A METHOD TO OBTAIN BETTER CODEBOOKS FOR VECTOR QUANTIZERS
THAN THOSE ACHIEVED BY THE GENERALIZED LLOYD ALGORITHM

Eyal Yair’ and Kenneth Zeger“

. IBM Israel Scientific Center, Technion City, Haifa 32000, Israel
« Dept. of EE, University of Hawaii, Honolulu, HI 96822, USA

Abstract

The most widely used technique for designing a vector
quantizer (VQ) is the Generalized Lloyd Algorithm (GLA),
which is an iterative down-hill search in which some distortion
function is being minimized. The major drawback of the GLA
is that a local minimum of the distortion function, which
heavily depends on the initial guess, is generally found. Unfor-
tunately, in many practical applications, repeating the GLA
using several different initial guesses generally yields only mar-
ginal improvement of the outcome codebook and does not
always justify the increase in computation. In this paper we
introduce an alternative approach to VQ design that produces
better codebooks than the GLA (in the sense of lower dis-
tortion). The method is based on an on-line design technique
(similar to the Kohonen learning scheme) which incorporates
principles of stochastic relaxation. It is called the Soft Comperi-
tion Scheme (SCS). The SCS is a deterministic on-line design
procedure. In contrast to the Kohonen winner-take-all competi-
tion carried out between the candidate codevectors, it performs
a “soft” competition where each codevector is assigned a winning
score and all the codevectors are updated simultancously
according to these scores. A temperature schedule is used to
control the speed of convergence versus the quality of the
codebook.

1. Intreduction

Vector quantization (VQ) design is a minimization problem
of a multi-dimensional distortion function which, in most prac-
tical applications, contains multiple local minima. The outcome
of this minimization is a set of prototype vectors called
codevectors which are used to represent data vectors from the
source being quantized. The collection of all the codevectors is
called a codebook. At present, the most widely used algorithm
for VQ design is the generalized Lloyd algorithm (GLA) [1] .
The GLA is a descent algorithm in which the distortion func-
tion monotonically decreases towards a local minimum. The
GLA is easy to use and is guaranteed to converge. However, as
in most descent algorithms, its major drawback is that there is
no control on the quality of the local minimum achieved after
convergence. Once the initial guess has been chosen, the final
solution to which the iterations converge has also been deter-
mined. There are many heuristic ways as how to choose the
initial guess (e.g., [2]) but unfortunately, none of which can
guarantee a good performance of the final codebook. A pos-
sible remedy to this limitation of the algorithm might be to
repeat the GLA with several initial guesses, hoping that one of
them will yield a satisfactory solution. However, in practice, this
technique yields only marginal improvement due to the large
number of local minima of the distortion function. Another
solution is to insert some kind of stochastic perturbations in
order to allow up-hill transitions on the distortion landscape.
Up-hill transitions allow the search to escape from local
minima, but should also be controlled so that the search will
finally converge. Several types of stochastic perturbations were
suggested for VQ design (e.g., [1], [3], [4]) where in most of

them an improvement over the GLA could be obtained at the
expense of a significant increase in complexity. It turns out that
stochastic methods, while capable of finding good solutions,
require exhaustive computation time to supply such solutions.

Another type of VQ design method was introduced by
Kohonen [5] and in a slight different form by Chang and Gray
[6]. It is an on-line method in which, at each time instant, a
single training vector is presented, and the closest codevector
migrates towards it with a diminishing step-size. The update of
the closest codevector can be regarded as if there is a competi-
tion between the codevectors and only the winner of that com-
petition is updated. The on-line method is not a descent
procedure but rather an LMS type algorithm in which the direc-
tion of the instantaneous gradient (sometimes called the
stochastic gradient [6]) is taken at each update. Convergence is
achieved when the migration step-size reduces to zero.
However, as was shown in [7], care must be taken in reducing
the step-size in order to ensure convergence to a local minimum
of the distortion function. The on-line algorithm was found to
yield similar performance to the GLA for VQ applications (e.g.,
(61, {8h.

In this paper we suggest a method which is a mixture of the
on-line method and the stochastic relaxation techniques. It is
somewhat more complex than the GLA but produces better
codebooks. Moreover, better codebooks are obtained even if
repetitions of the GLA (starting from different initiat guesses)
are allowed. such that the overalt computation time is identical
to that of the suggested method. The new method, called the
soft competition scheme (SCS), is an on-line deterministic
method. At each time instant a training vector is presented and,
in contrast to the on-line Kohonen method in which only the
closest codevector was updated, all the codevecotrs are simul-
taneously updated, each codevector with its own step-size. In
order to determine the step-size for each codevector, a soft com-
petition is performed between them, and a winning score is
assigned to each codevector, depending on its proximity to the
training vector presented. The winning score, representing the
probability of the codevector to win the competition, is similar
to the local Gibbs probability of the Gibbs Sampler introduced
by Geman and Geman [3], in which the codevector to be
updated was chosen probabilistically according to this local
probability distribution. The step-size for each codevector is
then factored by these winning scores, resulting in graded
migration steps, where the codevectors closer to the training
vector presented migrate with large steps and codevecotrs far
from that training vector migrate with small steps. A temper-
ature schedule, similar to that of simulated annealing algorithms
(e.g., [9]), is used to shape the width of the winning probability
distribution such that as the temperature approaches zero, the
SCS approaches the on-line Kohonen scheme and the algorithm
converges. The SCS provides better codebooks than the GLA
since the large migration steps taken while the temperature is
high enable the algorithms to find better partitions of the
training sct than the partition originally dictated by the initial
guess. The SCS can be also utilized in conjunction with the
GLA, where it is used as a mechanism to find a good initial
guess for the GLA.

2.4.2

191

2. The on-line Kohonen update formula

In the on-line approach, the training vectors are presented
one at a time, and the codebook is updated upon each presenta-
tion of a training vector. We start from an initial guess for the
codebook and iterate until convergence while cycling through
the training set. Bach full cycle over the training set is called a
sweep. The basic on-line update formula at the #-th iteration is
as follows. A training vector x(n) is presented and the distances
between x(n) to all the codevectors of the current codebook are
evaluated. The codevector closest to x(n) , denoted by y.(n), is
then updated according to

v = yn~1) + am[x() - yn—11] 2.1
where all the remaining codevectors are left unchanged, i.e.,
y(n) = yn—1) for all j#c. The quantity a. is called the
step-size of y.. It was shown [7] that it is best to hold a
counter n, for each of the codevectors y, (i =1,...K, where K is
the number of codevectors) which is incremented after each
update of y,, and to set the step-size for each codevector equal
to a(n) = 1/n(n).
Let us define for every codevector y, (for i=1,...,K)and a
training vector x a selection function S(x) which obtains the
value "1” for i = ¢ and "0” for i # ¢ (where c¢ indicates the index
of the codevector which is closest to x). Then, the update
formula for the whole codebook at the n-th iteration can be
written as

yiln) = yin — 1) + afn) Sx(n) [x(n) — yitn — 1)] (2.2)
for i=1,..,K, and the counter update formula is given by
nin) = nin — 1) + S{x(n)) 2.3)

The procedure can be regarded as a competition between the
codevectors where only the winner is updated towards the
training vector presented to it, and after each update its counter
is incremented (resulting in a reduction of the step-size).

3. The SCS algorithm

The concept of a winner-take-all competition leads to an
unrobust procedure with high sensitivity to the initial guess. For
example, some of the codevectors may never win for the entire
procedure and will represent empty quantization cells in the
final codebook. On the other hand, a codevector that is
attracted to a high density region of the training data tends to
solely represent all the data in this region since, because it is
always the sole winner in this region, it prevents other
codevectors to approach the region. In spite of these limitations,
on-line methods were found to produce equivalent quality to
the GLA method for speech and image VQ applications [6].
[8].

In this section we present an improved on-line scheme which
overcomes some of the major drawbacks of the winner-take-all
method at the expense of some increase in complexity (namely,
a slower convergence). In this scheme, which we call the soft
competition scheme (SCS) we relax the restriction of a sole
winner for each competition and instead attach a winning score
to each of the codevectors. This winning score is the proba-
bility of the codevector to win, based on some probability
model, and hence the competition becomes “soft”. We note that
in the framework of a winner-take-all competition of (2.2). the
selection function S{.) can be regarded as the probability of
the codevector y, to win while this probability is either “1” or
70", This is a very simple model for expressing the winning
probabilities based on proximity measurements. In the SCS
algorithm, we thus replace the binary functions S(x(n)) by a
continuous probability expression, P(r) , which represents the
probability of y, to win upon presentation of x(n) and satisfies

3.1

Hence, at each iteration, all the codevectors are simultaneously
updated, each codevector with its own step-size, according to

vitn) = yn— 1) + am) Py [x() — yitn— 1)] (3.2)
and the counters are modified according to
n{n) = nfn 1) + Pyn) (3.3)

The winning score Pfn) factors the step-size a(n) such that
the larger the probability of y, to win, the larger its step-size is,
and vice-versa. The probability model for proximity is taken as
the local Gibbs distribution, as was suggested by Geman and
Geman for stochastic relaxation algorithms [3] where is was
proven that if the winning codevector is chosen probabilistically
with the Gibbs distribution, the global minimum of the dis-
tortion function can be achieved (provided that the annealing
schedule for reducing the temperature of the distribution is suf-
ficiently slow). Denoting by d(x,y) an appropriate distance
measure between the vectors x and y, the probability score P(n)
is thus given by

Pin) = 1 e‘ﬁn d(x(n), yin—1)) (3.4)
Zn
where the normalization factor Z, is given by
K d 1
Zy =3 o~ Badx(n), yiln—1)) (3.5)
k=1

The quantity f, is the reciprocal of the physical temperature of
the Gibbs distribution at the n-th iteration, and it satisfies

Jim B, = oo, (3.6)
where the specific increment procedure of f, is called the
annealing schedule.

Note that when n-—soo0, the probability factor
P(n) — S(x(n)) and the soft competition becomes the winner-
take-all competition. However, for small values of f (high tem-
perature values) the codevectors migrate in the space and slowly
improve its partition into quantization celis. If the annealing
schedule of (3.6) is slow, the algorithm is not sensitive to the
initial guess of the codebook. The step-size for each codevector
is still_a(n) = 1/n(n), but it should be occasionally reset, oth-
erwise, the convergence might be too slow.

4. Practical Considerations

We now address some of the practical aspects regarding the
implementation of the SCS algorithm. The most critical aspect
is the implementation of the annealing schedule of (3.6). To
better understand the role of the temperature (or its reciprocal
B) let us examine the behavior of the algorithm in the two
extreme values, § —» 0 and f — oo . When § is small, the proba-
bility distribution of (3.4) approaches a uniform distribution,
which means that all the codevectors migrate with about the
same step-size for each training vector that is presented to them.
The high temperature environment is thus a melting stage which
causes the codebook to disconnect itself from the initial guess.
However, spending a long time in high temperatures causes the
codevectors to approach each other and thus a long time will
also be required to separate them again. On the other hand,
when B is high, the probability distribution becomes a delta
function around the winning codevector, in which case only this
winner is updated and the algorithm becomes the

2.4,2

192

GLA

Figure |. Codebook trace for a GLA search.

winner-take-all learning, which is an LMS type learning algo-
rithm. The above observations of these two extreme situations
suggest that the rate of annealing (i.e., the rate of increasing f)
should vary in such a way that it is high for low f values and
moderate for high values of f . Probably the optimal rate
found for the stochastic relaxation algorithms (which was
shown to be logarithmic, i.e., 8, = I'In{n) [3]) is also the best
schedule to use for the SCS. In our experiments we have used
exponential rate which is must faster and obviously not the best
choice to use. In such a fast annealing, one must avoid the
merging of the codevectors by bounding the initial value of f
from below. By examining the use of f in the exponential terms
of (3.4) and (3.5) we define:

M=

o d(x(m), %) @.1)

n

where »n is the number of training vectors, and X is the sample
mean of the training set. The quantity o) is equivalent to the
sample variance when the distortion measure is Eucledian. The
initial value of B, denoted by B, is determined by: §, = CJa’
where C is a constant which is approximately unity. With
exponential annealing schedules we have found 0.1 <C <1 to
supply good results.

In applying practical annealing there are two basic
approaches. The first one is the “continuous” approach in
which f is incremented after each update, namely B, = ",
where n is the iteration index. The second approach is to
modify f occasionally, e.g., at the end of each sweep f, = f,6"
, where m is the sweep index, and f is kept constant within the
sweep. These two approaches correspond to the inhomoge-
neous and homogeneous annealing schedules of Markov chains
in simulated annealing algorithms (see e.g. [10]). In our exper-
iments we have found the “continuous” approach to yield better
results with 1.001 <y < 1.01.

Another consideration should be given to the step-size
update. It is advised to occasionally reset the codevector
counters to some predetermined value 5 in order to accelerate
the convergence. Typically, the time interval between two suc-
cessive resets should increase with time. We have chosen a linear
growth of these intervals by resetting every time the sweep index
equals a perfect square. Typically, | <5 < 10.

Finally, there are several options to terminate the algorithm.
A basic stopping condition checks the relative change of the dis-

2.4,
193

SCS

Figure 2. Codebook trace for an SCS search.

tortion function in the last two sweeps and compares it to some
threshold. Another option is to use two phases: a first phase
which is terminated by a higher threshold, which means fewer
iterations, which is followed by either a GLA or a
winner-take-all phase. That is, a SCS phase is used to find a
good initial codebook for the second, descent phase.

In most of the cases we have examined we found that best
solutions were obtained by concluding the SCS phase with a
few (1-3) GLA iterations. Our experiments included both
Gauss-Markov and speech sources, with vector dimensions
ranging from 2 to 8, and codebook sizes of 64 < K < 256. In all
these test, the SCS approach consistently produced better
codebooks than the GLA (in term of better SNR values) even
when the GLA was allowed to start from several different initial
guesses in each test, such that the total computation time
allotted for both algorithms was equal.

4.1. Example

Let us conclude with a simple example which illustrates some
of the practical considerations discussed above. Consider two
Gauss-Markov sources in the 2-dimensional Eucledian space
given by

0.9xy(n — 1) + wy(n)
0.7x3(n — 1) + wy(n)

xy(n)

o “4.2)

[

where w, and_w, are i.i.d. Gaussian processes with variances
o, =1 and o] = 36 respectively. The training set is composed
of equal number of samples from these processes (Figures 1,2).
In Figure 1 the GLA algorithm was used yielding an SNR of
4.60dB in 5 iterations. The figure illustrates the trace of a
codebook of four codevectors. The initial guess, chosen ran-
domly in the square is marked by triangles. The final codebook
is marked by squares. The crosses indicate the location of the
200 training vectors. In Figure 2 an SCS algorithm was applied
to the same training set, starting from the same initial
codebook. The resultant SNR, obtained after 7 sweeps was
5.33dB. Note that each SCS sweep is equivalent in computation
to a single GLA iteration. The parameters used for this example
were C=0.25 and y = 1.001. Applying a winner-take-all com-
petition to the final codebook of the SCS (which means an infi-
nite value of fB) resulted in an SNR of 541dB and 3 more
sweeps. Applying the GLA to the final codebook of the SCS
(instead of the winner-take-all competition phase) resulted in
the same solution of 5.41dB but with a single GLA iteration
(i.e., total of 8 sweeps to reach this solution).

2

(13

2]
3]

£4]

(5]

References

Y. Linde, A. Buzo, and R.M. Gray, An algorithm for
vector quantizer design, IEEE Trans. on Communications,
Vol. COM-28, 84-95, 1980.

R.M. Gray, Vector quantization, /[EEE ASSP Magazing,
Vol. 1, 4-29, 1984.

S. Geman and D. Geman, Stochastic relaxation, Gibbs
distributions, and the Bayesian restoration of images,
IEEE Trans. on Patt. Anal. and Mach. Intel., Vol.
PAMI-6, 721-741, 1984.

K. Zeger, J. Vaisey, and A. Gersho, Globally optimal
vector quantizer design by stochastic relaxation, /EEE
Trans. on Acoustics, Speech, and Signal Processing, to
appear in 1991.

T. Kohonen, Self organization and associative memory,
Springer-Verlag, Berlin, 1984.

(6]

(7]

(8]

{93

(to]

2:,4,2
194

P.C. Chang and R.M. Gray Gradient algorithms for
designing predictive vector quantizers, JEEE Trans. on
Acoustics, Speech, and Signal Processing, Vol. ASSP-34,
679-690, 1986.

E. Yair, K. Zeger, and A. Gersho, Competitive learning
and soft competition for vector quantizer design, /EEE
Trans. on Acoustics, Speech, and Signal Processing, to
appear in 1991.

N.M. Nasrabadi and Y. Feng, Vector quantization of
images based upon the Kohonen self organization feature
maps, Proc. of the 2nd ICNN Conf., Vol. 1, 101-105,
1988.

S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, Optimiza-
tion by simulated annealing, Science, Vol. 220, 671-680,
1983.

P.J.M. van Laarhoven and E.H.L. Aarts, Simulate
Annealing: Theory and Applications, D. Reidel Publishing
Company, Dordrecht Holland, 1987.

