ distor-
tion on a noiseless channel. An interesting observation is
that for a scalar quantizer on a BSC with small €, the MSE
drops at least as fast as about O(N~%3), which is the same
rate of decay as an optimal scalar quantizer on a noiseless
channel, but using only one third as many bits.

3. Coding Theorems for Quantizers without Channel
Optimization

The asymptotic performance of a k-dimensional VQ in
the presence of channel noise is examined for fypical index
assignments. To do this we use a model in which an N
point quantizer Qy has an arbitrary fixed codevector label-
ing and index assignment is handled by a randomly selected
permutation from Sy, the symmetric group on N elements.

Let X denote the source random vector (at the VQ
input), and let f be the pdf of X, with compact and con-
nected support, S,CR*. "Let y; denote the i”* codevector
of Oy and R;N7 the i'* partition cell, abbreviated as R;
and having volume AV;. The probability of a source vector
lying in the i partition cell is

P;=P,N)= [ f(x)dx
&Y,

Finally, we define
d(N) £ max diam (R,
i=l,..N

In addition to the random source X, we have I, the
random permutation from Sy, and C, the random mapping
of in&ut indices to output indices across the channel. Note
that X has range conuined in S,cR", IT has range Sy,
which can be viewed as a subset of ZV of size N!, and C
has range which can be viewed as Zy2. With this model
the source encoder output i is a random variable depending
only on X, while the decoder input depends on
X,M,and C. The total distortion D=1X-y? also
depends on X,I1, and C.

To obtain the mean squared distortion Ex p c[D] we
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lll.,' T AsWw - l-F' 9 --t v -'e " eewe 'w E' —_— '---
D, = X-y)'(y-y) and D, =ly—yl° Since
depends only on X and | = i (X) we have:

ExnclD] = Ex[D,] +2Exnc(De] + ExnclDc]
Assuming each x is equally likely and sclected indepen-
dently of the source random variable and channel errors, we
get

v

| e
D,

1
ExnclDe) = X NI Ex c[D,(X,xC)]
]
Next, we compute

N N
Exnc(De)l=Enp ).‘; Zl (c; =) (v -!,)Pnu)lnu)f’i]
= J=

2 Eq (D, (D).

Similarly, defining

A NN 5
D.(M =3 ¥ by —y; ¥Pugyng) Pi
i=1 j=1
gives Exnc [D.] = Eq (D (IT)], and
D() £ E4[D,]+2D, (1) +D, (T1) we gel
Exnc[D] = EK[D'] + ZEn[Dx(ﬂ)] + En[Dc(n)]

i.e. the expected distortion may be written as the expected
value over Il of three distortion terms already averaged
over X and C. We arc interested in the asymptotic
behavior of £ [D(IT)] as well as that of Varp [D(IT)].

We now consider E[D] and note that the first of its
three terms is asymptotically upper bounded by Zador's for-
mula [4]. The cross-term can be shown to converge to zero
whenever we restrict our attention to sequences of regular
quantizers.

N N
£ D, ()l = I Y X -3 -y)P; Epn(j)h:(i)l
i "

defining

_(1_eyomaN N N
<1208 3 3 il -yl Iyi-y; !
i=1 j=1
< [1-(1-E)hb~:| -N—_:dl'GM(Sf)d(N)

=0 as N 5 e

(In particular if we have a sequence of quantizers, each of
which satisfies the centroid condition, then this cross-term
is identically zero for all N.) So for sequences of regular
quantizers employing random index assignment, the total
distortion is asymptatically upper bounded by Zador's for-
mula (the asymptotic form for Ex[D,]), plus the term
E (D, (I1)], whose asymptotic behavior will be determined
in the following proposition. We first state a useful lemma.

Lemma 1: If N 2 2, then for every pair (i ,j) with i # j
T Pagymgy = (11—} IN (¥ -2)!

%€ Sy

Proposition 1: Suppose that the source random vector X
has mean my and components X, with vanances
ox 2, n=1,2, - k. 1f€>0, then

k
Jim Eq (D (M) = ¥ ox 2+ [ Ix-myPA(x)dx
o a=] 5,

Proof: Recall that
1 N
D = —
Egp[D, (1)) N Ei,'

=

ly.-—y,-I’P;EPqnm-')
1 =

LA

= [a-a-9"")——| X L P -y P

~ —l i-lj-l
by Lemma 1. Note that the bracketed term converges to 1
as N — o (since € > 0). Defining A(N) by

N N 1 9
hiN) = E}Z‘.Pjgin—y,l '
i=l j=1
we then observe that A(N) = E[IX®)=Z™1?] where XV
and Z¥) are independent random vectors for each N, X
has pmf pywly;) = P; = P;(N), 1Si SN, and Z®) has
pmf pzon(y;) = 1IN, 1S j SN. So for each N,

h(N) = E[IX¥) -my 1%
+2E[(XM) = my) (my - Z¥N)+ E(1ZV) - my 1)

Note that the middle term is zero by the independence of
X% and ZW). For the other two terms we get

k
E[IXM)—mg1?) —oJ Ix-my 2 f (x)}dx = ¥ oy’
! a=1
E(1IZ™) -my 17 —DJ Ix —my I? A(x)d x
7

O

An interesting feature of this noisy channel result is
that for any source the expected distortion for a typical
index assignment tends asymptotically to a strictly positive
value. Note that the regulariry assumption played a key
role in this conclusion since it guaranteed the decay to zero
of the cross-term Ep[D, (IT)]. We propose an approxi-
mate asymptotic form for the channel distortion, in order to
mathematically predict the MSE behavior:

Ep([D (ID)] =

&
eﬂogzN)N—’i-—l— [21 cx."'+sj lx—mxlil(x)dx] 4)
A= i

Eq. (4) provides an asymptotic approximation for the
channel MSE when a npical index assignment is used.
Thus it serves as an asymptotic upper bound on the chan-
nel MSE for all better than average index assignments.
For realistic large N, one expects this bound to be most
useful for quantizers satisfying the centroid condition, for
then the cross-term is guaranteed to be zero for all N. We
next examine the asymptotic behavior of the variance,

Varp [DAD)] =
Eq (@D, (I+D, (M) - Eg (2D, (M) + D, ()]

As noted in the discussion preceding Proposition 1,
E([Dy (IT)]—0 as N—se=, so the second term is given
asymptotically by (Hlim E [D, (T1)])%, whose existence was

—po
established by Proposition 1 . We state the following pro-
position but omit its lengthy f. This proposition,
together with Proposition 1 and Chebychev’s Inequality
yield the following corollary.

Proposition 2: The variance of the total distortion (over
?ndomly chosen index assignments) decays to zero as
— oo,

Corollary 1: Let f be the pdf of a random vector with

compact support and let Qy be an N-level regular VQ,

used on a BSC with crossover probability e. Then, in pro-

g;!:llily. the MSE of Q, is asymptotically bounded away
zero.

4. Experimental Resulis
Experiments were performed in an attempt to deter-
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reasonable values of IN. A scalar quanbzer was consiagered
for values N =2, where L =4,5, -+ ,10, and code-
books were designed using the LBG algorithm on Gaussian

iid. samples. For each quantizer Qy, € was fixed (lo a
value between 107 and 107!), and the channel distortion
was computed for 20 randomly selected index assignments.
These distortion values were averaged to give an estimate
of Esn (D,) which was then used to obtain the overall out-
put SNR.

The scalar results for N = 32 are shown in Figure 1.

3]
S

Output SNR (dB)
=
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Figure 1: SNR vs. channel error probability for Lioyd-Max
scalar quantizer at rate = 3 bits/sample. Solid line =
theoretical, Dotted line = exﬁimenul.

The solid line represents theoretical asymptotic form
given by Eq. (4) and the dotted line the experimentally
obtained SNR's. As can be seen, the form lies very close
to the experimentally determined SNR’'s for values of €
between 107 and 107!, The cause of the difference
between the theoretical and experimental curves is currently
under investigation.

5. Conclusion

An upper bound is given on the rate of decay of the
average distortion of a channel optimized VQ. A technique
is then introduced for analyzing the asymptotic performance
of VQ's in the presence of channel noise. By randomizing
the binary index assignments, a useful MSE formula is
obtained that closely matches experimental results.
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