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ABSTRACT

To handle the effect of transmission errors on the
performance of vector quantization (VQ) in source coding,
a channel index assignment function can be incorporated
into a source/channel model of VQ. Using this model, we
obtain new conditions for the optimality of a vector quan-
tizer for a given distortion measure which generalize the
familiar centroid and nearest neighbor conditions. The
optimal codevectors are linear combinations of those for
the noiseless case, weighted by the a posteriori channel
transition probabilities. The optimal encoder selects that
codevector which minimizes a weighted sum of the distor-
tions between the input and each codevector, where the
weights are channel transition probabilities. An insightful
derivation of the new conditions for a memoryless channel
is given and an iterative design algorithm is described
where at each step the average distortion monotonically
decreases. Each iteration consists of three steps which
separately modify the encoder, decoder, and the channel
index assignment.

1. Introduction

Vector quantization (VQ), as a technique for analog
waveform data compression has shown great promise for
areas such as low rate speech and image coding (see for
example [4],[5],[6], or [9]). Only recently has VQ
emerged as a realizable technique in modermn communi-
cations systems, such as in the 4.8 kbits/sec NASA
Mobile Satellite Experiment [5]. Motivated by our work
on this project, we have been concerned with a new and
distinct error control problem associated specifically
with the use of VQ in coding a speech waveform or an
image. In VQ communications systems, codevector
indices (binary words) must be transmitted over a noisy
channel, often with a fairly high bit error rate, resulting
in possibly incorrectly decoded codevectors. The result-
ing distortion adds to the degradation of reconstructed
speech or image quality. In order to preserve low data
rates, one would prefer to avoid the use of redundancy
codes. What then can be done to improve the average
distortion level of the system?

Prior work has considered the optimization of chan-
nel codewords to minimize excess distortion in signal
coding due to bit errors ([2-3] and recently some specific
consideration of channel errors for VQ has led to algo-
rithms for the design of channel index permuations to
reduce the effect of errors for a given vector quantizer
design {1], [5], and [10]). By modifying the design pro-
cedure of vector quantizers for discrete memoryless
channels, one can obtain improved performance. We
generalize the notion of a quantizer to include the effects
of channel noise as well as to incorporate the notion of
an index assignment function, that carefully assigns
channel indices to codevectors. Optimality conditions
that generalize the usual centroid and nearest-neighbor
conditions are derived. A three step noisy channel VQ
design procedure similar in structure to the generalized
Lloyd algorithm is then easily inferred.

2. Definitions

A vector quantizer Q is a mapping Q : R? »Y of
p -dimensional Euclidean space R? into a finite subset ¥
of R?, where Y ={y;,y,, -, Yy-i} and y;eR? for
0<i <N-1. The ordered set Y is a codebook and the
N elements of Y are called codevectors. The subscripts
of the codevectors are the codevector indices, each index
representing a channel word. Let the set of N vector
indices be denoted by

I={0,1, - ,N-1}. (1)

A vector quantizer Q that transmits vector indices across
a noisy channel can be interpreted as the composition of
four independent mappings involving a coder
C :RP -1, a decoder D :I—Y, an index assignment
function, and a random channel noise function. The
decoder satisfies D(k)=y, for O0<k <N-1.
Corresponding to an encoder C is a partition {R;} of R?
where foreach ie/

R =C7lWi)={xeRP :C(x)=i]. 2)
Note that the encoder operation is fully specified by the

partition. A noisy channel vector quantizer Q is defined
as

Q =Dog logogoC 3)
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where t:I-I is a memoryless noisy channel index
mapping, and © : I —TI is a one-to-one function that per-
mutes the assignment of indices to codevectors. m!
"unpermutes” the index assignment at the receiver end.

Channel
Noise
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Vector Vector

Inverse Decoder
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: Permuter

Fig.1 A Noisy Channel Vector Quantizer

A noisy channel vector quantizer is completely specified
by its partition {R; }, output set Y, and index permutation
function x. For a binary channel the noise function 7 can
be represented by

wWi)=ien (iel) (4)

where 1 is a random variable taking on values from the
set I, and the operation ¢ corresponds to the bitwise
exclusive OR function. This is depicted in Fig. 1.

The goal in vector quantizer design is to find a
quantizer that minimizes an expected distortion between
an input vector and a decoded (or quantized) output vec-
tor. A distortion function d is assumed that takes as
input two vectors x and y from R? and produces a non-
negative real value d(x, y), the distortion between x and
y. We wish to find a quantizer which minimizes the
average distortion

e=E[dX, QX)) ®)

Minimizing e requires the specification of a codebook, a
partition of R?, and a permutation function n that are
jointly optimal. Because the global optimization of a
quantizer appears to be a difficult task, we instead derive
conditions for an optimal coder, decoder, or permutation,
given that each of the other two is assumed fixed. This
leads to a vector quantizer "design loop" in which an
iterative algorithm that monotonically reduces the dis-
tortion can be implemented.

3. Optimal MSE Decoder

Let x be an input (random variable) vector to the
quantizer. We assume a fixed encoder (partition), {R;} ,
and a fixed permutation function =, and derive conditions
for an optimal decoder. The distortion criterion con-
sidered in this development will be the mean-squared
error distortion measure given by d(x,y)= ||x-y|%

i ' Y.
—i-) C Tl'—)é{-)——)ﬂ'" ] D N

The codevector y; is decoded as the quantized value of x
if some index 7(i) is transmitted and is received as n(j).
That is, y; is selected if xeR; and (n(i)) ==n(j) for
some iel. With this in mind, we define for each jerl
the selector function of the random vector x and the
channel noise T as

(©6)

0 else

1 if V [xeR; A t(n(i)) =n()]
S:(x,1) {

where V and A denote the boolean binary operators
"OR" and "AND" respectively. The quantized value of x
can be expressed as a linear combination of the vectors

{y;} by
N-1
Q)= ¥ y;A;. @)
j=0

where in order to simplify notation we have let
Aj=8;(x, 7). 8)

The mean square error (MSE) of the system due to the
combined effect of quantization and channel noise is
given by e =E || x — Q(x)||%2. We wish to minimize this
quantity over all choices of y;. Since Q(x) is a linear
estimate of x with respect to the observables {A;}, e is
minimized using the orthogonality principle. ThlS yields

E[(x-Q(x))4;1=0 0<j<N-1 €))
which implies that
E[xA;1=E[Q(x)A/] 0<j<sN-1. (10)

Since for each j, A; can only take on values of O or 1,
we have

Elx|A; =1]Pr[A; =1] =E[Q(X)[A; =1]Pr[A; =1]
so that
E[x|A; =1]=E[Q(x)|4; =1]=y;.
Using the deﬁmuonNof the random variable A; we have
=E[x]| V(xeR AtmG)=nG) A1)

where the expectatlon is conditioned over a union of N
disjoint events. Expanding the conditional expectation
above as a summation yields

N-1
Y E[x|xeR;]1 PrixeR; A 1(r(i)) =n(j)]
) ,

N1 (12)
Y, PrixeR; A t(n(i)) = n(j)]
i=0
where we have used the fact that x is independent of the

channel noise. Regarding n(i) as the transmitted index
and n(j) as the received index, denote the partition

region probabilities by
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P (n(i)) = Pr[xeR;] = Pr[n(i) sent ] (13)
and the channel transition probabilities by
P (r(j)|n(i)) = Prn(j) received |n(i)sent]. (14)

Further, let P (%(i)| ®(j)) denote the a posteriori proba-
bility that index m(i) was sent, given that index n(j) was
received. Then we see that ‘

_ N1 P(rG)) P (r(j) | R(i)) E[x|x€R;]
Yi far, Prn(j) received ]

(15)

Using Baye’s Theorem we can write a simplified
weighted centroid condition for the optimal codevectors

in terms of the a posteriori channel transition probabili-

ties.
Weighted Centroid Condition
N-1
yj = X E[X|xeR;]1 P(n(i)|n( ). (16)
i=0

The optimal codevectors for a noisy vector quantizer
using the mean squared error criterion are linear combi-
nations of the optimal codevectors in the noiseless case
(i.e. the centroids of each partition region). Knowledge
of the centroids and the channel transition probabilities
completely specifies the choice of optimal codevectors.
Thus, on a binary symmetric channel (BSC) with cross-
over probability €, the optimal codevectors are chosen
according to the rule

1
~ Pr[n(j) received]

y; (17)
N-1 . o
Y E[x|xeR;]1 P (r(i)) gl (RO (1 —gyb—H (R():m(i))
i=0
where b =log,N, assumed to be an integer, is the
number of bits in a channel index, and H is the Ham-
ming distance function between any two indices (the
number of bit positions in which their binary representa-
tions differ). :

As £ gets small, the likelihood of channel errors
diminishes. The distortion in this case becomes increas-
ingly due to the quantization error. In this limiting situa-
tion, since y; is a continuous function of &, it is easy to
see that

Iimyj=E[x|xeRj] (18)
-0

so that the optimal choice of the codevector {y;}
approaches the optimal codevector in the noiseless case
as given by the usual centroid condition for optimal VQ.

4. Optimal Encoder

Given a set of codevectors {y;} (decoder), and a
fixed .permutation function m, we want to find the
optimal partition {R;} for a noisy channel vector

quantizer. For the following optimality condition we no
longer need to assume that the distortion measure d is
the mean-squared criterion.

We seek the partition that minimizes the quantity
e =E[d(x,Q (x))]
=Y, ¥ E[d(x,Q(x)| n() sent, =(j) received] P (r(i),n(j))

iel jel

=2 [E P(n(i)ln(i))d(x,y,')} fr(®)dx

ielp Ljel

23 min[Z P(n'(i)lp(k))d(x,yj)}fx(x)dx (19)

iel g, kel jer

Since the codevectors and the permutation function & are
fixed, this lower bound can be attained by requiring for
eachiel,

Wéighted Nearest Neighbor Condition
{xe R? : Y d(xy;) P (r()|n@)) <

jel

Zd(x,yj)P(n(j)ln(k))forallke[} c R; (20
Jjel )

We say that y; is a weighted nearest neighbor of x if the
quantity

Y d(x,y;) P (n()|nk)) 21)

jel
is minimized over kel when k =i. The optimality con-
dition requires that the partition be such that for each
iel ,R; contains of all those vectors in R? for which y;
is a weighted nearest neighbor. If we assume that the
pdf of random variable x is such that the set of all x
which have more than one weighted nearest neighbor
(boundary points) has probability zero, then we can arbi-
trarily assign those X to any partition region R;, without
affecting the average distortion e.

It can be shown that the geometric structure of the
optimal partition regions are convex polytopes as is
known to be the case for a noiseless vector quantizer [6].
The proof is omitted here for brevity but will be
presented in a future publication.

5. Optimal Index Assignment

Next, we consider the problem of selecting the best
permutation function & for a fixed coder and decoder.
Some locally optimal algorithms to achieve this task
have been studied in [1], [10], and [5]. These techniques
have shown significant improvements in the overall
signal-to-noise ratio of various VQ systems. We indicate
below a possible technique for finding an optimal permu-
tation function given a training set of source data. There
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are at most a finite number of different permutation func-
tions for a given index set /. The number of permuta-
tions of a set of N indices is N!. An exhaustive search
technique for determining the best © on a BSC is indi-
cated below. As before, suppose that xe R; and that n(i )
is transmitted and is received as w(j). The choice of &t
that minimizes e = E [d (x,y;)] can be determined in the
following manner. Given a fixed codebook and a large
training set T of vectors from R?, the VQ system can
effectively be simulated, with channel error simulations
governed by the quantity €. The value of ¢ can be
approximated for large training sets by

e=—I- ¥ d,y) @2
]TI ueT

for each fixed codebook permutation m. For each ueT,
the partition region R; to which it belongs can be easily
determined by applying the weighted nearest neighbor
optimality condition. The index (i) can be computed
and transmission across a noisy channel simulated. The
index j can then be deduced by applying 7! to the
received index. Hence the quantity d(u, y;) can be cal-
culated for each u in the training set. If all N! codebook
permutations are run through the simulation, then the
one with the smallest value of e is the optimal permuta-
tion.

This procedure, however, would require enormous
computational complexity for even a relatively small
number of codevector indices. In addition, the size of a
training set T must be large enough to reasonably
approximate the effects of channel errors on the
codevector indices. It would be desirable to have any
simulation take into account the effect of channel errors
on each codevector index. The correct choice of an
improved permutation function can never degrade qual-
ity. VQ design that does not consider such a permutation
function in the design process, merely assumes that 7 is
the identity function on /.

6. Quantizer Design Loop

We have shown that either the encoder, decoder, or
permutation function can be chosen so as to improve the
average quantizer distortion, when both of the other two
are fixed. In fact one can never do worse by optimizing
one of the three when the others are known. At worst, no
distortion reduction could result. This suggests a three
stage quantizer design loop, where at each stage only
improvement can result. This design procedure essen-
tially follows the spirit of the generalized Lloyd algo-
rithm, and can easily be implemented using training sets.

The generalized Lloyd (or LBG [9]) design algo-
rithm for vector quantization provides a convenient
method for obtaining locally optimal VQ codebooks. At
each iteration in the algorithm, a monotonic decrease in

average distortion is achieved. The generalized Lloyd

algorithm consists of a two step loop that redesigns a

codebook for a fixed partition and repartitions the input
space for a fixed codebook. The familiar centroid and
nearest neighbor conditions provide rules for determin-
ing either an optimal codebook or partition when the
other is fixed.

The basic structure of our algorithm is outlined
below and in Fig. 2. It is assumed that a training set of
input vectors is available and that the channel error pro-
babilities are given.

Algorithm

Step 0: Pick an initial codebook and permutation func-
tion.

Step 1: Partition the training set optimally using the
codevectors and the channel probabilities. Compute the
centroids.

Step 2: Find an optimal permutation function for the
current codebook and partition.

Step 3: Find the best codebook from the centroids and
channel probabilities. Go to Step 1.

Find New Find New
Coder Decoder

Find New
Permutation

Fig. 2 Design Loop For Noisy Vector Quantizer Design.

7. Conclusions

With the knowledge that a VQ coding system will
transmit data across a noisy channel, one can optimize
the average performance of the system by properly
designing the VQ coder and decoder. This can be
achieved by adhering to the weighted nearest neighbor
rule for partitioning the input space, and to the weighted
centroid condition for choosing the values of the
codevectors corresponding to each partition region. A
further increase in performance can be achieved by prop-
erly assigning binary indices to codevectors. Together,
these three design techniques are combined to form a
three stage design loop which generalizes the usual LBG
algorithm for vector quantizer design to the case where
noisy channels will be encountered.
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