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Abstract

A novel approach to quantizing discrete-time memoryless sources
is presented. The method involves changing the amplitude distribu-
tion of the source to be approximately Gaussian by all-pass filtering,
so that the source can be quantized (using a Lloyd-Max quantizer)
more effectively than had it not been filtered. The filtered quantized
source is passed through an inverse all-pass filter, so that the overall
resulting quantization error is less than would be obtained by direct
Lloyd-Max quantization of the source. An important feature is that
the resulting performance is largely insensitive to errors in model-
ing the input PDF. The coet of this approach is some delay due to
filtering.

1. Introduction

Much has been written about quantization of memoryless sources,
in particular, Laplacian and gamma sources {1-4]. The subject is
important because these sources are often used as models in image
and speech coding [5][6]. An irony associated with the quantization
of Laplacian and gamma sources is made evident by the graphs in
Figure 1. Although the rate-distortion functions* of these sources
are quite promising relative to, say, that of a Gaussian source, sim-
ple quantization** does not fulfill that promise. In fact, it can be
seen that for any given rate, the Lloyd-Max quantizer achieves iower
mean-square error for Gaussian sources than for Laplacian or gamma
sources. This observation leads to quantization scheme described in
this paper.
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Figure 1: P:rlomunce (mn-:qum error versus rate) of Lloyd-
Max i of L & and G
tive to the respective rued.utoruon functions. Samples of the Tate
distortion fi for Lapl. and sources were computed

by means of the Blahut algorithm {10]. Quantizer performance fig-
ures are taken from (5, p. 135].

The present suggestion is to use simple quantization, but to
filter the source before and after quantizing. If the filters are ap-

* For a given source, the rate-distortion function specifies the best possible
performance attainable by any coding method {7, Chapter 9}.

** Throughout, the term simple guantizetion refers to fixed-rate minimum-

Mean-sqUAre-eITor 2¢7o-MEIMOTY quantization, or Lloyd-Max quantization [8}[9].
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propriately designed (see Section 5), then the filtered input signal
will have an approximately Gaussian distribution, and the resulting
quantization error of the overall system will approximate that for
direct quantization of a Gaussian source. Moreover, since the initial
filtering will tend to make any memoryless source appear Gaussian,
the performance of the system is insensitive to errors in modeling
the input. This robustness to the source statistics is a valuable fea-
ture, not normally present in quantization systems. Throughout this
paper, it is assumed that the source is stationary and memoryless.
For simplicity of notation, it is further assumed that the source has
zero-mean and unit-variance.

2. Prior work

Many sophisticated alternatives to simple quantization have been
suggested for memoryless sources. These alternatives include vector
quantization [4], entropy-coded (variable-rate) quantization [2], and
trellis coding [3][11]. While these techniques generally achieve better
signal-to-noise ratios than the proposed scheme, they are also more
complex, and do not offer the same degree of robustness.

The method of quantization proposed here appears to be novel,
despite its stark simplicity. The only similar propoeal of which the
author is aware is one by Strube (12]. In that scheme, an all-
pass filter is used in a speech ADPCM system to disperse pitch
pulses over time, so that quantizer overload-distortion is reduced.
Strube’s scheme does mof make use of an inverse filter, however,
s0 that it does not result in a signal that approximates the orig-
inal. The use of an all-pass prefilter and inverse postfilter to re-
versibly change the PDF of a signal has been suggested by Zenith
[13], in the context of transmission of high-definition television sig-
nals. However, their suggestion has nothing to do with quantization.
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Figure 2: Quantization system employing a prefilter and a postfilter.

3. Preservation of quantization error

In this section it is shown that the mean-square error between input
and output of the proposed system is nearly equal to that incurred
by quantizing the signal after prefiltering.

Let H(z) and G(z) denote the z-transforms of the prefilter and
postfilter, respectively, as shown in Figure 2, and let An] and g[n]
denote the corresponding impulse responses. Let r[n] = z{n - D] -
y[n] denote the error of the overall system, where D is the delay due
to filtering, and let ¢[n] denote the error incurred by quantizing the




prefiltered signal ufn] into v[n]. In the following analysis, it is not
assumed that e[n] is independent of u[n].

By linearity of the post-fiiter,

yin] = gln] « (u[n] ~ ¢[n))
= g[n] » u[n] — g[n] * ¢[n]
= g[n] * h{n] » 2[n] — g[n] » ¢[n}, 1)

where * indicates convolution. By hypothesis, H(z) and G(z) are
approximate inverses of one ancther within a delay of D, so that (1)
becomnes

vln} = z[n ~ D] - g[n] + ¢[n],

s0 that the error r{n] for the overall system can be approximated as

r[n] = g[n] ¢ ¢[n}]. (2)

By assumption, z[n)] is stationary, so that e[n] and r{n], which are
derived as time-invariant (but nonlinear) functions of z[n], are like-
wise stationary (14, p. 238]. Let the power spectra of ¢[n] and r[n]
be denoted S (w) and S, (w), respectively, where w is radian fre-
quency. In terms of these power spectra, (2) can be rewritten [14,
p. 292] )

Ser(w) ® |G(Y)? See(w); -7 <w< (3)

Now it is assumed that both prefilter and postfilter are approxi-
mately all-pass, meaning that their magnitude-frequency responses
are neatly flat over the full spectrum. Consistent with this, it can be
assumed without loss of generality that |G(e/)| = 1for -x Sw < =
(whatever scaling factor is needed to make this true can be canceled
by an appropriate gain in the prefilter). Thus, (3) reduces to

Srr(w) & S“(U), 4)

Which implies that the mean-square value of r[n] is nearly equal to
that of e[n]. That is, the system’s mean-square error is nearly equal
to that incurred by quantizing the intermediate (prefiltered) signal
uln).

4. Statistical characterization of the intermediate signal

Since each sample in u[n] is the (weighted) sum of independent
random variables, its probability density function is approximately
Gaussian, provided that the sum includes a sufficient number of
variables, each with nonnegligible but not disproportionately large
weight (by Liapounov’s central limit theorem [15, p.200}). These con-
ditions will be satisfied when the impulse response of the prefilter,
h{n], has significantly nonzero values distributed over a sufficiently
long interval. In this paper, a filter with this property will be called
time-dispersive.

The most convenient measure of the extent to which the PDF
of the source is modified is the observed performance of simple quan-
tization of the intermediate signal under the assumption of Gaussian
distribution. It bas been found experimentally that for a Laplacian
source, FIR time-dispersive prefilters and postfilters of length 30 are
sufficiently long to yield a signal-to-quantization-error ratio within
0.2 dB of the best possible (that for a Gaussian source) at rates up
to 5 bits per sample. In the case of a gamma soutce, a length of 120
is required for the same level of performance. However, even when
much shorter filters are used, a significant improvement over direct
quantization results (see Section 6). Design of appropriate prefilters
and postfilters of a given length is discussed in Section 5.

Another way to gauge the extent to which the PDF of the input
is modified is to examine histograms. Figure 3 shows histograms
based on 10,000 samples from simulated sources, before and after
prefiltering.

A legitimate objection to the foregoing analysis is that in many
applications, the assumption of independence of successive source
samples is unjustified, so that prefiltering may not make the PDF
approximately Gaussian. In fact, it is easy to construct a source
for which prefiltering makes the distribution appear less Gaussian
— for example, simply filter a gamma source by G(z), and use the
result as z[nr]. In all such cases, the previous analysis can be made
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to apply if the source samples are rearranged or scrambled in a pseu-
dorandom manner prior to prefiltering, and subsequently restored
to their original ordering after postfiltering. Note that scrambling
and inverse scrambling are linear and energy-preserving operations,
20 that the analysis of Section 3 applies, and quantization error is
preserved. However, scrambling and inverse scrambling necessarily
introduce considerable delay, and therefore may not be appropriate
in some applications.
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Figure 3: Histograms of original and filtered sources, based on
10,000 pseudorandom samples. A 31-tap filter was used in the
Laplacian case, while a 60-tap filter was used in the gamma case.
For reference, an appropriately scaled version of the Gaussian PDF
is also shown (dotted curve).

5. Design of time-dispersive prefilters and postfilters

It is desired that the prefilter and postfilter be approximate inverses

of one another, that their impulse responses have envelopes that
extend sufficiently over time, and that their magnitude-frequency
tesponses be approximately flat. One approach to obtaining such
filters is to begin with “initial guess” filters that have roughly the
right properties, then refine these by numerical optimization. In
particular, the following procedure has proven to be successful.

Begin with a windowed “chirp” signal (swept sinusoid) as an
initial guess for the impulse response of the prefilter, and use the
same chirp, but time-reversed, as the initial guess for the impulse
response of the post-filter. To simplify notation in the present sec-
tion, the postfilter is not required to be causal, and the delay D of
the cascade is taken to be zero. Each of the two initial guess filters
has the desired property that the energy in its impulse response is
distributed over the entire region of support; that is, the filters are
time-dispersive. In order to ensure that the remaining requirements
are met — that the prefilter and postfilter be approximate inverses
of each other, and that each have an approximately flat magnitude-
frequency response — a numerical procedure is used to modify the
initial guess filters to minimize the total square difference between
the convolution of h[n]sg[n] and the unit-sample sequence §{n]. That
is, a local minimum is sought of the objective function

o0 o0 2
E= ¥ [T h[kk{n-k]-éln)] ®)

nz=-00 *k=~00

over the joint space of prefilter and postfilter coefficients {h{n), g[n]},
beginning the search at the specified initial guess.

Observe that the initial guess filters, being time-reversed ver-
sions of each another, have identical magnitude-frequency responses.
By maintaining this relationship throughout the optimization, so
that the optimized filters also end up as time-reversed versions of
each other, the magnitude-frequency response of each optimized fil-
ter can be made to be approximately flat. This follows because the
magnitude-frequency response of the cascade — which is the prod-
uct of the individual responses — must be flat if the two filters are
to be inverses of each another. The time-reversed relationship can
either be maintained explicitly by adding a simple constraint (i.e.,
optimizing over only one of the filters and fixing the other according




to the time-teversed relationship), or else the symmetry of the ob-
jective function can be relied upon to maintain the relationship from
the initial guess. The latter approach was found to work consistently
in the present investigation.

It is natural to question the existence of local minima, con-
vergence issues, and 80 on; however, such a formal treatment of the
optimization problem is avoided here, on the grounds that in prac-
tice, a local minimum seems to be obtainable quickly and consistently
using any of a variety of well-known optimization procedures.
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Figure 4: Prefilter and postfilter ch

(see Section 5).
o -

Ny, gf-al - 20 30g 14e ™ ) 20 30g 1G(e ™ Hi
oaf st 4
o3 ar 1

s 4
© L]
at 1
P
-apr <
oa e s ]
-} 4
"( 0 -0 -0 -.( o9 3
L] -x

(¥}

Najogln]

as

as

istica affer optimi

Figure 5: Prefilter and postfilter ch

(see Section 5).

Figures 4 and 5 show the characteristics of the prefilter and
postfilter in a 60-tap design example, before and after optimization,
respectively. Also shown in each figure is the convolution of A[n}
and g[n)] and the corresponding magnitude-frequency response of the
cascade of the two filters. In this example, the chirp initial guess
filters were taken to be

h{n] = g[-n] = Asin(x(n? —n)/120}, n=0,...,59,

where A was chosen to make the sum of the squares of the coeffi-
cients in each filter unity. Note that the optimized filters (Figure 5)
have the desired properties: the prefilter and postfilter are approx-
imate inverses of each other, have nearly flat magnitude-frequency
responses, and have impulse responses with significant energy dis-
tributed well over the entire region of support.
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6. Experimental results

The dependence of the performance of the proposed system on the
length of the filters s illustrated in Figure 6, for the range of 5-37
taps. To obtain each point in the graphs. the sources were simulated
using techniques described by Knuth [18, vol 2, pp. 128-129), and
the performance of the proposed quantization system was measured
for 10,000 samples. Observe that for both sources, even very short
filters yield a considerable imp t in perfor Although
not shown in the figure, it was found that as the filters are made
longer than 37 taps, the improvement in performance continues to
be noticeable for the gamma source, but not for the Laplacian source.
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Figure 6: Experi ally det d d d of performance

of the proposed system on the length of the filters. The procedure

described in Section 5 was used to design the filters.

In obtaining the remaining experimental results presented in
this section, filters of length 31 and 60 were used in the Laplacian
and gamma cases, respectively. Also, unless otherwise stated, all
measurements were based on 10,000 samples.

Figure 7 shows mean-square error as a function of the number
of quantization bits for simulated Laplacian and Gamma sources, for
both simple quantization and the filter-based quantization scheme.
Also shown are samples of the rate-distortion functions for these two
sources. Note that the performance is, as expected, approximately
that of simple quantization of a Gaussian source. The improvement
over quantization without filtering is particularly significant at low
bit-rates; in fact, by comparing the results with those presented in [4],
it can be concluded that at 1 bit/sample, the improvement over direct
quantization obtained by prefiltering and postfiltering is roughly the
same as would be obtained by three-dimensional vector quantization.
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Figure 7: Experimental performance (in terms of mean-square er-
ror) of the proposed scheme relative to direct Lloyd-Max quanti-
zation for & Laplacian and a gamma source. Also shown on each
graph are three les of the cor ding rate-distortion func-
tion, computed via the Blahut algorithm {10].

Besides reduced mean-sq; error, an important advantage of
the proposed technique over simple quantization is its robustness to




errors in modeling the input. Specifically, the prefiltering operation
will tend to make any memoryless source appear more Gaussian, so
that the performance of the system does not depend critically on
accurate modeling of the input PDF. Figure 8 illustrates the relative
insensitivity of the proposed technique to modeling errors. Shown is
the performance of the proposed system and that of direct quanti-
zation, when each source is mistakenly modeled as the other. Note
that the performance of direct quantization is reduced because of the
mismatch, while that of the proposed system is unaffected. This im-
plies that the proposed system can be used with some confidence even
when relatively little is known about PDF of the source. In some ap-
plications, this robustness is more significant than reduction of mean-
square error. The most notable prior work in robust simple quanti-
zation is by Bath and Vandelinde [17]. In their approach, a minimum
level of MSE performance is guaranteed so long as the input PDF
belongs to a certain class; however, that performance is considerably
worse than the performance of Lloyd-Max quantization of a Gaussian
source. In contrast, for the same class of input PDF, the performance
of the quantization scheme proposed in this paper is always roughly
equal to that of Lloyd-Max quantization of a Gaussian source.
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Figure 8: Experimental mean-square error performance of the pro-
posed system and that of direct quantitation in the case of quantizer
mismatch. For reference, also shown is the mean-square error of di-
rect quantization when the input is correctly modeled (dotted line).
in (a) the source is L.phunan distributed, but modeled as gamma.
In (b) the source is g ibuted, but modeled as Lap)

Another potential advantage of the proposed system is reduc-
tion of correlation between input and quantization error at low bit
rates. Preliminary experiments have revealed that the reduction can
be significant at low bit rates, where correlation is usually most ob-
jectionable. However, further experimentation is required to deter-
mine the precise extent of the reduction, as well as its benefit in
practical coding systems.

7. Conclusions

A technique to improve the performance of simple quantization
for memoryless sources has been proposed, and experimental results
have been presented that show that in practice the system performs
as expected. The technique results in a significant reduction in mean-
square quantization error and offers relative insensitivity to errors in
modeling the input distribution.
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