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Abstract. The capacity Cé? of a 3-dimensional (0,1) runlength constrained
channel is shown to satisfy 0.522501741838 < C{) < 0.526880847825 .

1 Introduction

A binary sequence satisfies a 1-dimensional (d, k) runlength constraint if there are at
most k zeros in a row, and between every two consecutive ones there are at least d
zeros. An n-dimensional binary array is said to satisfy a (d, k) runlength constraint, if
it satisfies the 1-dimensional (d, k) runlength constraint along every direction parallel

to a coordinate axis. Such an array is called valid. The number of valid n-dimensional

< I (d,k)
arrays of size my x mg X ... X m,, is denoted by N,,i,‘,,.h

capacity is defined as

and the corresponding
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By exchanging the roles of 0 and 1 it can be seen that C'(") = C{") foralln > 1.
A simple proof of the existence of the 2-dimensional (d, k) r,'apacmcs can be found in
[1], and the proof can be generalized to n-dimensions.

It is known (e.g. see [2]) that the 1-dimensional (0, 1)-constrained capacity is the
logarithm of the golden ratio, i.e.

(1) 1+ /5
: 9

Co,1 = log, = 0.604242 . . .

and in [3] very close upper and lower bounds were given for the 2-dimensional (0,1)-
constrained capacity. The bounds in [3] were calculated with greater precision in [4] and
are further slightly improved here by us (see Remark section at end for more details),
now agreeing in 9 decimal positions:

0.587891161775 < Cy*) < 0.587891161868 . (1)

A lower bound of (,(,21) > 0.5831 was obtained in [5] by using an implementable encod-

ing procedure known as “bit-stuffing”. The known bounds on C[(,_zl] have played a useful
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role in [1] for obtaining bounds on other (d, k)-constraints in two dimensions. The
3-dimensional (0, 1)-constrained bounds given in the present paper can play a similar
role for obtaining different 3-dimensional bounds, and are also of theoretical interest. In
fact, a recent tutorial paper [6] discusses an interesting connection between run length
constrained capacitics in more than one dimension and crossword puzzles (based on
work of Shannon from 1948). In the present paper we consider the 3-dimensional (0, 1)
constraint, and by extending ideas from [3] our main result is to derive (in Sections 2
and 3) the following bounds on the 3-dimensional (0, 1) capacity.

Theorem 1
0.522501741838 < C) < 0.526880847825

It is assumed henceforth in this paper that d = 0 and k£ = 1. Two valid m; x
mg rectangles can be put next to each other in 3 dimensions without violating the 3-
dimensional (0, 1) constraint if they have no two zeros in the same positions. Define a
transfer matrix Ty, 1, to be an N,(,?l‘f,}n, X N,(,'f;f,)m binary matrix, such that the rows
and columns are indexed by the valid 2-dimensional m; x m; patterns, and an entry of
Tiny,m, 1s 1 if and only if the corresponding two rectangles can be placed next to each
other in 3 dimensions without violating the (0, 1) constraint. Then,

N'{rtl]],f‘?nz’ms - lf ) Tm;;-—l 1= 1r . Trnz—l 1 = 11 . T"H“l 1

Ty ,mz my,m3 ma,mga

where 1 is the all ones column vector and prime denotes transpose. The matrix T, 1,
meets the conditions of the Perron-Frobenius theorem [7], since it has nonnegative real
elements and is irreducible (since the all one's rectangle can be placed next to any
valid rectangle without violating the (0, 1) constraint). Therefore the largest magnitude
eigenvalue A, iy, Of Tiny my, is positive, real, and has multiplicity one. This implies
that

lim (N(®1)  yl/ms — 4

my,mz ,m3 my,msas
ma—+oo

and

(0,1)
0(3] = lim logz Nm].m;!m;,
"0,1 my,mz,mM3—+00 MMMy
: (0,1) 1

— lim Iogz hn]mg—aoo(Nrrn.mz,m;) /Tna

mi,Mz—00 m]mz

; logs A, it

= lim 2820mima

my,mMz—+00 nzlm?,

" 1/ma
!ng 1111]1‘]12 —+00 Aml \Mma

— (2)

. T 1/m2 - logs Amy,m logy Apm .
where A,n, = limpm,—y00 Amy.my. The quantities mlm‘z 2 and —2—"1 can be

viewed as capacities corresponding to 3-dimensional arrays with two fixed sides (lengths
my and my), and one fixed side (length m;), respectively.
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, Upper and lower bounds on the 3-dimensional capacity can be computed directly
‘ from the inequalities (similar to the 2-dimensional case, as noted in [4])

logz Am;,m; < (-,(3) < [ng Am1.vng
(m; + 1)(1’7?.2 + 1) = 01 = mimesg

but these do not yield particularly tight bounds for values of my and mg that result in
reasonable space and time complexities (e.g. Table 1 shows that the eigenvalues Ay, m,
correspond to matrices with more than 40 million elements when roughly myms > 20).
The upper and lower capacity bounds derived in this paper agree to within £0.002 and
were computed using less than 100 Mbytes of computer memory.

2 Lower bound on CS?})

To derive a lower bound on Cfg?j) we generalize a method of Calkin and Wilf [3]. Since

| T'ny,ma is a symmetric matrix, the Courant-Fischer Minimax Theorem [8, pg. 394]
implies that
7 ] P

x'-T x
P My, m2
g, & — T (3)

for any nonzero vector x and any integer p > 0. Choosingx =T 1 forany integer
g = 0 gives

t . pt+2q 1 -1
AP 1 T""l.mzl - 1 TmlvP+2'1+11

> =
my,mas — =L ma—1
17 F'ﬂq:-'"zl 1. Tm],‘lq-{—l 1

(4)

Thus,

3) » 1/mq
(3
oPC1 — ( lim ’1'5::/1('2:;"2}) = lim ( lim A2/m2 )

““my,m
My, Ma—00 M1 —00 \ ma—+oo T1,m2

IV

lim
my —00

= = (5)

1/my

1/my . 1/
(A’"l P2g+1 ) _ hm”“_‘m Aml‘P'i"}-"hLl AI'+2-'J’I-1
my,2g9-+1

/lml.ErHrl A'Zr}+l

i} T,

: and therefore for any odd integer r > 1 and any integer z > r,

, 1 i,
6l = log, (/—) : (6)

z—r Ay

This lower bound on Cr‘r(,:df is analogous to a 2-dimensional bound in [3], but A, and
Ay are not eigenvalues associated with transfer matrices of 2-dimensional arrays here,
and cannot easily be computed as in the 2-dimensional case. Instead, we obtain a lower
bound on A, and an upper bound on A,. ;From (4) and (5) a lower bound on A, is

1/((v—u)ma) =
{ li 11,”‘1 > i 1’.szt:2A11 v (/iz Ir)1/[!. u)
Az = lim A/°"2 im —t _ :
z 2 l

ma—oo M2 = o oo 1. l'“'3_]1 A, .
2,

Zu
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where u is an arbitrary positive odd integer, v > u, and A, , and A; . are the largest
eigenvalues of the transfer matrices 77, , and T} ,,, respectively.

To find an upper bound on the quantity A, for a given r, we apply a modified version
of a method in [3]. We say that a binary matrix satisfies the (0, 1) eylindrical constraint
if it satisfies the usual 2-dimensional (0, 1) constraint after joining its leftmost column to
its rightmost column (i.c. the left and right columns can be put next to each other without
violating the (0, 1) constraint). A binary matrix satisfies the (0, 1) toroidal constraint
if it satisfies the usual 2-dimensional (0,1) constraint after both joining its leftmost
column to its rightmost column, and its top row to its bottom row.

Proposition 1 Let s be a positive even integer and let Ty, m, be the transfer matrix
whose rows and columns are indexed by all (0, 1)-constrained my x my rectangles. Let
B, s denote the transfer matrix whose rows and columns are indexed by all cylindri-
cally (0, 1)-constrained my x s rectangles. Then,
. 5 — 1! ma—1
Trace[T;, ,..]=1"-B 1.

my 8
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Z Z
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Fig. 1. Cylindrically (0, 1)-constrained m x s rectangles used to build cylindric my x ma X s
arrays

For every positive integer m; and my, and every even positive integer s, the ma-
trix T;7,, m, has nonnegative cigenvalues and thus any one of its eigenvalues is upper
bounded by its trace. Hence,

J'imhm;g S Trace [Ts ]1’;3 = (1r A Bmz_ll)l/s (7)

my,ma my,s
which gives the following upper bound on A,

1
Ay = lim AY™2 < lim (1'- BlFa~1q ) sy

Mz —+00 mz—+oo

=gt (8)




where & ¢ is the largest eigenvalue of B, , (note that B, , satisfies the Perron-Frobenius
theorem for the same reasons as for Ty,, m, in Section 1).

The lower bound on (“({,31} in (6) can now be written as

1/(v—u)
) (ﬂ: v ) r and u odd, 5 even
W(3) < z,u z>r21
(’u,l Z o 1032 1/s v>u>l ®
ad r.8 s82>2

To obtain the best possible lower bound, the right hand side of (9) should be maximized
over all acceptable choices of r, z, u, v, and s, subject to the numerical computability
of the quantities A, ,, A, 4, and £, ,. Table 1 shows the largest eigenvalues of various
transfer matrices which were numerically computable. ;From this table, the best pa-
rameters we could find for the lower bound in (9) on the capacity were r = 3, z = 4,
u=5,v =6, and s = 10, yielding

0346.35893701

1
(:',{3) > l . 2102.73425568 > r22r01741838
0.1 2 73 '°62 (30481.0598379)1/10 = 00220

3 Upper bound on Cé.f?

Proposition 2 Let sy and s; be positive even integers and let B}, ,, denote the transfer

matrix whose rows and columns are indexed by all toroidally (0, 1)-constrained s1 X sq

. o - W3 *
rectangles. If §5, .. is the largest eigenvalue of B; ,,, then C.((]‘l) < s;lh log, &3, o,-

Note that By ,, = Bj ,, and thus £ 5, = £3 ,,. The best parameters we were able
to find (from Table 1) were s; = 4 and s, = 6, and the resulting eigenvalue gave the
following upper bound:

3 1
(4 B 57 1082 6405.69924332 < 0.526880847825.

4 Remark

Direct computation of eigenvalues using standard linear algebra algorithms generally
requires the storage of an entire matrix. This severely restricts the matrix sizes allow-
able, due to memory constraints on computers. By exploiting the fact that our matrices
are all binary, symmetric, and easily computable, we were able to obtain the largest
eigenvalues of much larger matrices. Specifically, the eigenvalues used to obtain the
capacity bounds in Theorem 1 were computed using the “power method™ [8, pg. 406].
Similarly, we obtained the upper bound in (1) with the power method (computing A, 2;,
A1,23, and &) 24). Originally these bounds were computed in [3] as 0.587891161 <
Cy{ < 0.588339078 (computing A; 13, Ay 15, and & ¢) and were later improved in [4]
(computing Ay 13, A1 14, and £&;,14) to 0587891161775 < C§7 < 0.587891494943.

The lower bound in (1) is from [4].



a|l blda.p rows of Ty s1€a.b rows of Ba € 5 rows of B} ,
1| 1{1.61803398875 2
2(2.41421356237 3|2.41421356237 3
3/3.63138126040 5 [
4(5.45770539597 8]5.15632517466| 7
5/8.20325919376 13 |
6/12.3298822153 21[11.5517095660| 18
7/18.5324073775 34
8127.8550990963 55[26.0579860919] 47
9/41.8675533183 89
10]62.9289457252 144]58.8519350815] 123
11]94.5852312050 233
12{142.166150393 377(132.947794048| 322
13|213.682559741 610
14|321.175161677 987[300.345852027] 843
15(482.741710897 1597
16(725.5684002895 2584|678.525669346] 2207
1711090.58764423 4181
18[1639.20566742 6765/1532.89283597] b778
19|2463.80493521 10946
20{3703.21728345 17711]3463.03987027] 15127
21|55666.11363689 28657
22|8366.13642876 46368]7823.53857819] 39603
23|12574.7053170 75025
24|18900.3867144 121393|17674.5747630 103682
2| 2|5.15632517466 715.15632517466 7|5.15632517466 f
3|11.1103016575 17
4]23.9250625386 41(21.9287654025 35(21.9287654025 35
5(51.5229210280 99
6]110.954925971 239[100.236549238] 199(100.236549239 199
7|238.942175857 577
8|514.563569622 1393(463.203410887| 1155|463.203410887 1156
9(1108.11608218 3363
10|2386.33538059 8119|2146.04060032] 6727(2146.04060032 6727
11]5138.98917320 19601
12(11066.8474924 47312(9949.63685703 39203(9949.63685703 39203
3| 3/34.4037405361 63
4]106.439377528 227|94.2548937790 181
5(329.331697608 827
6|/1018.97101980 2999|884.498791440| 2309
7|3152.75734322 10897
8|9754.81971205 39561|8421.60680808] 30277
9(30181.9963196 143677
10{93384.9044989 521721|80481.0598378 398857
i 4| 4(473.069084944 1234)|404.943621498 933|355.525781764 743
f 5(2102.73425567 6743
6|9346.35893702 36787|7799.87080772] 26660|6405.69924332] 18995

Table 1. Largest eigenvalues of Ta 3, Ba b, and B ;, are Aap, €a,5, and & 5.
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