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Abstract

Numerous sophisticated technigues have been developed over the last several
decades to efficiently transmit images across noisy channels. Here, we cascade
an existing image coder with carefully chosen error control coding, and thus
produce a progressive image compression scheme whose performance on a noisy
channel is significantly better than that of previously known image compression
techniques. The main idea is to trade off the available transmission rate between
source coding and channel coding in an efficient manner. This coding system is
easy to implement and has acceptably low complexity. Furthermore, effectively
no degradation due to channel noise can be detected; instead, the penalty paid
due to channel noise is a reduction in source coding resolution. As an example,
for the 512x512 Lena image, at an overall transmission rate of 1 bit per pixel,
and for binary symmetric channels with bit error probabilities 1073, 1072, and
10—, the proposed system typically outperforms other existing systems by at
least 2.6 dB, 2.8 dB, and 8.9 dB, respectively.

1 Introduction

Image compression has been extensively studied for the past several decades for both
noiseless and noisy channels. However, considerably more progress has been achieved
for the noiseless channel case.

One of the most successful and practical image coders today for the noiseless
channel was originally developed by Shapiro [1] and later refined by Said and Pearlman
[2]. Their image coding technique first takes a wavelet transform of the input image
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and then codes the pixels in the wavelet domain in a clever manner using the tree-
structured dependencies that result between the pixels in different subbands. In this
manner a “progressive” mode of transmission is achieved, namely that as more bits
are transmitted, better quality reconstructed images can be produced at the receiver.
The receiver need not wait for all of the bits to arrive before decoding the image; in
fact, the decoder can use each additional received bit to improve somewhat upon the
previously reconstructed image.

These wavelet-based encoders have been shown to perform better than almost
any other existing compression scheme. In addition, they have the nice features of
being progressive and computationally simple. However, to obtain the high quality
compression that they achieve, variable-length coding is used with significant amounts
of “state” built into the coder. The result is that channel errors can cause a non-
recoverable loss of synchronization between the encoder and decoder. Total collapse
of the reconstructed image often results from loss of synchronization. In fact, a
vast majority of images transmitted using this progressive wavelet algorithm will
frequently collapse if even a single transmitted information bit is incorrectly decoded
at the receiver.

As an example, consider transmitting a 512x512 image encoded at 1 bit per pixel
across a binary symmetric channel with a bit error probability of 10~%. On average
any such image would have about 25 bit errors, nearly guaranteeing that every such
transmitted image cannot be reconstructed due to synchronization loss. Even at a bit
error probability of 1075, an average of 2.5 bit errors per image would occur, again
assuring that a very large majority of the transmitted images could not be received
reliably. In fact, many useful digital channels have bit error probabilities in the range
1072 to 1071,

One approach to circumventing loss of synchronization on noisy channels is to
use fixed rate image compression techniques, and those not based upon finite state
algorithms (see for example [3, 4, 5, 6, 7, 8]). However, some of these techniques have
the disadvantages of not being progressive, not performing as well for good quality
channels, or having extremely high computational complexity. Other techniques de-
signed for protecting transmission of medical images across noisy channels include
[9] In [8], some analytic justification is given for a joint source-channel coding design
method. Two of the most competitive techniques for protecting images from channel
noise are found in [10] and [11, 12].

Another approach to protecting image coders from channel noise is to divide the
transmitted bit stream into two classes, the “important” bits and the “unimportant”
bits, based upon the effects of channel errors on these bits. The important bits can
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then be sent as header information using good error control codes and the remaining
bits can be sent with weaker channel codes. This type of technique was used in
13, 14].

A more traditional approach to protecting source coder information from the
effects of a noisy channel is to cascade the source coder with a channel coder. This
method can improve the overall quality of the system if the channel code rate is wisely
chosen. Otherwise, some portion of the transmission rate is either under-utilized, in
which case the source coding quality diminishes, or else too much of the transmission
rate is devoted to source coding, in which case too many undetected channel errors
are decoded. In each of these cases the resulting image quality suffers. Analytical
results have recently been obtained in [15] as guidance in choosing the optimal tradeoff
between source coding and channel coding. In fact, these results roughly follow those
that we use in the present system.

In this paper we present a low-complexity technique that preserves the encoding
power of the progressive wavelet schemes of Shapiro-Said-Pearlman, preserves the
progressive transmission property, and is simple to implement in practice. We focus
on very noisy channels, such as binary symmetric channels with bit error probabilities
between 10~ and 1072, typical of many wireless communication applications.

One nice feature of the proposed coding system is that its performance for a given
image remains constant with probability near one over all possible received channel
error patterns. Effectively no degradation due to channel noise can be detected. In
fact, the effect of channel noise is to force the transmitter to encode the image at a
lower source coding resolution and devote more bits to channel coding. Thus, on very
noisy channels, the reconstructed image quality will be that of the noiseless channel
encoder, but at a lower source coding rate.

The system does not have to be designed for any particular transmission rate,
and in fact works quite well over a broad range of transmission rates. At very low
transmission rates, such as around 0.2 bits/pixel, and on very poor channels such
as those with bit error rates of 107!, transmitted images with this system are “just
recognizable,” whereas other coding systems would generally produce an unrecog-
nizable decoded image. At these lower transmission rates, one use of the proposed
system is to allow the user to obtain early recognition of an image under severe chan-
nel conditions, so that he/she can make many fast decisions to stop viewing certain
images. This feature is useful in communication systems with multiple sensors and
slow transmission rates.
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2 System Description

One powerful method of error control coding is to use a concatenated code consisting
of a Reed-Solomon outer code followed by a convolutional inner code (e.g. [16]).
This approach, for example, was used in [13] for transmitting JPEG images across
noisy channels. It was also used in [5, 6] for transmission across a Gaussian channel,
although the implementation complexity appears extremely large in this case. The
results in [5, 6] are also difficult to compare since it is not clear whether soft-decision
decoding was used and some overhead bits seem to have been neglected in the overall
bit rate computation. We adopt a related concatenated coding scheme with somewhat
more flexibility and lower complexity to protect the output of the Said-Pearlman
coder.

The main idea is to partition the output bit stream from the Said-Pearlman image
coder into consecutive blocks of length N (typically we use N = 200 although its value
is completely flexible). Then a collection of ¢ checksum bits are derived based only
on these N bits (we use ¢ = 16). Finally m zero bits, where m is the memory size
of the convolutional coder, are added to the end to flush the memory and terminate
the decoding trellis at the zero state. The resulting block of N + ¢ + m bits is then
passed through a rate r rate-compatible punctured convolutional (RCPC) coder [17].

The fact that the outer code is a cyclic redundancy code (CRC) used for error
detection has the advantages of extremely low computational complexity and great
flexibility in selecting block lengths (block lengths are unconstrained, in contrast to
Reed-Solomon block lengths). The resulting bit stream is transmitted across a binary
symmetric channel with bit error probability € and then is decoded.

The decoder consists of a Viterbi decoder with the added feature that the “best
path” chosen is the path with the lowest path metric that also satisfies the checksum
equations. This additional constraint eliminates certain paths from consideration.
In fact, whenever an undetected error would occur in the ordinary Viterbi decoder
without the checksum bits, the correct path through the trellis is usually the one with
the second lowest path metric. When the check bits indicate an error in the block,
the decoder usually fixes it by finding the path with the next lowest metric. Systems
of this type were analyzed in [18].

3 Algorithm Complexity

The complexity of the proposed channel decoder is quite reasonable, usually requir-
ing little computation beyond that of the usual Viterbi decoding algorithm for the
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convolutional code. In addition, since punctured convolutional codes are used in this
system, the trellis decoding is simplified because the trellis is that of a 1/N rate code
for all the punctured rates. For a code of rate K/N this translates into a computation
savings by a factor of 2X~1/K per decoded bit.

In order to easily search for other likely trellis paths if necessary, some additional
storage is required over the normal Viterbi algorithm. Usually only the survivor
path and its metric must be stored for each state at the current trellis stage, as the
decoding algorithm progresses. In this case, we store all paths and their metrics for
each state and each trellis stage. The storage requirement amounts to 2 paths and
metrics at each state and each stage of the trellis because the codes are punctured
rate 1/N codes. For the packets of length 200 bits and a convolutional code with
memory 6, the resulting memory requirement is about 40 Kbytes which is reasonable
for an image application.

Each candidate trellis path is checked by computing a 16 bit CRC. The CRC
polynomial was selected from those listed in [19] and [20] based on the number of
information bits in a packet. For example, with 200 information bits in a packet the
selected CRC polynomial was X6 4 X144 X12 1 X1 o+ X8 1 X5 4 X4+ X2 +1.
Computing the check bits is very simple, only requiring bit shift and xor operations,
and table lookups can be used to trade off some of the computation with space
requirements. For a 200 bit path, the byte based algorithm requires about 50 xors, 25
byte shifts, and 25 lookup operations. Typically the CRC only needs to be computed
for the first candidate, but in the 0.3 —3.0% (which means at most about 3-4 packets
of a rate 1.0 bpp image) of cases that require further paths to be checked, the correct
path is among the top 10 candidates 98+% of the time. Figure 1 shows a typical
distribution of path search depths given that the output of the Viterbi algorithm did
not satisfy the CRC check.

The search for alternate candidate paths is accomplished using a tree-trellis search
algorithm. The same algorithm is used in speech recognition with hidden Markov
models [21]. First, the maximum number of candidates, M, that will be decoded is
selected since this determines storage requirements of a stack which will contain the
M most likely paths as the search runs. The depth of the stack is selected to provide
a good compromise among decoding time, probability of locating the correct path,
and the probability of undetected errors due to an incorrect candidate path satisfying
the CRC checks. In general, after determining the n*® best path, the next best path
is determined by searching backwards in the trellis along the n** best path starting
from the trellis stage where it first branches from a higher ranking path. The search
amounts to comparing the metric of a new path, whose initial segment consists of
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the path eliminated at that stage in the Viterbi algorithm and merges with the path
in question thereafter, to the metrics stored on the stack. Since the metric and path
values are stored as the Viterbi algorithm runs, the amount of computation is small.
If the metric is low enough, the path is placed on the stack at the appropriate location
according to the metric value. After searching to the beginning of the n** path, the
(n+1)* will be stored at position n+1 on the stack. Also, we note that the search is
terminated as soon as a path satisfies the CRC checks, so usually very few candidate
paths need to be determined as indicated by the distribution in Figure 1.
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depths given that the Viterbi decoder of incomplete decoding and image qual-

output fails the CRC check. ity given complete decoding, for convolu-
tional code rates from 1/4 to 1/3.

4 Experimental Results

The system was tested on two 512x512 images, the standard “Lena” and “Goldhill”
images from the USC database. These particular test images were chosen to allow
for some comparison with existing techniques. Each image was coded at bit error
probabilities of € = 1071, € = 1072, and ¢ = 1073, and at transmission rates ranging
from 0 bpp up to 1 bpp, in increments of 0.05 bpp. All the RCPC codes used in
testing were selected from tables in [17] or based on convolutional codes listed in
[16]. In particular, a rate 2/7 memory 6 (punctured rate 1/4) code was used on the
€ = 107! channel, a rate 2/3 memory 6 (punctured rate 1/3) code was used on the
€ = 1072 channel, and a rate 8/9 memory 6 (punctured rate 1/3) code was used on
the € = 10~2 channel. This scheme retains the progressive nature of the underlying
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source coder allowing almost a continuum of transmission rates. Each increment in
the transmission rate can be as small as about 0.001 bpp which corresponds to the
packet size we selected containing 200 source bits. Many of the previously reported
image coding systems for noisy channels are not progressive.

For each image and each bit error probability, many thousands of independent
trials were simulated on a computer for the various transmission rates which trans-
lates into millions of packets. In these tests, the path search depth was limited to
100 candidate paths, and if none of these 100 paths satisfied the CRC check, then
decoding for that image was stopped at that packet giving incomplete decoding. The
effect of incomplete decoding is often acceptable since the output is simply the image
decoded at a lower source rate. Figure 2 shows the tradeoff between typical image
PSNR and probability of incomplete image decoding for inner RCPC code rates of
{1/4,8/31,4/15,8/29,2/7,8/27,4/13,8/25,1/3}. These results are for the Lena im-
age coded at total (i.e. source plus channel coding) rates 1.0, 0.5, and 0.25 bpp using
a channel with BER = 10, For our purposes, the inner RCPC codes were selected
so that the probability of incomplete image decoding was below 0.01 for the highest
transmission rate of interest (1.0 bpp) for each channel BER. The highest incidence
rate of incomplete image decoding in our tests was actually around 0.005. Higher
acceptable incidence rates for incomplete decoding would allow higher typical PSNR,
values while more stringent incidence rates would lower typical PSNR values.

The curves in Figures 3-8 show the resulting PSNR, of the cascaded source coding
and channel coding system as a function of the overall transmission rate across the
channel. Figures 3, 5, and 7 are for Lena, and Figures 4, 6, and 8 are for Goldhill.
Each figure is for a fixed bit error probability € on a binary symmetric channel. The
other points in the plots represent the performances of the best known image codes
for noisy channels, prior to the proposed system. These include those of Tanabe and
Farvardin [10], Chen and Fischer [11], as well as those in [8, 22, 23]. Numerous other
results exist in the literature, but all of them appear to be inferior to the results
reported in [10, 11], or else do not provide results for the test images we considered.

It can be seen from the Lena graphs at a transmission rate of 1 bpp, that our
proposed system improves the performance over the other reported SNRs by at least
2.6 dB, 2.8 dB, and 8.9 dB, for bit error probabilities of 10~%, 1072, and 10~!, respec-
tively. At a transmission rate of 0.5 bpp, the gains for these three channels are 2.3
dB, 2.6 dB, and 6.4 dB, respectively. At a transmission rate of 0.25 bpp, the gains
for these three channels are 2.2 dB, 1.9 dB, and 4.4 dB, respectively. For the Goldhill
image at 1 bpp, the gains for these three channels are 2.2 dB, 2.3 dB, and 5.7 dB,
respectively. At a transmission rate of 0.5 bpp, the gains for these three channels are
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1.4 dB, 1.4 dB, and 4.1 dB, respectively. At a transmission rate of 0.25 bpp, the gains
for these three channels are 1.3 dB, 1.1 dB, and 3.0 dB, respectively.

5
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