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Abstract — Viterbi decoding of lattices codes
is optimal, but its computational complexity
grows exponentially as a function of the coding
gain. An alternative algorithm is sequential de-
coding. We demonstrate that sequential decod-
ing is a computationally efficient near-optimal
technique for decoding lattice codes. Further-
more, in contrast to convolutional codes, there
is no possibility of buffer overflow for sequential
decoding.

I. INTRODUCTION

The computational complexity of the Viterbi decod-
ing algorithm is known to increase exponentially as a
fucntion of the coding gain [12]. Sequential decoding
i1s known to have near-optimal performance. The main
result of our paper is to demonstrate that sequential
decoding of lattice codes is computationally efficient
(Propositions 1 and 2).

Exponential growth of the trellis diagrams of lattices
as a function of the coding gain was established in [12].
This result motivates development of efficient sub-
optimal trellis decoding algorithms for lattice codes.
Sequential decoding is perhaps the most well-known
sub-optimal trellis decoding algorithm. Historically, it
has been studied for decoding convolutional codes and
has an older history than maximum likelihood decod-
ing [5]. The success of sequential decoding for convo-
lutional codes, both in theoretical and practical terms,
and the growing applications of lattice codes in com-
munications motivate a similar study for lattice codes.
Such a study is the subject of this work.

This paper is organized as follows. In Section II, we
use an argument of Massey to derive the Fano metric
for sequential decoding of Euclidean codes. We then
introduce lattice tree codes. These codes are easy to
encode and are suitable for sequential decoding pur-
poses. Moreover, they benefit from the structure of
the defining lattice. We derive an appropriate sequen-
tial decoding metric for these codes. Section IIT is de-
voted to analyzing the running time of the sequential
decoding algorithm for lattice tree codes. An analog of
Pareto’s distribution is obtained which upper bounds
the expected running time of the algorithm. In Section
IV, we study the implications of the results of Section
ITI. We demonstrate that the label group complex-
ity plays an important role in the sequential decoding
of lattice codes. Since this is known to grow at most
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linearly in terms of the coding gain, sequential decod-
ing is an attractive alternative to Viterbi decoding of
lattice codes. This is similar to the case of convolu-
tional codes. It is well known that Viterbi decoding
of convolutional codes with large constraint lengths
has large complexity. Nevertheless, sequential decod-
ing has been successfully implemented in practice. In
contrast to the case of convolutional codes, there is no
possibility of buffer overflow with sequential decoding.

We start by reviewing the construction of trellis dia-
grams for lattices [6]. Let T' be a lattice. and assume
that

{(0""10)}:VOQV1g"'gVN:RN

is a nested sequence, or chain, of vector spaces in RV
with dimV; = 1. Let P; : RN V; denote the projec-
tion operator on V;, and let I'; = I'N V. Then I'; is
a lattice and is called the intersection lattice at time
J, and P;(T) is a lattice called the projection lattice at
time j.

The state space at time j =0,1,..., N (with respect
to the chain Vg, V1, ..., Vi) is defined to be the abelian
group X;(T') = P;(T')/T;. For z € T', define

gj(z) = Pi(z)+T; € X;(T)
and o(z) = (og(z),...,on(z)). We say that z passes
through o(z).

For every j = 1,2,..., N, let W; be the orthogo-
nal complement of V;_; in V; and let Py, : I' — W;
denote the projection operator on W;. Then, for
Jj = 1,2,..., N, the label group G;(T') at time j is
defined to be Py, (T')/(T N W;41). For z € T, let

li(2)

and let I(z) = (I1(2),...,In(2)). The trellis diagram
T, of T', with respect to the chain V4, Vq,..., Vy, is
defined to be a directed graph whose vertices are par-
titioned into a collection of sets called levels. The ver-
tices of level j are the elements of X;(T'). Edges from
vertices of level j to those of level j + 1 are labeled
by the elements of the label group G;(T'). Each z € T
defines an associated path in the trellis diagram, corre-
sponding to the state sequence o (z) and the label se-
quence I(z). In other words, there is an edge between
a state o1 € X;(T) and a state o9 € £;41(T) if and
only if there exists € T such that o;(z) = o1 and
oj+1(z) = o5. The graph of T without the edge labels
is referred to as the defining graph of T .

Py, (z) +(TNWj) € Gja(T)



A lattice T has a finite trellisif there exists a trellis di-
agram for ', with respect to some chain Vg, V1, ..., VN,
having a finite number of edges. Let £ denote the
collection of all lattices I' with finite trellises. If
I' € £ then the elements of the label group at time
J are translates of a one-dimensional lattice v;7Z. The
vectors wvg,v1,...,vn_1 € I defined in this way are
orthogonal, that is v; - v; = 0 for ¢ # j. Con-
versely, as shown in [12], if there exist non-zero vectors
Vo, V1,...,vn-1 € I such that v; - v; = 0 whenever
i # j, then T' € £. In the present work, the collection
L is of special interest. As any rational lattice 1s in
L (cf. [12]), our attention is further restricted to the
family of rational lattices.

I1. THE FANO METRIC

In 1963, Fano heuristically postulated a metric for the
purpose of sequential decoding of convolutional codes
[2]. Massey proved that this metric is in fact the cor-
rect criterion for this purpose [11]. We exploit the ba-
sic argument of [11] to derive the optimum metric for
sequential decoding of lattice codes.

Definition: A variable length Fuclidean code C is
a finite subset of U™ ,IR! for some positive integer n.
Each element of C is called a codeword and the vector
dimension of a codeword is called its length.

Let {x1,x2,...,%xar} be a variable length Euclidean
code whose codewords are respectively of lengths
{n1,n9, - ,ny}, and where z,; denotes the i-th
coordinate of x,,, starting at «+ = 0. Let N be
any positive integer larger than max,, (nm,). To each

message Xm = [Tm 0&m2 " Tmn, —1] having prob-
ability P, a random tad t, = [tmn,, - tmN-1]
is appended, where t,; € S;. The result-
ing word is denoted z = [z021, - 2zNn—1] =
[Zm,0Zm1 - Zmn,—1tmn., - tm n—1] and is sent over

the channel. Tt is assumed that x,, and the %,,; are
mutually independent random variables, for n,, < j <
N — 1, and we denote the probability mass function of
tm,j by p;(-).

We assume throughout this paper that the compo-
nents of the channel noise are i1.i.d. Gaussian ran-
dom variables with variance ¢ and joint density func-
tion f(y | z) = H?;Bl fyi | z), and we let y =
(Yo,91,y2, - ,yn—1) € RY denote the word received
from the channel. By independence, Pr(ty,, | xm) =
Pr(ty) = Hi\f:_nlm Pk (tm k), and the joint probability
density of appending a tail t,, to a codeword x,, and
receiving y is
f(xm,t

P Pr(tm)f(y | xmtm)

Py, 1:[ pk(tk)

kE=nn,

N-1
T Fwi ).

1=7N

my) =

Nm—1

II 7 l2my)
7=0

Summing over all random tails gives

Noym—1 N-1
f(xm,y) = Pn H Flye | 2mk) - H Ji(wi),
k=0 1=7
where

)= > flus | w)ps(w).

wESk

For a given received word y, the maximum a posteri-
ori decoding rule is to choose an x,, which maximizes
Pr(xm|y). Equivalently, one can maximize

Fxm )/ TT i)

since the denominator is independent of x,,. Taking
logarithms, the final statistic to be maximized by the
optimum decoder is

nm—l
L(xm,y) [log<

We refer to L(Xm,y) as the Fano metric for sequential
decoding of Euclidean codes, and we apply it to the
sequential decoding of lattice codes.

Definition: For a given finite tree whose edges are
labeled with real numbers, a tree code T is a set of
codewords of the form x,, = zpz1-- 25,1 € R?™, a
concatenated sequence of labels of a path of the tree
starting from the root and ending in a leaf node of the
tree.

A sequential decoder is one that computes a subset of
all the paths in a trellis diagram in a sequential man-
ner. At each stage, each new path is an extension of a
path previously examined in the previous stage. The
decision as to which path is extended at each stage is
based only on already examined paths in the previous
stages.

It is well known that the performance of a sequential
decoder at high rates is essentially identical to that
of maximum likelihood decoding. This was proven for
convolutional codes by Forney and can be easily gener-
alized to lattice codes. Simulation results also indicate
that this is indeed the case when sequential decoding
is applied to the trellis diagram of lattices.

One can view sequential decoding as a method for
obtaining a good estimate of the path followed by the
encoder of a tree code. The set of vertices at depth ¢
from the root of the tree is referred to as level 7 and is
denoted by lev(i). The set B(i) of edges going between
elements of lev(i) and lev(i + 1) is called the branch
space at time i. Let r; denote the outdegree of each
vertex of level 7 and assume that no two paths in the
tree correspond to the same codeword.

Suppose that {xi,x3,...,xp} denotes the set of
paths that have been explored up to the present by
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a sequential decoder. It is assumed that the decoder
knows nothing about the labels in the unexplored part
of the encoding tree except that they are selected inde-
pendently according to the corresponding distributions
pi(). However, by performing one computation, it
can obtain the knowledge of the labels of the branches
stemming from the terminal nodes on any already ex-
plored path. A sequential decoding algorithm can be
thought of as a rule for deciding which of these paths
to extend [11].

The decoding problem is to decide which of the ex-
plored paths is the initial portion of the path followed
by the encoder. This is precisely the variable length
decoding problem considered in [11].

Definition: Consider a tree with levels 0,1, -+, N,
such that each vertex of lev() points to r; vertices in
lev(i + 1). Let B(i) be the set of edges from lev(i) to
lev(i + 1), and suppose each edge e € B(i) is labeled
with a set label(e) of ¢; real numbers. A generalized
tree code GTC associated with the tree is the union
of all sets {ag---an—1 : a; € label(e;) Vi} of length-
N codewords, taken over all paths eq---ey_1 in the
tree. It is required that each codeword ag---an_1
uniquely determines a path ege; ---eny_1 satisfying
a; € label(e;).

Clearly GTC has rgqor1q1 - - -"n_19N_1 codewords.
A GTC can be represented by a tree code T with levels
0,1,2,---, N such that each vertex of level i points to
r;q; vertices in level i+ 1 for all .. We refer to T as the
equivalent tree code.

We assume that the codewords of any code considered
here are equally likely, so that

1

Tnpm—19n,—1

P, =
ToqoT141 -

Applying the optimal decision statistic (1) to the
equivalent tree code T gives

yz|xmz))

ﬂ %

Nm—1
| "m
- Z (log 7 + log qk)]

m k=0

L(xm,y) = nm_l [log<

nm—l
= [log < )) log r; — log fh’]
ﬁ %

for sequential decoding of T" and hence for GTC. To
each branch having label z,, ; in level 7 of the tree code
GTC, we associate the branch metric

fi | 2m,i)

— logr; — logq;.
fi(wi)

log

Let ¢ be a positive odd integer and let b + vZ denote
the translate of a one dimensional lattice vZ by a vector

b = cv where v,b € R” and ¢ € (—=1/2,1/2]. A ¢-
interval based on b + vZ is defined as

-1
q' v Jb—v, b b+u, -

I(q,b4+v7Z) =

2
Let T be a rational lattice of dimension N and let T
be a finite trellis diagram of I'. Then the label of any
edge e; € B(i) in the trellis T is a translate of a one-
dimensional lattice v;7Z, and v; - v; = 0 whenever 0 <
i #3j < N—1][5 [12]. Without loss generality, it
is assumed that v; points in the direction of the i-th
standard coordinate vector.

Definition: A lattice tree code LTC based on T
and 7T is a generalized tree code obtained by re-
placing each element b + v;Z of the label group at
time i with a g;-interval I(q;,b + v;Z) in T for all
i. The reduced trellis diagram RT of LTC, given
¥y = (Yo,v1, - ,yn—1) € RY is the directed graph ob-
tained by replacing label(e;) by the element of label(e;)
closest to y;. This is done for all ¢ and for all e; € B(i).

ITI. RunNING TIME

Definition: The running time of a sequential decod-
ing algorithm for a lattice tree code LTC is the expected
number of decoding operations performed upon receiv-
ing the vector y € R™. Let LTC denote a lattice tree
code based on a trellis diagram 7 of an N-dimensional
lattice T'. For i = 0,1,... ,N=1, let p;(-) = 1/|5]
denote the probability mass function of a uniform ran-
dom variable X; taking values in the set S;. Let RAND
denote the ensemble of random codes generated by as-
signing ¢; independent outcomes of X; to branches be-
tween levels ¢ and i + 1 of the defining graph of 7.
Elements of RAND are referred to as random trellises
or random codes.

It is presently unknown how to compute the running
time of the sequential decoding algorithm for LTC. In-
stead, we investigate the average running time of the
algorithm taken over all the members of RAND.

Assume that y € RY is received, and a random code
C € RAND is given. Let z be the closest element of
C to y. The path P associated with z € C is referred
to as the correct path. The time-j incorrect subset I;
is the set of those paths of C originating from the j-th
vertex of the correct path P that are not tails of P;.
The number of time-j incorrect computations Cj; is the
number of paths in the time-j incorrect subset that are
expanded by the sequential decoder.

The quantity Cjy is of particular interest and the fol-
lowing theorem sheds light on the average of Cy over
the ensemble RAND and over the set of all possible
received words y.

Proposition 1 For every p € (0,2], there exists § >
0, such that for all M € N

Pr{Co> M} < OM~". (1)



IV. LATTICE DECODING

In this section, we study the application of previous
results to decoding lattice codes and designing signal
constellations. Let ' € £ be an N-dimensional lattice
with a finite trellis diagram 7. Let d(T') denote the
minimum distance of ' and let LTC be a lattice tree
code based on I' and 7. We use the notations of the
previous sections. In particular ¢ denotes the noise
variance per dimension.

Any computation of real numbers performed by a ma-
chine has some degree of limited precision accuracy.
We define the decoder’s finite precision error as the er-
ror that the decoder allows when computing a branch
metric while performing the sequential decoding algo-
rithm.

Proposition 2 Suppose that the decoder’s finite pre-
cision error is at most € > 0. Then for fired d(T') /o the
branch metrics at time i can be computed with K - |G|
operations and with an error of at most 2¢, where K
15 an appropriate constant.

Clearly the above result leads to a significant decrease
of the complexity of the sequential decoding algorithm.

Let G; denote the label group at time i for 7. Sup-
pose that that d(T')/c and the decoder’s computation
accuracy € > 0 are fixed. Let K be as in Propo-
sition 2, then at most K Zj»v:l |G;| operations must
be performed for computing the branch metrics of all
branches of 7. The sum Zjvzl |G| thus plays an im-
portant role in determining whether LTC is attractive
for sequential decoding purposes. In [12] G(T') was
defined to be the minimum of the sums 4 E?;l |G|
taken over all possible trellis diagrams of I'. Moreover,
using tensor products and Kitaoka’s theorem, families
of lattices {I';,i = 1,2, -} such that G(T;), grows lin-
early as a function of the coding gain of I'; were con-
structed. Later Forney [7] observed that the Barnes-
Wall family can be constructed from the same con-
struction. Thus it seems that the Barnes-Wall family
and trellises constructed from tensor products are at-
tractive for sequential decoding purposes. The higher
dimensional members of this family however, are not
attractive for trellis-based maximum likelithood decod-
ing purposes as their asymptotic coding gain grows
without bound [12]. This is similar to the case of con-
volutional codes and TCM schemes. Trellises having
too many states are not attractive for Viterbi decod-
ing but have been successfully implemented in practice
using sequential decoding.

One difference between sequential decoding of lattices
and that of convolutional codes is that there is no pos-
sibility of buffer overflow in the former case. This
is due to the finiteness of the trellis in this case and
could make lattice tree codes attractive for some ap-
plications.
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