S4b.8

Conjugate Gradient Methods For Designing Vector Quantizers

Eyal Yair ¥, Kenneth Zeger, and Allen Gersho

Center for Information Processing Research
Department of Electrical & Computer Engineering
University of California, Santa Barbara, CA 93106

Abstract

Vector quantizer design procedures attempt to minim-
ize a multi-dimensional cost function. Generally, the global
minimum is too difficult to find and local minima are
sought using descent algorithms for which the cost function
decreases monotonically. One of the most common tech-
niques today for VQ design is the Generalized Lloyd Algo-
rithm (GLA), a descent algorithm which is convenient to
use but for which no results on its computational efficiency
have been established. This paper introduces a new tech-
nique for efficient VQ design, based on conjugate gradient
search methods. It is demonstrated experimentally that the
the new design algorithm performs better than the GLA in
many cases in terms of computation time and/or quality of
the codebook it produces.

- 1. Introduction

Many descent algorithms are known to locally optimize a
multi-dimensional cost function (e.g., [1]) but there is no con-
clusive algorithm which can be said to outperform all the other
methods for a non-quadratic cost function. The Generalized
Lloyd Algorithm (GLA) [2], also known as the LBG algo-
rithm, is a method specifically developed for the problem of
quantizer design. It is a descent algorithm for which the cost
function decreases monotonically. There is, however, no evi-
dence that the GLA is superior to other optimization tech-
niques which are not necessarily specific to the VQ design
problem. ‘

Two alternatives to the GLA for minimizing the cost
function, namely the Steepest Descent (SD) method and the
Conjugate Gradient (CG) method, are studied in this paper and
their performance is compared to the GLA. Although these
techniques are widely used in other optimization problems, so
far they have not been used for VQ design. We first show how
the SD method can be applied to VQ design and demonstrate
that the GLA is similar to the SD method but the codevectors
in the GLA are not necessarily updated in the direction of the
negative gradient. We then introduce the application of the CG
method to the non-quadratic case of VQ design and compare

This work was supported by the Weizmann Foundation for scientific
research, the University of California MICRO program, Bell Communica-
tions Research, Bell-Northern Research, and Rockwell International.

+ Author is currently at the IBM Scientific Center in Haifa, Israel.

245

its performance with the GLA.

In the SD method the codevectors are updated at each
iteration in the direction of the negative gradient of the cost
function, using an optimal step-size obtained (analytically) by
a line minimization along the gradient direction. Is is well-
known that the speed of convergence of such a technique is
bounded by the condition number of the Hessian matrix (given
by the ratio of its largest and smallest eigenvalues) [1].

The CG algorithm is known to generally outperform the
steepest descent method for many practical applications with
only marginally additional computation requirements. Instead
of choosing a fixed direction in the codebook space, as with the
negative gradient in the SD method, the direction in which the
codevectors are updated is determined dynamically based on
the current value of the gradient and the previous update direc-
tion. For a quadratic cost function, the conjugate gradient algo-
rithm is known to converge in a finite number of steps, and the
upgraded speed of convergence with respect to the SD method
is achieved by effectively eliminating the influence of the larg-
est eigenvalues of the Hessian matrix. In the case of a non-
quadratic cost function a partial conjugate gradient (PCG)
algorithm is often employed, in which the update direction is
periodically reset to the negative gradient direction, and conju-
gate gradient directions are used between two restarts. The
PCG algorithm thus includes the SD method as a special case
when the restart is performed every iteration.

In this paper, the application of both the SD and the PCG
methods to vector quantizer design are introduced. The com-
putational requirements per iteration for both algorithms are
essentially the same as in the GLA. Results comparing these

techniques with the GLA for Gauss-Markov and speech
sources are given, demonstrating the superiority of the PCG
algorithm over the GLA in terms of designing a quantizer with
an improved trade-off between SNR achieved and computation
time. g

2. Steepest Descent Method and the GLA

‘Denote the VQ codevectors by y; (i=1, - ,N), the
codebook by Y, the cost function by D, and the set of training
vectors by T. Usually a vector quantizer is defined by jointly
specifying its partition cells and its codebook. An alternative
viewpoint, which we follow here, is to define a quantizer solely
by specifying its codebook with the implicit requirement that
the partition cells are always the nearest neighbor cells for the
given codebook. Thus, a quantizer is a mapping of an input
vector X into that codevector in the codebook Y to which it is
nearest in the Euclidean distance sense. Hence, the average dis-

CH2847-2/90/0000-0245 $1.00 © 1990 IEEE

tortion of a quantizer is a function only of the codebook Y, for
a given input source distribution. Based on the mean-squared
quantization error as a performance measure and taking the
source distribution as being specified by the training set T, the
cost function to be minimized by a design algorithm is given
by
A N 2
b=y ¥ Ix-y lI° , 2.1
i=1 xeR;

where each R; is the nearest-neighbor cell of the codevector y;,
given by

Ri={xeT:|x-y; | <llx~y;| forall j#i} (22)

where each xe R; is quantized to the codevector y;. Usually an
arbitrary tie-breaking rule is assumed so that a training vector x
on the boundary between two (or more) nearest-neighbor cells
is uniquely assigned to one of these cells. However, for any
given codebook, if a training set is generated from a continu-
ously distributed source, the probability is zero that any train-
ing vectors would lie on the boundary.

It should be noted that the quantity D (Y) depends both
directly on the codevectors y;€Y arising in each term of the
inner summation in (2.1) and indirectly on the range of the
inner summation since each region R; is implicitly a function
of the codebook as given by (2.2). The goal of the design is to
find a codebook Y that locally minimizes D (Y). The GLA is
an iterative procedure in which, at each step, (a) the codevec-
tors are replaced by the centroids of their nearest-neighbor
cells and then (b) a new set of nearest neighbor cells is deter-
mined by the new codevectors. With our definition of a quan-
tizer, the second step, (b), is automatically implied and need
not be specifically stated. Therefore in the GLA, at each itera-
tion the codevectors are updated according to

yi(——cié—ll—Zx , (2'3)
i xeR;
where ¢;, called the centroid of R;, is the sample mean of the
training vectors in R;, and KX; is the number of training vectors
in R I

In order to compute the gradient of the cost function, we
make the zero-boundary assumption that for the current code-
book Y, none of the training vectors xe T lie on the boundary
between two nearest-neighbor regions. From (2.1) it can be
seen that the partial derivatives of the cost function D (Y) with
respect to the codevectors, denoted by g; , are given by

a oD
&=5= X (yi—x) =K (yi-¢;) (2.4)
Yi xeR;
fori =1, --- ,N. Note that the sets R; are also functions of

the codevectors. However, since the training set T is finite,
under the zero-boundary assumption infinitesimally smail
changes in y; do not change the sets R; and these sets can be
treated as constants with respect to y; in the derivative calcula-
tion. While we have no theoretical guarantee that for a fixed
training set, the zero-boundary condition will hold after an
arbitrary algorithmic change to the codebook, in the rare and
improbable event that this condition is violated, the effect of an
isolated occurrence of this kind will generally be only a slight
error in the value of the partial derivative given by (2.4). In
fact, the zero-boundary condition is known to be a necessary
condition for global optimality of a vector quantizer [7].

A gradient descent minimization of D (Y) is given by

246

iteratively updating the codevectors in the direction of the
negative gradient. Specifically, at the # -th iteration,

, Yi(ntl) =y;(n)-pg; (2.5)
fori=1, ---,N, where y, called the step-size, is independent
of i, and the gradient is evaluated for the n** codebook Y(n).
The optimal value of | can be found by optimizing the cost
function along the direction of —g; . This is a one-dimensional

optimization called a line search. Along this direction the cost
as a function of p is given, using (2.4), by

- N
Dw=%Y ¥ lIx-y +pK;(y;-¢;) ||?
i=1 xeR;

To find the optimal value of p, we differentiate D () with
respect to |1 and equate the result with zero:

(2.6)

oD _ ¥ 24y e 12
T xﬁ,{”K‘ 1yi~ci | @.7)

K (3¢, (x-3)] = 0
The solution to (2.7), denoted by Wops » is then given by

N N
S K2y ~¢ 2 > g2
(=1 (=1
Hopr = ‘N R =]\; (2.8)
SKAyi- 1* Tk gl?
i=]

i=1
If the centroids ¢; are computed at each update of the algo-
rithm, then only one additional Euclidean distance calculation
is required for each cell R; to compute Hope s namely, the dis-
tance between the current value of the codevector y; and the
centroid c;.

If we allow a local step-size y; for each of the codevec-
tors y;, then each codevector can be locally adapted towards
the centroid using its own step-size. The direction of the adap-
tation in this case is not the gradient of the cost function
defined in (2.1) since the update of the codebook is now given
by

Y(n+1)=Y(n)-UVyD (2.9)

in which Y(n)=(y\(n), - ,yy(n)), U is the diagonal
matrix given by diag(py,bp, -+ ,Hy), and VyD is the gra-
dient of D(Y) in the codebook space. Such an approach of
separately tuning the step-size of each component in a gradient
descent-like procedure for minimizing a general multi-
dimensional function was studied by several researchers in the
past (e.g., [3, 4, 5]). However, its advantages in terms of speed
of convergence with respect to a true gradient descent (as in
(2.5)) are not conclusive, In our case, a solution of (2.7) when
H; is a function of i can be seen to be

1

Ui='[‘(7 ,

for which the formula (2.5) for updating the codevectors
becomes

M) =Y+ = T (x-y,(m)

i xeRm

211

where R ™) is the set of training vectors which are in the
nearest-neighbor cell of y;(n) at the n** iteration. Eq. (2.11)
can be also written as

(2.10) -

yi) == 3 x & 60 @.12)
K; xeR™
for i=1, - ,N, which is exactly the GLA update formula

(2.3). Thus, we conclude that the SD-like method of (2.9), in
which an optimal local adjustment of the step-size by a line
search is individually employed by each of the codevectors,
leads to the GLA algorithm, where each codevector is replaced
by the new centroid.

It should be noted that for optimization problems in gen-
eral, tuning each of the variables separately as in (2.9), does
not always guarantee a descent. However, for the GLA it can
be verified that the cost function of the codebook Y (n) can be
written as

N
D) =% XK |l y;(m)-c;(n) |12 (2.13)
i=1 '

N
+1Yy ¥ lx-¢(n) .
v i=1 xe R™
where the second term is D (Y (n+1)), by (2.12). Since the first
term is always positive (unless y;(n) is the centroid of R™))
weget DI (n)>D¥ (n +1)) , which assures descent.

3. Partial Conjugate Gradient Update

We now consider the minimization of D (Y) via the Con-
jugate Gradient algorithm. In this case, instead of updating the
codevectors in a fixed direction, namely, that of the negative
gradient, the direction taken in the codebook space will be
dynamically updated at each step. We therefore end up with
two recursions, one for the codevectors and the other for the

directions. In the quadratic case, this algorithm is known to-

converge in a finite number of steps [1]. In the non-quadratic
case, a reinitialization technique is often used so that after
every N steps a gradient descent step is performed. The PCG
algorithm is generally faster than the steepest descent algo-
rithm since it effectively eliminates the influence of the N larg-
est eigenvalues of the Hessian matrix, which are the major rea-
son for the slow convergence of the stecpest descent method.
Applying the PCG method to VQ design is achieved by the fol-
lowing recursions. Instead of taking a step in the direction of
the gradient as in (2.5), the codevectors are updated in a direc-
tion d; (n) with a step-size v, ,

yi(n+1) =y;(n)+y, d;(n) (3.1
fori=1, -+ ,N. The direction d;(n) at the n-th iteration is
determined by the recursion

d;(n+1)=-g;(n+1)+§, d;(n) (3.2)
n=0, - - ,R —1, which is initialized to d;(0)=-g;(0), and

the gradient g;(n) is given according to (2.4). The quantity R
is called the restart rate, and the algorithm is restarted every R
iterations by setting n to zero, initializing d; (0) to —g; (),
and renaming y;(R) to be y;(0). In a sweep of R iterations,
the first step of the PCG is thus a steepest descent step in the

direction of —g;(0), and the other R —1 steps are conjugate
gradient steps. The iteration index is reinitialized to zero
after R steps. The choice of R depends upon the surface of the
cost function. When this surface is quadratic (or nearly qua-
dratic) R should be large since the direction update of (3.2) is
derived for a quadratic function. When this surface is not even
approximately quadratic, R should be small since otherwise

the directions computed by the recursion of (3.2) will generally
be ineffective. In VQ design, R should be determined by prac-
tice, depending on the source, the vector dimension, and the
size of the codebook.

In the quadratic case there is an explicit expression for the
quantity &, in (3.2). For the non-quadratic case, several propo-
sitions for the value of £, are known in the literature. We use
the Fletcher-Reeves formula {6] which, adapted to our prob-
lem, may be expressed as

il 2
Y llgi(n+Dl
¢ =isk

¥ (3.3)
Y lal®
i=1

To optimize the step-size v, in (3.1), we follow a similar
derivation as used in (2.6)-(2.8). Namely, 7y, is determined as
the best choice for the step-size which minimizes the cost func-
tion along the direction d; (n) taken at time instant n. By dif-
ferentiating D (y,) with respect to vy, as was done is (2.7), the
optimal PCG step-size is obtained as

y T
-3 i) gi(n)
= ‘ : G.4)
YK I m))?

i=1

Hence, the additional computation with respect to the conven-
tional GLA is basically only three additional inner products for
each codevector; the computation of d;(n)Tgi (n), and the
norms of g;(n) and d;(n). Since the number of distance
evaluations required to compute the new centroids in the GLA
in each iteration is generally large (K; distance evaluations for
each codevector) the computational requirements of the PCG
per iteration are basically the same as those of the GLA. Thus,
when comparing the two methods, the number of iterations
required to converge may serve as an indicator for the speed of
convergence. A block diagram of the PCG algorithm for VQ
design is shown in Figure 1.

. d(n) + (n)
£ > @ > e
+ +
X z* A
p— Cn Yn T
g(n)
vD

Fig. 1: Block diagram of VQ design procedure using the
Partial Conjugate Gradient Algorithm.

We finally give an outline of the PCG algorithm for VQ
design:

1. For n=0 perform a gradient descent according to (3.1)
with d; (0)=—g; (0).

2. For n=1,--+,R, perform R -1 conjugate gradient
steps as follows:
2.1. Repartition the training set and compute K; and the
centroids ¢;(n) fori =1, --- ,N.
2.2. Compute the gradients g;(n) according to (2.4) and
store their norm.
2.3. Compute {,_; according to (3.3).
2.4. Compute the new direction according to (3.2).
2.5. Compute the step size according to-(3.4).
2.6. Compute the new codevectors according to (3.1).
3. Initialize n to zero, rename y;(R) to be y;(0), and repeat
until the cost change in one sweep of R steps is less than
some specified threshold.

4. Experimental Results

The partial conjugate gradient algorithm described by
equations (3.1) and (3.2) was implemented for various reset
values (R) and tested in comparison to the generalized Lloyd
algorithm. The reset values chosen were those in the range
from 1 to 7, with R =1 corresponding to a gradient descent

80 T T T T

T T T u T T

GLA
Results

iterations to reach SNR

Reset interval R

Fig.2: Plot of number of iterations needed to achieve various SNRs as a function
of reset interval (R) for the partial conjugate gradient method of VQ design. Code-
book has 16 codevectors of dimension 4, and the source is first-order gauss-Markov
of the form X,, =.9X,,_; +W,,, where W, is an i.i.d. Gaussian noise process.

algorithm, and R =7 somewhat approximatin.g a true conjugate
gradient descent (i.e. R =eo).)

The PCG was executed for a variety of different sources,

and the results were reasonably
consistent. For each instance of the PCG algorithm (i.e. a dif-
ferent value of R), the number of iterations that the algorithm
ran before the quantizer’s SNR surpassed certain thresholds
.was recorded. Figure 2 shows typical results of the PCG’s per-
formance. The results are based on a a first-order Gauss-
Markov source of the form x, =0.9x,_, +w,, where w, is an
i.i.d. Gaussian noise process. The thresholds in this case were
chosen in dB as 10.0, 10.2, 10.3, and 10.4. The performance of

248

the GLA for each threshold is shown to the right of the graph.
Neither the GLA nor the PCG with R =1 were able to achieve
the 10.4 dB threshold, and thus the corresponding points on the
point were omitted. It can be seen that the PCG generally out-
performs the GLA as well as a true gradient descent.

’

5. Conclusions

A new technique for VQ design is presented based on the
Partial Conjugate Gradient algorithm. The complexity per
iteration is roughly equivalent to that of the GLA. However, in
most cases, either a faster convergence was achieved for the
PCG algorithm with respect to the GLA, or a better SNR was
obtained for the same number of iterations. The PCG algo-
rithm appears to offer a more efficient.vector quantizer design
technique than the GLA. .

References

[1] D.G. Luenberger, Linear and nonlinear programming,
Addison-Wesley, Reading, Mass., 1984,

{2] Y. Linde, A. Buzo and R. M. Gray, "An Algorithm for
Vector Quantizer Design", IEEE Trans. Communications,
COM-28, 84-95, January 1980.

[3]1 A H. Kesten, "Accelerated stochastic approximation", An-
nals of Mathematical Statistics, VOl 29, 41-59, 1958.

[4] R.A. Jacobs, "Increased rates of convergence through
learning rate adaptation”, Journal of Neural Networks,
Vol-1, 295-307, 1988.

[5] G.N. Saridis, "Learning applied to successive approxima-
tion algorithms", IEEE Trans. on Systems Science and Cy-
bernetics, SSC-6, 97-103, 1970.

[6] R. Fletcher and C.M. Reeves, "Function minimization by
conjugate gradients", Computer J., Vol. 7, 149-154, 1964.

[7]1 A. Gersho and R.M. Gray, Vector Quantization and Sig-
nal Compression, Kluwer Academic Publishers, Boston,
1990, chapter 11.

