tDepartment of Electrical Engineering
Holmes Hall 483
University of Hawaii
Honolulu, HI 96822

Abstract

A technique is presented for designing vector quan-
tizers that is well suited for parallel processing environ-
ments. The input space is iteratively partitioning into M
disjoint connected regions composed of unions of partition
regions. Each of N processors then independently com-
putes ‘an optimal "subquantizer” for its restricted input
space. The partitions can regularly be changed to
further improve the overall quantizer performance. An
additional benefit of this technique is that the the tech-
nique can improve on the performance of the generalized
Lloyd algorithm by following the traditional design pro-
cess with the subpartitioning iterations.

1. Introduction

The generalized Lloyd algorithm (GLA) provides a use-
ful technique for designing vector quantizers (VQ) from a
finite training set of input data. The GLA is an iterative des-
cent technique which converges to a locally optimal solution
in a finite number of steps. Two noticeable disadvantages of
the GLA are its computational complexity and its inability to
find globally optimal solutions. The computational complex-
ity of the GLA grows linearly with the number of codevec-
tors and the size of the training set, and hence can become
burdensome or unusable when very large training sets are
needed to adequately represent the source. Also, the locally
optimal codebooks produced by the GLA can be substantially
inferior to those obtainable by other even more complex
optimization techniques, such as simulated annealing. For
these reasons, it is valuable to investigate quantizer design
algorithms that yield performance equivalent to or better than
. the GLA but with reduced execution times. Furthermore,
algorithms which are amenable to parallel processing are of
great interest for future parallel computation environments.

In this paper we present a new quantizer design tech-
nique, called subpartition vector quantization, which is highly
applicable to parallel processing, and achieves equal or better
performance than the GLA. The basic idea is to partition the

This work was supported by the University of California MICRO pro-
gram, Bell Communications Research, Bell-Northern Research, and
Rockwell International and by the National Science Foundation.

V2.25

A PARALLEL PROCESSING ALGORITHM FOR VECTOR
QUANTIZER DESIGN BASED ON SUBPARTITIONING

Kenneth Zeger ¥ and Allen Gersho 1+

t+Center for Information Processing Research

Department of Electrical & Computer Engineering

University of California,
Santa Barbara, CA 93106

input space into M disjoint connected subpartition regions
that are the union (not necessarily convex) of current parti-
tion regions and redesign separate subquantizers for the res-
triction of the source to each subpartition region. That is,
each subquantizer is a quantizer whose input space is one of
the M subpartition regions. Each of the M subpartition
regions is a union of some of the nearest neighbor regions
induced by the codebook. A unique processor is assigned the
task of designing a subquantizer for each subpartition region.
This process is then iterated by repartitioning the entire input
space. The result is that good quantizers based on very large
amounts of training data can be developed efficiently using
many processors simultaneously.

It should be noted that even if only a single processor is
available, a reduction in computational complexity can still
be achieved since repetition of many small quantizer design
tasks is often more efficient that performing one large quan-
tizer design.

2. Subpartitioning the Input Space

Consider a vector quantizer Q that maps & -dimensional
Euclidean space R* into a codebook C = (y;, ‘- - ,yy),
containing N vectors from R*. Associated with each
codevector y; is a partition region R; and a probability p;,
such that for every vector x in R;, Q(x) =y;, and p; is the
probability of region R;. A subparrition of the partition
[R; : 1 £i £ N} is determined by a partition of the index set
{1,2, -+ N} into M mutually disjoint sets A; for
1 Si <M. Subpartition regions are defined to be the M
unions, Rj = U'e/\ R;, as illustrated in Figure 1.

€A

Corresponding to each region R ; is a subquantizer Q;
whose codebook C; is the set of codevectors from the code-
book C with indexes in A;. Thus, C; contains exactly one
codevector for each index in A;. The average distortion of
the quantizer Q can be written

N
D =E[dx,00)] =YD,
i=1
where for each i,
D; =p,E[d(x,y;) | xeR;]

is the partial distortion associated with region R;. In terms
of the subpartition regions we can write

~ 1141 -

CH2977-7/91/0000-1141 $1.00 © 1991 IEEE

Figure 1: Example of a subpartition of two-dimensional space. The
quantizer has N=8 codevectors and M=3 processors are available,
Each processor operates on a distinctly shaded union of Voronoi cells.

5 D
PrEL
The distortion of a particular subpartition quantizer is
ZD;
JEH;
Pn = g;
where ¢; = 3 p; is the probability of the subpartition

n JEA
region R;. Thus, the the distortion can be expressed in the
form:

M
D = ZQiDA,'
i=1

For a given collection of index sets (Aj:1<j<M),
it is clear that by reducing the distortion D A, of any subparti-
tion quantizer, the overall quantization distortion D will be
reduced as well. This provides the basis for a useful VQ
parallel design strategy that focuses on optimally designing
M independent quantizers Q;, - -+ ,Qp. The input space
of the i quantizer Q; is assumed to be the set K;. The idea
is to have every vector quantizer Q; concurrently designed by
one of M independent processors.

3. Parallel Design

There are two main issues that arise with this scheme.
One is the question of how to divide the input space R into
M disjoint regions and the other issue is how to design each
of the M independent subpartition quantizers once the input
space is partitioned.

Given M available processors, one would like to parti-
tion R¥ into M regions such that the distortion of each
subquantizer can be substantially reduced. That is, an itera-
tive design algorithm begins with a collection of N codevec-
tors and a nearest neighbor partition of R¥. That is, R* is

divided into a disjoint union of N convex polytopal regions
R;. Then a subpartition is obtained after which M subquan-

tizers are designed in parallel. The performance of the
overall quantizer Q is improved if at least one of the
subquantizer’s performance is improved.

Intuitively, the performance of a subquantizer, Q;, can
be improved more easily if its input space, R;, is connected,
It is well known that a necessary condition for quantizer
optimality (assuming a squared-error distortion criterion) is
that each codevector be the centroid of its associated partition
region. If this centroid condition is satisfied by the quantizer
Q prior to subpartitioning (as might be expected), then
improvement in one of the subquantizers can occur only by
repartitioning the input space of the subquantizer; e.g. by
using the nearest neighbor rule in the GLA for the subquan-
tizer. On one extreme, if the input space R; of quantizer Q;
is "completely disconnected” (in the sense that for every pair
of distinct j ,keA,, R; and R, are not neighbors), then 0;
very likely already satisfies the nearest neighbor condition, so
that no improvement can occur for Q;. One thus strives for
the other extreme, that each input space R; be connected; i.e.
for every je A;, there exists a ke A; such that R; and Ry are
neighbors. .

Another constraint that helps to maximize throughput is
that each of the M processors (assumed for simplicity to be
equivalent) be given an equal amount of computational tasks
to perform. This can roughly be achieved by requiring that
all subpartition index sets A; be of equal size, i.e. N/M. It
may sometimes be convenient to assume this constraint, and
also to assume that ¥ and M are integral powers of two,
though these are certainly not necessary.

While there are many effective methods for constructing
the sets A;, the complexity of this construction must be kept
small so as not to override the benefit of complexity reduc-
tion achieved by parallel processing. One such technique for
clustering the regions R; into M collections of regions
involves executing a "mini-GLA”, using the N codevectors
of Q as a training set to design a "codebook” of size M.
The resulting "partition" will naturally cluster the N codevec-
tors of Q@ (and hence the regions R;) into M connected
groups which thus define the sets A; (of nearly equal size
usually). The codevectors in each of the M subpartition
regions are used to partition the input training set of O into
M individual "sub-training" sets, one for each subpartition
region.

For example, if Q has a codebook of size 1024 and 16
processors are available, then the "mini-GLA" first designs a
locally optimal codebook of size 16 for Q. The resulting 16
partition regions determined by this codebook are used to

cluster the 1024 codevectors of @ into 16 groups, each con-
taining on average 64 codevectors. The original training set
is then divided into 16 subsets, one for each available proces-
sor.

One important special case is that of "two-point"
subquantizers; i.c. each subquantizer contains exactly two
codevectors. The design of two-point quantizers can be
made quite efficient and is used as the basis of many tree-
structured vector quantizer design algorithms that employ the
"splitting” method [1]. The design of optimal two-point
scalar quantizers has recently been studied by [2]. To parti-
tion the input space into pairs of neighboring regions, one
can either use the mini-GLA technique described previously
or else one can usc available algorithms from computational

- 1142 -

geometry for finding neighboring cells in multidimensional
Voronoi diagrams [3].

4. Subquantizer Design and Complexity

Once the subpartitions are determined, the subquantizers
must be designed. The complexity of designing each
subquantizer is substantially reduced from that of designing
“the quantizer Q alone. The input space of each subquantizer
is a subset of the entire space R*. The size of the training
set for each subquantizer is on average one M of the size
of Qs training set and the size of each subquantizer’s code-
book is about one M™ the size of Qs codebook. The com-
putational complexity of each iteration of the GLA is linearly
proportional to the size , N, of the codebook and to the size,
T, of the training set; that is O(NT). The computational
complexity of running the GLA for a particular subquantizer
is thus seen to be

NT 1
047 37) = 7,7 ONT).

so that the complexity if reduced by a factor of M2 Here
we assume that the number of iterations in each GLA
remains approximately constant, which in practice is a rea-
sonable assumption.

Thus if only one processor is available, a computation
savings of about a factor of M 1is achieved, since M
subquantizer designs are required. With M available proces-
sors, the computational savings factor is about M 2 which is
quite substantial. Even if multiple iterations of subpartition-
ing are used, a large computational saving can still be
achieved.

Since the sizes of the training sets and codebooks for
the subquantizers are reduced, more complicated design algo-
rithms can be used to obtain better performance in the
subquantizers than using the GLA. For example, the best

performance of repeated uses of the GLA with different ini-
tialization conditions can be used, as can various other tech-
niques such as stochastic relaxation [4] and Kohonen learning
[5], which can yield higher performance codebooks at the
expense of greater complexity.

Following the completion of all the subquantizer
designs, a single iteration of the GLA on the entire quantizer
Q can be done to further improve things. The motivation of
this technique is to spend a relatively large percentage of the
computational effort performing subquantizer design (with
many processors acting simultaneously) and a small amount
of time optimizing the original quantizer.

In summary, the total complexity of the proposed
scheme (without any GLA iterations on the entire quantizer
Q) consists of the computation of designing the subquantiz-
ers and of determining a repartition. Determining the reparti-
tion can be done very quickly using the "mini-GLA" tech-
nique described previously and the subquantizer design can
be done at a greatly reduced complexity than the GLA on the
whole quantizer. :

5. Algorithm

A brief description of the algorithm is summarized
below.

1) Choose an initial codebook C of size N,

2) Design a codebook C, of size M.

3) Partition C, into M sets according the nearest neigh-
bor regions of C,.

4) Design M subquantizers according to the nearest
neighbor subpartition regions determined in Step 3.

5) Goto Step 2.

6. Conclusion

The proposed scheme can provide a significant reduction
in complexity over traditional VQ design techniques such as
the GLA. In addition to the computational savings using a
parallel machine, it should also be noted that actual gain in
the system’s signal-to-noise ratio can also be achieved by
first running the GLA until it converges and then performing
the subpartition quantizer improvements. The locally
minimal state that results from the GLA can be improved by
replacing some of its locally optimal subpartition quantizers
with global ones. This then allows further improvement via
Lloyd iterations since the codevectors have been perturbed.

7. References

[1] Y. Linde, A. Buzo and R. M. Gray, "An Algorithm for
Vector Quantizer Design", [EEE Trans. Communica-
tions, COM-28, 84-95, January 1980.

[2] X. Wu, "Optimal Bi-Level Quantization and Its Applica-
tion to Multlevel Quantization”, IEEE Trans. on Infor-
mation Theory, IT-37, January 1991.

(3] FP. Preparata and M.I. Shamos, "Computational
Geometry: An Introduction”, Springer-Verlag, New
York, 1985.

{4] K. Zeger and A. Gersho, "A Stochastic Relaxation Algo-
rithm for Improved Vector Quantser Design”, Electron-
ics Letters, Vol. 25, No. 14, pp. 896-898, July 1989.

[5] T. Kohonen, Self Organization and Associative Memory,
Springer-Verlag, Berlin, 1984.

- 1143 -

