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One-dimensional channels satisfying run length constraints are
important in magnetic recording applications and two-dimensional
channels satisfying run length constraints have been considered in
relation to optical recording applications (see the references in [1]).
One-dimensional (d, k) run length constraints require that in any bi-
nary sequence, there be at least d and at most & Os between consec-
utive 1s. Two-dimensional run length constraints require that one-
dimensional run length constraints be satisfied both horizontally and
vertically in a two-dimensional rectangular binary array.

In addition to run length constraints, other types of constraints can
be used to model certain two-dimensional channels. An example of a
circularly symmetric two-dimensional constraint occurs by requiring
that any point in the two-dimensional Z? lattice be labeled 0 if it is
within a prescribed distance from a lattice point with label 1.

One could alternatively require that every 1 be surrounded by 0s
falling in a given sized hexagon, square, or more generally any other
shape of interest. In general, a large class of such two-dimensional
constraints can be characterized by some bounded measurable two-
dimensional set S, and the requirement that for every 1 stored in the
plane, it must at least be surrounded by a set of Os arranged in the
shape of S. Such a code is said to satisfy the constraint S. These
constraints are known as checkerboard constraints [3].

For a convex symmetric checkerboard constraints S, we deter-
mine the rate at which the capacity goes to zero, as a function of
the area A(.S) of the constraint. It is shown that as A (S) — oo,
the capacity decays to zero at the rate 45(S)(log, A(S))/A(S).
where §(S) is the packing density of the set S. Thus, for exam-
ple, since the packing density (in the plane) of squares or hexagons is
4(S) = 1, this implies that the capacity of two-dimensional channels
satisfying square or hexagon checkerboard constraints is asymptoti-
cally equal to 4(log, A (S))/A (S) as the area grows without bound.
Similarly, if S is a circular constraint, then the asymptotic capacity is
%(logz A(S))/A(S) since 6(S) = 7/ (2V3).

|. PRELIMINARIES

Given aset S C R?, any function f : SN Z> — {0,1} is called
alabeling of S. For any set S C R?, let A (S) be the area of S and
let A (S) = |S N Z?| be the number of Z>-lattice points contained
inS. Aset S c R?issymmetricifz € S« —z € S.

Given a set V' C R? and a checkerboard constraint S, a labeling
f of Vis said to be S-valid on V' if f(y) = 0 whenever f(z) = 1,
forallz €e VNZ?andy € (z+ S) N (V\ {z}) N Z% That is,
f satisfies the checkerboard constraint S on the set V. ¢ R2. The
number of S-valid labelings of a set V' C R? is denoted by Ns(V).
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The capacity C's corresponding to the checkerboard constraint S is
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A proof given in [2] shows that the above limit exists.

The capacities of various channels satisfying convex checkerboard
constraints were studied in [3]. These included the diamond, hexag-
onal, square, and (d, co) run length checkerboard constraints.

Every checkerboard constraint S is equivalent to the symmetric

checkerboard constraint S U —S in the sense that the sets of S-valid
labelings and (S U —S)-valid labelings of any set V' C R? are iden-
tical. Thus no generality is lost if we restrict attention to symmetric
checkerboard constraints when computing capacities.
Notation: Let U be the set of all checkerboard constraints and let f :
U— R. Forany S € Uand L € R, we write lim 45y, f(S) =
L to mean that limg— 00 f(aS) = L. That is, the set S is inflated
without bound by the factor « but retains the same shape.

Theorem 1 If S is an open convex symmetric checkerboard con-
straint with area A (S), capacity Cs, and packing density 4(.5),

then A
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In fact, a more general rate of convergence can be obtained for the
capacity of two-dimensional channels with checkerboard constraints
whose interior contains the origin, but without exactly identifying the
convergence constant. Such constraints are not necessarily convex.
The capacity is shown in Theorem 2 below to still decay asymptoti-
cally at the rate (log A (S))/A (S) in these cases. Theorem 2 makes
precise a prediction given in [3]: “Intuitively, we expect that the ca-
pacity of a given constraint will be inversely proportional to the num-
ber of zerosin the constraint.”

Theorem 2 If S is a checkerboard constraint whose interior con-
tainsthe origin, then
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