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Abstract

A high resolution analysis is presented for a universal vector quan-
tization scheme based on periodic codebook transmissions. The
scheme assumes a slowly changing nonstationary source such as
an image and periodically transmits new updated codebooks as
side information to the receiver. The side information is transmit-
ted via a large universal codebook which itself acts as a quantizer
for the updated codebooks to be transmitted. This scheme gener-
alizes the more simple technique of adapting a codebook by trans-
mitting its vector components one at a time using a fixed uniform
scalar quantizer. These schemes are compared both theoretically

and experimentally and an optimum tradeoff between quantization

resolution and side information is determined.

1 Introduction

Vector Quantization (VQ) plays a critical role as an important
building block of many lossy data compression systems and is gen-
erally designed based on the long term statistical behavior of a
source. In many situations, however, {(e.g. image coding) non-
stationary sources are encountered where real-time adaptation is
desirable. An approach to providing this need is for a quantizer to
be both adaptive and universal in nature. An adaptive quantizer
.is one in which changing source statistics induce changes in the
quantization procedure or parameters, and a universal quantizer
is one which is a priori able to successfully encode a large class of
distinct sources. These two notions are very closely related and
are encountered in lossless source coding, such as with Ziv-Lempel
coding and Gallagher's adaptive Huffman coding. However, for
lossy source coding, there is a significant gap in this area.

Ziv [1] has shown that, under some alphabet assumptions,
there exist universal algorithms for the class of all stationary sources
that asymptotically do as well for each source as an optimum
source code designed for that source. Neuhoff et al [2] develop
a unified theory for universal source coding and Matsuyama and
Gray [3] have applied the idea of universal coding to tree encoding
of speech. Recently, Chou [4] designed weighted universal codes for
image coding by using a finite collection of predesigned VQ code-
books. A short binary index is occasionally transmitted to specify
to the decoder which codebook is being used. This scheme is lim-
ited in the sense that the number of different codebooks that can
be used is rather small due to memory and complexity constraints.

Nasrabadi [5] used the notion of a “super-codebook”, a large
ordered codebook available at both the encoder and decoder, from
which the first N codevectors serve as an operational vector quan-
tizer in coding an image. The operational codebook can be adapted
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by trickling vectors in the super-codebook to the top and allowing
others to fall down to lower positions. Their reordering method
is heuristic in nature, and depends on the statistics of the previ-
ously used codevector indices. One potential difficulty with this
scheme is that being finite state in nature, it cannot easily recover
from channel errors. An earlier method for adaptive quantization
was proposed by Gersho and Yano [6] that adaptively replenishes
codevectors as the source statistics change, attempting to keep the
partial distortions constant at each stage. In [7] subsets of a uni-
versal codebook are used as reduced size codebooks, which are then
used to encode the source training set. Also, in [7], adaptive quan-
tization is performed by occasionally transmitting (as overhead)
new codebooks to a receiver. )

In the present paper, we describe and mathematically ana-
lyze a universal quantization technique based upon the occasional
transmission of new codebooks (see (9] pg. 620). The main idea
is that periodically, as the source statistics change, a new target
VQ codebook, Cq, of size N is designed for the source and then
matched in a nearest neighbor manner to the N closest vectors in
a large universel codebook, Cy, of size M. The N matched vectors
from C, constitute the operational codebook, Co, which is used for
coding by both the encoder and receiver as an approximation to
C.. The operational codebook can be conveyed to the receiver by
transmitting side information specifying some N-vector subset of
C.. In this manner, the vector quantizeris itself being vector quan-
tized for the purposes of transmitting its codebook. This technique
generalizes and improves upon those described in [4] and [5].

We employ high resolution quantization theory to analyze the
performance of this universal coding system. Specifically, the op-
timal tradeoff between overhead bits used for transmitting new
codebooks and the encoding bits sent as codevector indices is de-
termined for various universal codebook designs, and is compared
to experimental results. Two methods of codebook transmission
are considered: 1) uniform scalar quantizing the codevector com-
ponents, and 2) vector quantizing the codevectors themselves.

Let X be a k-dimensional input random vector with pdf f(X),
to be quantized by an operational codebook C, of size N, which
is some subset of a universal codebook Cy of size M. Define the
codebook Tatio to be the quantity 8 = M/N, and assume a new
operational codebook is transmitted every « input vectors. Let r
denote the system's overall transmission rate in units of bits per
scalar sample.

2 Scalar Quantized Codebook

Suppose that the covectors of C, are formed by scalar quantizing
with b bits each component of every k-dimensional codevectorin C;
(see Fig. 1). Then, equating two expressions for the total number
of bits transmitted between codebook updates gives

ark = alogy N + kbN (1)
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Figure 1: Scalar Quantization of Codebook

The term kbN is the total number of bits used for scalar quantizing
C¢ and alogy N is the number of bits transmitted as codevector
indices for encoding the source. Solving this equation for b yields

a(rk ~ log, N)
Nk

Using high resolution quantization theory, we analyze the trade-
off between the number of bits b that are dedicated to quantizing
each scalar component of the codebook and the number of bits
logy, N transmitted to specify each codevector index once encod-
ing begins.

Denote the it? codevector and partition cell of C; respectively
by Yi and R; and the corresponding quantized approximation

b= (2)

codevector in C, and its cell by Yi and R;. For any codebook C
let D(C) denote its mean-square distortion. Then we have:

D)= YL RE(IX - Y;IRX € A)
~ 1YN RE(X - YiIPIX € Ri)

D(C)+ YN, PAY; - Yy (3)

where P; = Prob[X € R;] and P = Prob[X € R,-]. Thus, the
overall quantizer distortion can be approximately decomposed into
the distortion of the target quantizer and the distortion incurred
in quantizing the codevectors .

Under the assumption of high resolution quantization (N large)
[10] we can approximate

D(C) = Ok, INF (1 ()l x42) ()
where the functional |.||p is given by
i
4
I (@)lp = (/f(x)pdz) ()

and C(k,2) is the coefficient of quantization, which is known to
bounded by [10]

1
k+2

r (1 + %) Vk(2)—2/k

Vi(2)"* < C(k,2) < z
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where Vj(2) is the volume of a unit sphere in R*.

The second term of (3) gives the expected distortion in scalar
quantizing each component of the codevector. Assuming a uni-
form scalar quantizer with 2° output levels over a support region
[-V, V], we get

N

1 A

=Y RIY;- Y2 =
=1

Substituting (5) and (6) into (3) we have

_‘/_22"217

(6)

-2 V2
D = Ck2NT (X, + 527" (7)

Combining equations (2), (3), (4), and (7) gives the overall
distortion as a function of N:

V2 ~2ro
D(Co) = Ch I (XNl jran)N 2% + ——2"F NI ()

Large values of N correspond to allocating more of the trans.
mitted bits to codevector indices (i.e. larger codebooks), whereas
smaller values of N imply more bits are used as overhead to ac-
curately transmit the operational codebooks. To minimize the
overall distortion, we set the derivative of D(Co) with respect to N
equal to zero and numerically compute the roots of the resulting
equation. Section 4 gives results for this scalar quantization of the
target codebook designed for a Gaussian iid source.

3 “VQing” the Codebook

In the previous section we discussed the case where we scalar quan-
tized the components of the codebook vectors and transmitted the
quantizer output bits to the decoder. We next extend the anal-
ysis of the previous section by assuming the target codebook C;
is transmitted to the receiver by vector quantizing its codevectors
to form the operational codebook C,. The size M codebook Cy, is
available to both the encoder and decoder. As in the scalar case,
the target codebook is designed in real-time based on the current
(but unknown a priori) source statistics. For each codevectorin C;
the nearest codevector in C, is determined and put into Co. If a
codevector in Cy, is chosen twice it is thrown out and instead the
next nearest unused codevector in C,, is put into Co.

Note that the target codebook C; is treated as a vector source
that is itself quantized by Cy. The universal quantizer, however,
is mismatched to the statistics of the codebook source C; since the
input source X is assumed unknown ahead of time. On the other
hand, the quantizer C; is assumed to be matched to the statistics
of the source X, since it is designed “on the fly” by applying
the generalized Lloyd algorithm to recently observed training set
vectors. The overall system is shown in Fig 2.

As M increases the operational codebook more closely approx-
imates the target codebook, but more of the available bits must
be dedicated to transmitting side-information. We determine the
optimum tradeoff between M and N, for a fixed overall rate r
(bits/sample), analogous to the previous section. We treat Co as a
“source” to Cy and assume its pdf equals the k-dimensional point
density function given by asymptotic theory as

f(x) ¥
fR,‘ f(x)T-br_?dx

Following similar steps as in the previous section we get

Ao(X) = 9)

D(c,)

N
1 %
D)+ Y PllY; - Y2
=1

Ck, 21X e pgag 2y N 72/

. C(k,2) ( / _Ae®) dx) M=2/%  (10)
=% Pu(x)]F
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Figure 2: Vector Quantization of Codebook

where in (10) Ay(X) is the point density function of the universal
codebook which is a size M VQ codebook designed for a source
with pdf Ao(X). The first term in (10) corresponds to the distor-
tion incurred in quantizing a source by a size N VQ codebook of
dimension k, and the second term is the distortion for quantizing
the target codebook with the universal quantizer.

As before, a block of a k-dimensional source vectors is quan-
tized by Co for each new operational codebook transmitted. The
number of bits of side-information needed to specify each-C, is the
same as the number of bits required to specify an arbitrary sub-

set of size N from a larger set of size M, namely log, ( 1\1\/; )

Some implementation complexity is required, but it should be
noted that there are also less complex schemes for sending the
side-information which respectively use M and N logy M bits [9].
The total number of bits transmitted for every block of a source
vectors is

(11)

where the first term on the right hand side is the number of bits
used to transmit the codevector indices during the source quanti-
zation and the second term is the side-information. For a given
a and N this equation can iteratively be solved for M. Now, the
values of D(C,) in (10) can be determined using (11).

For C, designed for a particular distribution and C,, designed
for a different distribution, this function can be numerically eval-
uated for different values of N at a fixed rate. In section 4 the
minimum distortion bit tradeoff is evaluated, both theoretically
and experimentally, for a case where C, is Gaussian and Cy is
Laplacian. It is shown that in practical situations, M can become
prohibitively large as N decreases (fixed rate). In such cases it is
better to have M as large as possible.

ark = alogy N + log, ( Jx )

4 Experimental Results

Simulations were conducted for various cases for the scalar quan-
tization of the codebook to examine the bit tradeoff. Fig. 3 shows
-the results for an i.i.d. Gaussian source for rate 2.0. The dimension
of C; is fixed to be k = 4 and b, the number of bits used for scalar

quantizing the codebook components, is varied, keeping the over-
all rate at 2.0. It is seen that the overall SNR first increases and
then decreases. The place where the SNR peaks gives the optimum
tradeoff of bits. Fig. 4 shows the variation of SNR for the univer-
sal quantization scheme where C, is Gaussian and Cy is Laplacian,
each with k = 4 and r = 2 bits per sample. As universal codebook
size Mis varied (for a fixed rate r), we observe a similar tradeoff in
the side information as in the scalar quantization of the codebook.
Very quickly M becomes prohibitively large as we decrease N for
a fixed overall rate. For practical purposes, in this case it would
be good to choose as large an M as possible. The differences in
the experimental and the theoretical curves are attributed to the
approximations made in deriving the asymptotic formulas.

Table 1 gives the results for the universal scheme in coding
images. Three test images were taken and a Cy, of size 1792 was
designed by running a GLA based on a training set, which was
different from the test images. The size of C; was 256 in all the
cases and we consider encoding at a rate of r = 0.5 bits per pixel.
The table gives comparative SNRs for encoding of the test images
by the universal scheme, ordinary VQ, and the case when they
are encoded on a codebook which is designed based on a different
image (corresponding to “Mismatch” in the table). Finally, Fig.
5 shows the improvement in performance at the expense of side
information.

This shows the effect of increase in the codebookratio, 8 = %’I—,
for encoding of the image Tiffany. As the codebook ratio increases,
the performance also increases, as expected. Though the overall
rate increases slightly as we increase the codebook ratio, still the
curve is a good indicator of the performance improvement at the
expense of side information.

Images Mismatch vQ Uu-vQ
Lena | Tiffany | Baboon

Lena 32.20 20.45 29.70 30.29 31.12

Tiffany 27.60 33.79 22.95 24.63 31.02

Baboon | 23.04 19.07 24.50 22.95 | 23.52

Table 1 : Comparative SNRs of Universal Codebook with Mis-
matched Codebooks and normal VQ codebooks at 0.5 bpp.

5 Conclusions

We have generalized the concept of codebook quantization for
adaptive and universal vector quantization. Using high resolution
quantization theory, we have derived explicit formulas for distor-
tion in two different cases. One in which we do a uniform scalar
quantization of the initial codebook and the other in which we
vector quantize the vector codebook. In both the cases there ex-
ists a tradeoff in the number of bits dedicated as side information
and the number of bits used in specifying the codebook vectors
once the codebook starts getting used. Asymptotic analysis gives
a theoretical justification of this tradeoff and this is confirmed by
experiments.
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