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Abstract

Achievable distortion bounds are derived for the cascade of structured families of binary
linear channel codes and binary lattice vector quantizers. It is known that for the cascade
of asymptotically good channel codes and asymptotically good vector quantizers the end-
to-end distortion decays to zero exponentially fast as a function of the overall transmission
rate, and is achieved by choosing a channel code rate that is independent of the overall
transmission rate. We show that for certain families of practical channel codes and binary
lattice vector quantizers, the overall distortion can still be made to decay to zero exponen-
tially fast as the transmission rate grows, although the exponent is a sub-linear function
of the transmission rate. This is achieved by carefully choosing a channel code rate that
decays to zero as the transmission rate grows. Explicit channel code rate schedules are
obtained for several well-known families of channel codes.

1 Introduction

We exploit results from high resolution theory to obtain new quantization results for
noisy channels. High resolution quantization theory for noisy channels gives analytic
descriptions of the minimum achievable average distortion, as a function of the trans-
mission rate, the source density, and the vector dimension. For distortion functions
which are powers of Euclidean distances and with no channel noise, the minimum
average distortion is known to decay to zero exponentially fast as the transmission
rate increases [1]. It was shown in [2, 3] that when the source information is trans-
mitted across a noisy channel, the minimum average distortion again decays to zero
exponentially fast as the transmission rate increases, although the exponential decay
constant is reduced by an amount dependent on how poor the channel is. In fact, the
rate of decay of distortion in the noisy channel case is closely related to the optimal
allocation of transmission rate between source coding and channel coding (via the
channel code rate).
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The results in [3] provide mathematical guarantees for a potentially achievable
minimum quantizer distortion in the presence of channel noise. However, those results
assume the existence of optimal channel codes, namely those described in Shannon’s
channel coding theorem using random coding arguments. Similar techniques were
used to generalize the results of [3] to Gaussian channels [4] and to certain algebraic
geometry codes [5]. Hence, the results in [3-5] are existence constructions and do not
necessarily correspond to achievable performance based on the best presently known
implementable channel codes. There is thus motivation to find a high resolution
theory for quantization with a noisy channel, using families of structured algebraic
channel codes.

However, finding such a high resolution theory appears to be a difficult task for
general unstructured source coders, even if the channel coders are structured. In this
paper, we approach the problem by examining systems with structure in both the
source coder and channel coder. Such systems are practical to implement and also
give insight (via distortion bounds) into the unstructured source coder case.

To illustrate the problem at hand by way of an example, suppose a random variable
uniformly distributed on [0, 1] is uniform scalar quantized, and transmitted across a
binary symmetric channel using a repetition code. For a fixed number of available
bits R per transmission, how many times should each information bit be repeated in
the repetition code to minimize the end-to-end mean squared error? In other words,
what is the optimal rate allocation between source and channel coding? If the channel
code rate is decreased, fewer uncorrected bit errors occur but at the expense of coarser
quantization, and vice versa if the channel code rate is increased.

A key assumption in [3,5] is that by keeping the channel code rate fixed (below
capacity) while increasing the overall transmission rate R, the probability of decoding
error P, can decay to zero exponentially fast as a function of R. This assumption is
valid for “Shannon-optimal” codes and more generally for asymptotically good codes,
but most known structured families of channel codes (e.g. Hamming, BCH, Reed-
Muller) do not have this property. In the repetition code example, keeping the channel
code rate fixed is equivalent to keeping the number of repetitions constant. This in
turn implies that the probability of incorrectly decoding an information bit does not
change. Therefore, P, is bounded away from zero, since the probability of decoding
error (i.e. an incorrect block) is at least as large as the probability of a single bit
error. In this paper, we investigate the rate allocation problem for structured families
of source coders which are asymptotically good and for structured families of channel
coders which are not asymptotically good, but which can be used in practice.

A common method for lossy transmission of source data across a noisy channel
uses independently designed source coders and channel coders. This follows Shan-
non’s basic “separation principle” in source and channel coding, which is known to be
optimal for asymptotically large blocklengths. An important design parameter is the
allocation of the available transmission rate between source and channel coding. Tight
upper and lower bounds on the optimal tradeoff between source and channel coding
are known for certain codes and channels and pth-power distortion measures [2-5].
These results exploit the fact that the distortion contributions of optimal source cod-
ing and optimal channel coding decay exponentially fast as functions of the overall



transmission rate. The source coder is taken to be a ‘good’ vector quantizer (one
that obeys Zador’s decay rate) in [2-5], and index assignment randomization is used.
In both [3] and [4], the channel codes are assumed to have exponentially decaying
error probabilities achieving the expurgated error exponent for the given channel
(a binary symmetric channel in [3] and an additive white Gaussian noise channel
in [4]). Although such codes are known to exist, no efficiently decodable ones have
yet been discovered. In [5], the results of [3] are extended to g-ary symmetric chan-
nels, and a class of asymptotically good channel codes (namely those attaining the
Gilbert-Varshamov and Tsfasman-Vladut-Zink bounds) is examined. Constructions
of channel codes better than the Gilbert-Varshamov bound are known [6,7], but the
best known algorithms are not currently practical.

The channel codes considered in [3-5] all have the property that their channel
code rates are bounded away from zero for increasing blocklengths. In the present
paper we investigate the tradeoff between source and channel coding for structured
classes of codes whose channel code rates approach zero in the limit as the blocklength
grows. Hence, we seek a decay schedule of the channel code rate as a function of the
overall transmission rate which minimizes the overall distortion. The channel codes
we examine are classical binary linear block codes including repetition codes, Reed-
Muller codes, and BCH codes. We call (as in [8]) the structured source coders in this
paper Binary Lattice Vector Quantizers. Vector quantizers with essentially identical
structure have been extensively studied under various different names in [8-11].

The main results of this paper are collected into Theorem 1 in Section 3, which
gives achievable bounds on the asymptotic mean squared error performance of binary
lattice vector quantizers and several useful families of binary linear block channel
codes on a binary symmetric channel. The bounds in Theorem 1 show that the
minimum distortion with certain structured codes decays to zero as O (272F9(®)),
where g(R) — 0 as R — oo. The distortion bounds are obtained by choosing g(R) =

0 (ﬁ) for repetition codes and g(R) = O < @) for Reed-Muller codes and

duals of BCH codes. The constants inside the O(-) depend on the channel noise
level. In contrast, for optimal unstructured vector quantizers and no channel noise,
g(R) = 1 for all R, and for optimal unstructured vector quantizers and optimal
channel codes on a noisy channel, g(R) < 1 (depending on the channel noise level)
and ¢ is bounded away from zero. Since structured source coders are assumed in
this paper, the distortion bounds given are also upper bounds on the distortion using
optimal unstructured VQ with the same structured channel codes. Section 2 gives
the framework for the source/channel coding problem and Section 3 gives the results
of the paper.

2 The Cascaded System

Definition 1 A d-dimensional, 2F-point noisy channel vector quantizer with index
set 7%, codebook Y, and with an [n, k] linear channel code C operating on a binary
channel, is a functional composition Q@ = Dg o Dgono &g o Eg, where Eg: R — Z§



is a quantizer encoder, Dg: Z5 — Y is a quantizer decoder, £¢: Z5 — C is a channel
encoder, D¢: Z3 — 7% is a channel decoder, and 7n: Z% — Z? is a random mapping
representing a noisy channel. The overall transmission rate of a noisy channel vector
quantizer is given by R = n/d. The source coding rate (or resolution) of the noiseless
vector quantizer Qy = Dg o & is defined as Rs = k/d.

The mean squared distortion of a noisy channel vector quantizer for a source random
variable X € R? is

A=E|X - QX)|?. (1)

We define the source distortion (the distortion on a noiseless channel, due to quanti-
zation only) as

As=E|X - Q(X)|?, (2)

and the channel distortion (the component of the distortion influenced by channel
errors) as

Ac = E[Q(X) — (X)|. (3)

The Minkowski inequality can be used to bound the distortion as

A< (VAs+Vaq) (4)

The high resolution (i.e. large Rg) behavior of Ag for optimal quantization of a
bounded source is described by Zador’s formula, which is stated below in a convenient
form.

Lemma 1 (Zador [1]) The minimum mean squared error of a rate Rg vector quan-
tizer is asymptotically (as Rs — oo) given by

Ag = 2 2Rs+01) (5)
Lemma 1 is often referred to as the “6 dB per bit” rule, since
101logy, (2—2Rs+0(1)/2—2(R5+1)+0(1)) — 201log;, 2 ~ 6 dB.
We say that a sequence of quantizers is asymptotically good if

limsup Ag22%s < oo. (6)

Rg—00

Lemma 1 shows that optimal quantizers are asymptotically good. In fact, a large class
of quantizers including uniform quantizers and other lattice-based vector quantizers
are also asymptotically good, although the limit in (6) may be larger than for optimal
quantizers.



The asymptotic behavior of A with increasing R is affected by the error-correcting
capabilities of the channel codes used. The channel distortion using optimal quanti-
zation is bounded away from zero for non-redundant channel codes [2] and decays to
zero exponentially fast for “Shannon-optimal” channel codes [3] and asymptotically
good channel codes [5]. To show that A¢ can also be made to decay to zero expo-
nentially fast as a function of R for classical linear block channel codes, the vector
quantizers in this paper are chosen to be bounded binary lattice vector quantizers.
This allows a simple bound on Ag.

We call a sequence of quantizers bounded, if the codepoints of the quantizers are
bounded, that is,

sup | max < 00, 7
o (max 51 1)

where Y, denotes the codebook of the k-bit quantizer in the sequence. Unrestricted
optimal quantizers for a bounded source are bounded, as are large classes of other
useful quantizers including truncated lattice VQs for example.

2.1 Binary Lattice VQ

Definition 2 For positive integers d and k, a d-dimensional, 2¥-point binary lattice
vector quantizer is a vector quantizer with index set Z& whose codebook contains
codevectors of the form

k-1
Yi=Yo+ Y wviy Vi€, (8)
1=0

where yo, € R? is an offset vector, {vl}f:_o1 C R? is the set of generator vectors, ordered
by |[vol| < ||vi]] £ ... < ||vk_1]|, and 4; denotes the I*® bit of the index i.

In this paper, we focus on Binary Lattice Vector Quantizers (BLVQ). There are
several equivalent formulations of BLVQ as, for example, truncated lattice VQ, direct
sum (or residual) VQ, and VQ by a Linear Mapping of a (non-redundant) Block Code.
BLVQs can save in memory requirements and encoding complexity. They can also be
used for progressive transmission and possess a certain natural robustness to channel
noise (see [8] for details).

BLVQs encompass a broad class of useful structured quantizers. For example, a 2*-
level uniform scalar quantizer on the interval (a, b) is a special case of a binary lattice
quantizer, obtained by setting yo = a+s/2 and v; = 2's, where s = (b—a)2* denotes
the quantizer stepsize. As a consequence, sequences of asymptotically good BLVQs
exist. In fact, for any bounded source, a sequence of increasingly finer (properly
truncated and rotated) cubic lattices containing the support of the source is both
bounded and asymptotically good. Thus, in what follows, we restrict attention to
asymptotically good bounded sequences of binary lattice vector quantizers.



2.2 Linear Codes on a Binary Symmetric Channel

Definition 3 A linear binary [n, k, dmin] block channel code is a linear subspace of
73 containing 2F binary n-tuples called codewords, each with at least dp;, nonzero
components. The channel code rate is given by r = k/n, and the relative minimum
distance by § = dpin/n.

To obtain asymptotic results we consider families of [n, k, diin] linear channel codes
indexed by the blocklength n. All families of channel codes fall into exactly one of the
following three categories (assuming the limits of dp;,/n and k/n exist as n — 00):

e lim, . d‘;i“ =0

The best known families of block channel codes in this category have k/n — 1 as
n — oo. Examples include Hamming codes, families of ¢-error-correcting binary
BCH codes for any fixed ¢, and /th-order Reed-Muller codes if [ is an increasing
function of the blocklength. From a source-channel tradeoff perspective, the
best codes in these families are those with small blocklengths. Hence, these
codes are not relevant to our asymptotic investigations, although their duals
are.

o lim, o @min > 0 and limy o £ > 0
Families of codes with both their rate and relative minimum distance bounded
away from 0 are called asymptotically good [12]. Examples include Justesen
codes [12, p. 306 ff] and codes satisfying the Zyablov bound [12, p. 315], the
Gilbert-Varshamov bound [12, p. 557], or the Tsfasman-V1adut-Zink bound [13].
Bounds on the asymptotically optimal source/channel rate allocation were de-
rived in [5] for some of these codes.

e lim, d‘“ﬁ > 0 and lim,,_, % =0
Codes that fall into this category include repetition codes, [th-order Reed-Muller
codes for any fixed order [, t-error-correcting binary BCH codes with ¢t = O(n),
and duals of t-error-correcting binary BCH families for any fixed ¢. The prob-
ability of decoding error decays to zero exponentially fast for families of this
type. Since k/n — 0, relatively less information is transmitted as the block-
length increases, but more reliably.

In this paper, we focus attention on the third category above. One seeks an optimal
“schedule” of the rate k/n converging to 0 as a function of the blocklength n.

2.3 Rate Allocation for BLVQ

Since the codevectors of a BLVQ) are linear combinations of their respective index bits,
it follows that the channel distortion of a bounded sequence of BLVQs is uniformly
bounded (in R) as

Ao < ePOY 9)

max ?



where ¢ is a finite constant (independent of R) and PR s the largest of the error

probabilities for a received (channel decoded) index bit. Thus, we need to show
that P2 can be made to go to zero exponentially fast as a function of the overall
transmission rate R.

We consider a family of [n, k, dmin] channel codes satisfying lim,, , k/n = 0 and
limy, o0 dmin/n > 2¢ > 0, where € is the crossover probability of the underlying binary
symmetric channel. We further assume that k£ is a monotone increasing function of
n, which implies a one-to-one relationship between the channel code rate r and the
blocklength n (e.g. this holds for repetition codes and Hamming codes). We divide
the Rd bits per sample into blocks of shorter channel codes from the same family
of [n, k,dmin] codes, and assume that each has the same blocklength n (a divisor
of Rd). Thus, the length Rd channel code is the (Rd/n)-ary Cartesian product of
identical length n codes. This maintains the overall transmission rate R bits per
vector component, and allows a variety of channel code rates r.

The total distortion can be shown to be bounded as

e)+0(1))2 , (10)

A < <2R%+0(1) + 27%1)(%2“;“

where D (6]|€) = dlog, & + (1 — 6)log, =2 is the binary relative entropy function
(information divergence).

The value of the right side of (10) for any n that divides Rd represents an achiev-
able distortion, since there exist binary lattice vector quantizers and families of chan-
nel codes that satisfy such a bound. In particular, we minimize the right side of (10)
over n. Let ng denote a value of n which achieves the minimum. Asymptotically (in
R), ng — oo must hold, for otherwise the second term in (10) would be bounded
away from zero. In fact, to minimize the bound in (10) the exponents of the two
decaying exponentials have to be asymptotically equal. Since ng — 0o as R — o0
and the families of codes considered satisfy lim,,_,o dmin/n > 2€ by assumption, the
limit of the information divergence in the exponent of the second term in (10) is a

finite non-zero constant which we denote by 2D (%limn_m d‘;“;“ H e). Thus, the
asymptotically minimizing ng satisfies

lim == =1. (11)

Let rg denote the channel code rate corresponding to the ng which solves (11). Then
by (10), the overall distortion vanishes at least as fast as 272#72+O0(1) The next
section presents the rate allocations rg obtained from solutions to (11) for various
code families.

3 Asymptotic Distortion Decay Rates

Theorem 1 Let X € R? be a bounded random variable which is transmitted at a rate
R bits per component across a binary symmetric channel with crossover probability €.



Suppose the source coder is chosen from a sequence of asymptotically good bounded
binary lattice vector quantizers, and the channel coder is chosen from a family of
(1, k, diin] linear block channel codes satisfying lim, oo k/n = 0 and lim,,_, o dypin/n >
2¢. Then, the overall minimum mean squared error decays (asymptotically in R) at
least as fast as

A S 2—2R7‘R+O(1)’ (12)

which is achieved by a channel code rate rg, for various channel code families as
follows:

(1) for a family of [n,1,n] repetition codes (n > 1)

= logy 24/e(1 —¢) _
TR = \/ R , e € (0,1/2); (13)

(1) for a family of lth-order [2"‘, Zé:o (T),Qm_l] Reed-Muller codes (m > 1)

Ql+1_1\ ST z
~ (g2t (e ()" ) ) o

TR = 21 ) €€ (01 1/2l+1);
(14)
(73i) and for a family of duals of extremal t-error-correcting
[2m — 1, mt, 2™ ! — [log, (2t — 1)]] BCH codes (m > 1)
—t (log2 4 (e (%)3) 4) log, R
TR = : e € (0,1/4). (15)

4R

Figure 1 provides an illustration of Theorem 1 for the special case of using a uni-
form scalar quantizer for a uniform source on (0,1) and a family of repetition codes
on a binary symmetric channel with ¢ = 1073, For each R = 1,2,3,...,128, the
repetition code with the smallest distortion was found by exhaustive search and the
resulting rate was plotted (discrete dots). Since deleting a bit of an even length repeti-
tion code results in an odd length repetition code with the same bit error probability,
using the extra bit for source coding always results in a smaller overall distortion.
Hence, in addition to the analytic expression for rg from (13) (dashed curve), we
also plotted the channel code rate corresponding to the closest odd blocklength (step
function).

As with Zador’s lemma, Theorem 1 also gives a rule of thumb for the expected gain
in system performance per bit increase in the overall transmission rate. Unlike on an
error-free channel or on a noisy channel using asymptotically good codes (as in [3-5]),
however, there is no fixed increase in the signal-to-noise ratio per “bit investment”.
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Figure 1: An illustration of Theorem 1 for uniform scalar quantization of a uniform source
on (0,1) using repetition codes to transmit on a binary symmetric channel with ¢ = 1073,
The distortion minimizing channel code rate r is plotted against the overall transmission
rate R.

Instead, the number of “dB’s per bit” of performance gain in the bound (12) dimin-
ishes as the rate R grows. For example, increasing the total transmission rate R by 1
bit per component for a cascaded system using repetition codes yields a signal-to-noise
ratio increase of
SNR(R + 1) — SNR(R) = 10logy, (2*Wﬁ+0<1> /2*2VR+1+0<1>)
3
VR

However, the bounds presented might be improved in the future.

Q

[dB].

4 Conclusion

The paper presented bounds on the performance of implementable communication
systems as a function of the overall transmission rate R. The systems employ a
binary lattice vector quantizer for source coding a bounded random input, and a
binary linear channel code for transmission over a binary symmetric channel. The
channel code is obtained as a Cartesian product of short codes from channel code
families with vanishing rate. Many well studied [n, k] linear channel codes have k
proportional to some power of log, n. We showed that for such codes, using a rate

logh R
R

asymptotic distortion decay of 2-2V Rl R Gince the exponent is sub-linear in R,

allocation between source and channel coding of O( ) as R — 0o, one gets an



we see diminishing returns in the per-bit performance increase instead of the usual
6 dB/bit for error-free transmission (or some other constant return for optimal or
asymptotically good codes).
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