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ABSTRACT

Adaptive Vector Predictive Coding is a generaliza-
tion of ADPCM to the processing of vectors rather than
samples. The performance advantage of Vector Quanti-
zation (VQ) allows reasonable quality waveform coding of
speech to be achieved at bit rates in the range of 12 to 16
kb/s. This paper reviews the ideas of AVPC and
describes a real-time hardware implementation using a
programmable DSP processor and a special purpose VQ
processor for codebook searching. The key issues
involved in real-time software design are discussed and
performance results are presented.

1. Introduction

Adaptive Vector Predictive Coding (AVPC) is a
new and promising method of coding speech waveforms at
bit rates in the range of 9.6 to 16 kb/s [1]-[5]. AVPC has
the potential to provide reasonably high quality speech
reproduction for communications systems at bit rates where
current applications typically utilize CVSD or APC. Further-
more, AVPC is a promising technique for efficiently coding
sub-band signals in high quality adaptive sub-band coding
systems. The technique of AVPC is also being applied to
image and video coding. In recent years, Vector Quantiza-
tion (VQ) has emerged as a powerful technique for both
speech and image coding as well as for speech recognition.
The prevailing viewpoint has been that VQ is useful only for
very low-rate vocoder type of applications. Recently, how-
ever, this viewpoint has changed and the value of VQ in
waveform coding is now accepted. AVPC was the first
waveform coder based on VQ which demonstrated that
medium rate speech coding can also benefit from vQ.

Although AVPC is based on Vector Quantization, which
tends to have a high computational complexity, recent
advances in both algorithms and technology have broken
down the complexity barrier. Dedicated IC chips for the pat-
tern matching operation of VQ have been implemented [6],
[7]. Fast search algorithms for VQ have been developed to
reduce the search complexity without compromising perfor-
mance [8]. Various forms of AVPC (see [1]) can be
implemented using reduced complexity algorithms, often
with suboptimal (but acceptable) performance.

The major obstacle to the real-time implementa-
tion of VQ based algorithms for waveform coders such as
AVPC, is the overwhelming time burden that the com-

putational complexity of VQ puts on the processor being
used. Typically, an entire codebook containing hundreds of
codevectors must be searched exhaustively to determine a
nearest neighbor match with a given input vector. If a pro-
cessor that implements a speech coding algorithm must also
perform the demanding VQ codebook searches, only very
small codebooks become realistic in order to insure real-
time operation. Even a conventional signal processor chip
whose only job is to perform pattern matching with code-
books, cannot search codebooks large enough to yield
acceptable performance in speech quality for VQ based
waveform coders. This has motivated us to use an
independent, external, special purpose VLSI hardware
implementation of an exhaustive codebook searcher,
known as the Codebook Search Processor [6]. This
hardware operates in parallel with the main speech coding
algorithm processor, the TMS32010. The combined use of
a general purpose DSP chip together with a special pur-
pose VLSI hardware processor proves sufficient for real
time operation of AVPC speech coding algorithms using
codebooks of reasonable sizes (128 or 256 for example).
We will specifically be dealing with speech waveforms in
this paper, though the indicated AVPC algorithm is not
limited to speech signals alone and is potentially applicable
to voiceband data and signaling tones that arise in the
dialed-up analog telephone network., The AVPC coder might
also be suitable for use in low-cost ISDN terminals.

This work was intended primarily to explore the feasi-
bility of real-time speech waveform coding using VQ tech-
niques and was a preliminary stage of a project aimed at the
much lower rate of 4.8 kb/s reported elsewhere in these
proceedings [10]. Our current focus is on real-time vQ
based waveform coding at 4.8 kb/s for the Mobile Satellite
Experiment [10]. For these reasons a number of practical
improvements and refinements to make AVPC a competitive
candidate for 16 kb/s applications were not explored here
since they were not essential to demonstrating the feasibility

of real-time AVPC.,

2. Adaptive Vector Predictive Coding (AVPC)

Adaptive Vector Predictive Coding is a method of
coding a time waveform analogous to scalar ADPCM
where linear predictive coding is used and the prediction
residual is scalar quantized. The vector case follows a
similar method. In AVPC, a digitized waveform is divided
into blocks (or vectors) ‘- of successive samples, which
are subsequently treated as entities, similar to the role of
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individual samples in the scalar case. A locally generated
prediction of each input vector is subtracted from the input
vector, and the resulting difference is subsequently coded by
a Vector Quantizer. To achieve adaptation, the input vec-
tors are collected into larger groups of vectors to form
frames. The dimension of the individual vectors used is
relatively small, generally between 4 and 8. Hence, there
is considerable correlation between successive vectors of
speech samples, which leads us to use vector prediction to
remove such redundancies.

A vector linear predictor computes an estimate of
each input vector based on the observation of a particular
number of previous vectors. This estimate, or prediction,
is formed by taking a sum of coefficient matrices multiplied
by previous input vectors:

P
fu = E Ai‘sn-i'
i=1
In practice, §,.;, the past reconstructed speech vectors are
used instead of s5,_;, the input speech vectors (which are
not available at the decoder) in forming the linear prediction
summation, so that:

P
f,‘ = E A,‘.Eﬂ_,j.

i=l
This is similar to scalar LPC but replacing the scalar LPC
coefficients with the matrix coefficients and the scalar
samples with the waveform vectors. The vector difference
between the prediction and waveform vectors is then treated
as a residual vector and is VQ encoded with a small
number of bits. The residual vector is compared with each
codevector in a set of codebook vectors to find the best
match with a nearest neighbor criterion. The index (or
address) identifying the selected codevector is transmitted to
the receiver. The codebook that is used to find the nearest
neighbor vector is chosen from a finite collection of precom-
puted codebooks (three in our case), and the prediction
matrices are selected from a predesigned set of coefficient
matrices, as described below. A frame classifier is used to
categorize each frame as belonging to one of three classes.

Then for the duration of the frame, a particular codebook and
prediction matrix are used for the chosen frame class.

The codebooks and predictor matrices were designed
based on a training set of 5 million samples, following
the procedure described in [1]. For simplicity, we chose
to investigate and implement first-order vector predictive
coding (taking P =1), in which the prediction of a
waveform vector is simply a linear transformation of the
immediately previous output vector. The predicted input
vector is formed by multiplying the predetermined matrix,
corresponding to the frame class, by the previous recon-
structed speech vector.

2.1. Frame Classification

The statistical properties of a speech waveform remain
relatively constant in the duration of one speech frame, but
can in fact vary substantially from frame to frame. Hence
improved performance can be achieved by adapting the

linear predictor at the start of each frame. This, however,
requires updating of predictor matrices every  frame, yield-
ing a marked increase in the algorithm complexity (also
side information must be transmitted). This can be alleviaed
while still providing some adaptation to interframe statisti-
cal changes by using a finite classification system.

The AVPC system is made adaptive by assigning to
each frame of speech samples (and corresponding vectors)
one of a finite number of statistical classifications, or
frame types. Given a classification assignment for a
particular frame, an associated codebook and predictor
matrix, unique to that frame, is determined. Each code-
book and predictor matrix is fixed, or predetermined
ahead of time, and remains constant throughout the dura-
tion of its use. Hence, the adaptation occurs by fitting the
different vector quantizers and predictors to the various
statistical types of speech that they are to be used with. A
binary word indicating the chosen classification is transmitted
to the receiver at the beginning of each frame.

A diagram depicting the general form of an AVPC
coding scheme is shown in Fig. 1. The inputs to the sys-
tem are digitized speech waveform vectors, denoted by
5., and the output waveform of reconstructed vectors from
the decoder (right side) is §,, which is also available and
used in the encoder. The input to the vector predictor is §,
which is an approximation to the actual input speech vector,
S,-1. The output is the prediction vector

$p = Ani, .

The error or difference vector, describing the unpredictable
residual information in the current input is:

&y =5y ~ 8, =5, — A5, .
This prediction error vector, is then coded by using a vec-
tor quantizer. A vector v, is chosen as a best match of &,
from the appropriate codebook and the index of v, in
the codebook is transmitted from the encoder to the
receiver (typically 7 or 8 bits per index). The receiver
possesses  the same set of codebooks and predictor
matrices as the encoder, and can thus simply use each
received codebook index along with the class number to look
up the correct codebook vector, v, for each residual vector
é,. Accordingly, the decoder calculates

Sp =8y F Yy
the reconstructed speech vectors in the same manner as the
encoder does. The resulting sequence of vectors, §, is
then stored in a small buffer, and subsequently sent sam-
ple by sample every 125 psec to a digital-to-analog
converter to obtain speech output. We see that since the
actual output stream of speech vectors is available in the
encoding portion of the AVPC system, it is possible to
implement in real-time only the AVPC encoder, and listen
to the resulting output speech from the encoder, which is
exactly what the decoder would have produced in the
absence of transmission errors.

2.2. Switched Prediction
A particular type of frame adaptation for an AVPC
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system using a simple frame classification scheme and
switched prediction was chosen for implementation for
several important reasons. First, we restrict our set of possi-
ble statistical types to a very small number, in our case only
3. Next we define a set of simple conditions based on the
the short term energy, r(0), and unit delay autocorrelation
coefficient, #(1), of a speech frame to determine a frame's
class. In this way we achieve good adaptive performance
with a reduced computational complexity requirement. This
three-way switching scheme is shown in Table 1. Note that
o is the short term energy of a frame and ©p is the long
term average energy of speech, which is predetermined.
Class 1 represents those speech signals which are both
highly correlated and high in energy, such as most spo-
ken vowel sounds. Class 2 contains speech with less
correlation but still of high energy content, while class 3 is
used for low energy speech with relatively little corre-
lation, such as waveforms corresponding to fricative
sounds. A fourth class (not implemented) could be reserved

for voiceband data classification for use in telephony appli-
cations.

Class 1 Class 2 Class 3
1) = 0.94 and 094 >r1) 2070 A1) < 0700r
a = 0.25q, and ¢ = 0.250, o < (.250,
Highly correlated Moderately correlated  Low correlated or
and high energy and high energy low energy

Table 1. Classification Criteria in Switched Prediction
3. AVPC Hardware

There were several components to the hardware por-
tion of the AVPC system. Their functions are described
below and Fig. 2 depicts a block diagram showing the
main hardware units and their interconnections.

3.1. TMS32010 Digital Signal Processor

The AVPC speech coding system was implemented
using a TMS32010 digital signal processor as its main con-
troller and processor. The TMS32010 has available 144 2-
byte words of fast (200 nsec) on-chip RAM. Arithmetic is
done using a single accumulator which can be loaded directly
from internal RAM memory. All instructions take 200 nsec
processing time, with the exception of branches (400
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Fig. 1 Block Diagram of AVPC Speech Coding System.

nsec) and external memory accesses (400 or 600 nsec).
There is an external asynchronous interrupt pin on the dsp
chip which can be connected to the output of an A/D con-
verter to provide processor interrupts upon receiving a
new digitized speech sample. The arithmetic calculations of
the chip are 32-bit additions or 16 by 16 bit multiplies,
in 2's compliment fixed point arithmetic. In calculating

autocorrelation  coefficients which can be sensitive to
roundoff error, double precision (32-bit) accumulations
were used.

3.2. Codebook Search Processor (CSP)

The time consuming codebook searches for VQ are
done outside of the TMS32010 processor in the Codebook
Search Processor. The CSP is an independent special pur-
pose VLSI processing board designed to carry out the VQ
pattern matching calculations. The highly pipelined archi-
tecture of the CSP enable it to produce the index of an
optimal codevector given an input vector fast enough for
real-time operation af the AVPC speech coder.

The CSP is designed around a custom VLSI pro-
cessor called the Pattern Matching Chip (PMC) which
efficiently performs all the arithmetic calculations required to
search VQ codebooks for nearest neighbor fits to vectors,
using a squared Euclidean distance measure as a distortion
criterion. The CSP is capable of searching codebooks of size
128, 256, or 512, and the EPROMs used for storing code-
books could contain up to four codebooks of size 512 with
vector dimension 8.

3.3. External Memory and 1O

The AVPC program instructions were stored in external
memory having 4k 2-byte words available. In addition, the
two frame long circular buffer was stored in the external
instruction memory, as well as the set of predictor matrices,
and some constants. Direct access to this memory
required 600 nsec, but sequential pipelined access could
be done in 400 nsec per read or write (after the initial
one).

The set of codebooks used in the residual vector quanti-
zation were stored in off chip EPROMs. These were avail-
able both directly to the TMS32010 processor (to retrieve
codebook vectors from optimal indices), and directly to
the Codebook Search Processor which sequentially does
memory reads from the EPROMs in its exhaustive code-
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book searches.

Speech was input directly to the system either
through a microphone or a prerecorded cassette tape, and
the coded speech output was amplified and played
through either headphones or a speaker. The analog speech
waveform was passed through an antialiasing bandpass filter
with cutoff frequencies at 20 Hz and 3.5 KHz. The filtered
waveform then goes to a 12-bit linear Analog to Digital
Converter where' it is sampled. The reconstructed digital
speech waveform in the decoder is sent to a 12-bit
linear Digital to Analog Converter and subsequently
passed through a 3.5 KHz reconstruction low pass filter.
These external devices were accessed by the TMS32010
though one of eight external data ports available by single
instruction commands.

4. Real-Time Implementation

The AVPC algorithm with three class switched predic-
tion and codebook selection was implemented in real-time
using a TMS32010 digital signal processor, together with
the auxiliary Codebook Search Processor, described above.
The fixed point arithmetic and relatively limited on-chip
memory presented some difficult programming con-
straints. The set of possible predictor matrices were stored
in off-chip RAM, where the access time was considerably
slower, and the codebooks for the encoder were stored in
EPROMs. In order to efficiently utilize the pipelined
architecture and the time efficient multiply-accumulate
instructions of the TMS32010 during vector prediction (a
matrix multiplies a vector), it was required that the predic-
tor matrix associated with the current frame's class be
present in the fast internal RAM. Hence, at boundaries of
speech frames, when a new statistical class is determined, the
corresponding new predictor matrix has to be mapped into
the fast internal memory.

4.1. Interrupt Driven Operation

The speech coding algorithm was implemented in an inter-
rupt driven manner, where the processor in general carries
out a series of necessary tasks as a background process,

A/ K BPF b

———o/a S LPF :>[ﬂ RpE D

Fig. 2 Block Diagram of AVPC Hardware

and is asynchronously interrupted by the A/D converter
when a new speech sample has been digitized and is ready
to be buffered. At each interrupt, the TMS32010 stores away
the current state of its processing in temporary memory
locations, and subsequently inputs the received speech
sample, x,. The ongoing calculations of r(0) and r(1) for
the current frame of speech being formed are then updated
based on the new value of x,. The sample is then put
into the beginning location of a circular buffer which is 2f
samples in size (f is the length of a speech frame in sam-
ples). The sample in the last position of the buffer,
X,_pf » is then retrieved for processing. This sample,
X,-of » is part of a previous input frame of speech whose
autocorrelation coefficient calculations (and hence its
statistical class) have been previously completed. Hence
the predictor matrix and VQ codebook corresponding to
the current class are used on the vectors being formed
from samples retrieved from the circular buffer. The inter-
rupt routine that the processor follows involves the computa-
tion of several vector quantities in addition to moving some
intermediately stored vectors in data memory. The current
speech vector must be formed, a matrix must be multiplied
by the current vector to yield a prediction vector, which
must be stored, and a residual vector (prediction vector sub-
tracted from the speech vector) must be calculated. The
flowcharts in Fig. 3 shows the pattern of operations that the
main processor must carry out during interrupts, and the
flowchart in Fig. 4 shows the background routine calcula-
tions that are performed.

Once a residual vector's calculation is completed, it is
sent to the Codebook Search Processor to find the best VQ
pattern match. In addition to sending the residual vector,
the processor must alse send a binary index to the CSP
specifying which codebook to use. This index, of course,
simply specifies the current frame's class. The CSP, upon
receiving the residual vector, begins its exhaustive search of
the appropriate codebook for the best vector match to the
given vector. The determination of the best match will span
the time it takes for several more samples to arrive from the
D/A converter for the TMS32010 to process. During this
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latency period, the TMS32010 continues its normal opera-
tions, updating its correlation computations, buffering
new samples, and other required chores. When these are
completed, and if the CSP is still trying to find the optimal
codebook match, then the processor simply spins in a wait
state waiting for new samples, or for the completion of the
CSP.

When the CSP has completed its codebook search, it
sets a particular bit high in its status register. This can be
continually monitored by the TMS32010 and checked to
see if completion has occurred. When such completion
has been detected, the TMS32010 then reads in a word from
the CSP indicating the index of the optimal codevector
chosen to represent the residual vector it was given. This
index is then wused, along with the correct speech
classification, to form the needed address of the optimal
codevector in the external EPROM memory, where the
codebooks are stored. The best matching codevector can
then be retrieved one sample at a time from the EPROMs
and stored in the internal RAM of the TMS320.

Once the selected codevector is available to the pro-
cessor, vector prediction can be carried out. At that point, as
soon as all of the sample of the next vector are present, the
cycle repeats and new residual vectors are sent to the CSP,
etc. This is depicted in the flowchart in Fig 2.

4.2. Handling of Frame Boundaries

One area of difficulty in the real-time programming
task, arises in handling the boundaries between speech
frames. Such a boundary occurs every f samples, where f
is roughly between 50 and 120, but is constant in any one
coding system. A frame boundary also by convention
corresponds to the boundary between two successive
speech vectors as well, namely the last vector of a frame
and the first vector of the following frame. During the
time between the last sample of one frame and the last sam-
ple of the first vector of the next frame, added computation
occurs. A new frame class would have been determined,
requiring that a new predictor matrix be mapped from exter-
nal RAM to internal memory so that it can be used for the
required vector prediction arithmetic. This can be very
costly in terms of available computation time. For a vec-
tor dimension of 8, a 64 element matrix must be
retrieved from memory. To use the table read instruction
of the TMS32010 with address incrementing would require
64*4*200 nsec = 51 psec, a large portion of the total
available time between samples for all necessary computa-
tions. By using 2 special sequential addressing mode of
the TMS32010 this can be reduced to 26 sec, which still
uses a great percentage of intersample computation time. It
should be noted that many other computations, such as
buffering a sample and sending reconstructed speech to the
D/A converter must be done between successive samples as
well. Hence, the vector dimension poses a difficult con-
straint, even with very efficient programming techniques.

In fact, the calculation of new frame classifications does
not pose a critical timing requirement in terms of frame
boundaries. After the last sample of a newly received frame

is buffered, the computation of that frame’s autocorrelation
coefficients will have been completed, since the computa-
tion is updated before each sample is buffered. The
received frame, however remains in the circular buffer one
more frame length’s time at that point. During this waiting
time, the determination of the buffered frame's
classification is done. When the beginning of the buffered
frame is reached for processing, the frame’s class can
simply be loaded into memory immediately without
computation. Hence, the job of doing classification can
reside as a background process, spread out over the period
of a frame, eliminating the need to do computation during
the limited time at frame boundaries.

4.3. Vector Boundaries

Following the input of the last sample of a vector,
many arithmetic operations must be processed before the
arrival of the first sample of the following vector. This
introduces similar constraints  to that of frame boundaries.
At the end of a vector, the processor must do vector predic-
tion, residual computation, and send the residual vector to
the CSP board. Because of limited on-chip fast memory,
these calculations must be completed before the next sample
arrives (and overwrites vector memory locations). In addi-
tion, at frame boundaries, which are also vector boundaries,
all of these calculations must be done as well as predictor
matrix mapping.

INTERRUPT

|

Save Processor
State

l

Input Speech
Sample

|

Update r(0), r(1)

!

Buffer Sample

L

Restore State

!

RETURN

Fig. 3 Flowchart of Interrupt Routine

5. Results

The speech coder described above functioned
correctly in real time, and yielded speech quality compar-
able to the quality produced from software simulations of
the same algorithm using floating point arithmetic. The
software was designed such that with minor modifications
AVPC using vectors of any dimension could be imple-
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mented using codebook sizes of 128 or 256. However to
insure proper real time operation of the speech coding sys-
tem, the vector dimension must be limited. To retain pro-
gramming simplicity, AVPC with vectors of dimension 4
was implemented using either codebooks with 128 or 256
vectors. These two situations correspond to using 7 bits or
8 bits for each vector respectively. This in turn yields bit
rates of 14 kbit/sec and 16 kbitsec in the two cases.
When directly hooked up to a microphone, the output
speech quality at the two bit rates was intelligible and what
might be described as fairly good communications quality.

The AVPC coding system above achieves a first
implementation in real-time of a computationally demanding
adaptive VQ based algorithm. This project has served as a
stepping stone toward more sophisticated real-time imple-
mentations of lower bit rate algorithms. This work serves as
a landmark in VQ implementation, however, the rapid
advance in DSP processor technology since this project was
initiated would now allow a single DSP chip implementation
of the AVPC algorithm without requiring the VQ coproces-
sor.
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