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Abstract

Formulas are derived for the MSE performance of sev-
eral classical redundancy free codes for a binary discrete
memoryless channel with a uniform scalar source and a
uniform quantizer. In particular these results generalize
formulas previously obtained for the binary symmetric
channel. It is also proven that although the Natural Bi-
nary Code is optimal for the binary symmetric channel,
it is never optimal for any other binary channel. It is fur-
ther proven that the Gray Code is never optimal for any
binary channel. Finally, we introduce a new code, called
the Odd-Even Code, which outperforms the NBC on ev-

ery nonsymmetric binary channel and performs equally
well on the BSC.

1. Introduction

Consider the problem of quantizing a real-valued random
variable X by using a scalar quantizer with 2" levels,
where n bits are transmitted across a binary Discrete
Memoryless Channel (DMC). A redundancy free code is
a permutation of the 2" possible n-bit binary words to
be transmitted (i.e. a rate 1 channel code). This can be
readily generalized to vector quantization. The model of
the system we consider is shown in Figure 1.

What is the best redundancy free code to use? In general,
this is an open problem in combined source/channel cod-
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Figure 1: Communication System Block Diagram. r is the
redundancy free code, also known as an index assignment.

ing theory. An exhaustive search of all (2")! different per-
mutations is computationally infeasible for even relatively
small quantizer codebooks. For example if n > 4 then
there are at least 16! permutations, an extremely large
number. Traditionally, there have been three important
commonly studied codes for transmitting digitized analog
data. These are the Natural Binary Code (NBC), Folded
Binary Code (FBC), and Gray Code (GC) [8]. Strictly
speaking, each of these is a class of codes parameterized
by the number of binary digits transmitted.

Some heuristic techniques have been developed for find-
ing good suboptimal codes [1], [2], [3]. However, very few
theoretical results exist for finding the mean square dis-
tortion for particular redundancy free codes or for finding
optimal codes. For very large quantizer codebooks, exist-
ing iterative design procedures are too complex.



Huang [4, 5, 6] gave a formula for the MSE in using the

NBC on a Binary Symmetric Channel (BSC) with auni- | i | 0§ 20'() [ I P96) [ 0F96) [ mP%9) |
form source and a uniform quantizer. McLaughlin, Ash- 0|0 0000 | 7 0111 | O ©O0OO| 1 0001
ley, and Neuhoff [9] recently used a vector space approach 1 é 88?1 6 0110 :13 882} 3 0031
: . 2 0| 5 0101 5 0101

that t 1 ble MSE

;o prc;secha he NBC achieves the lowest possible MS a3 o011 |4 owol2 oow0|7 o111
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A formula is also known for the MSE of the GC on a BSC. 5|5 0101} 2 0010} 7 0111711 1011
Other th W ‘K b 6 | 6 0110 1 0001 | 5 0101 | 13 1101
ther than the BSC there are not known any suc for- 7 7 0111 0 0000 4 0100 15 1111
mulas for any other binary discrete memoryless channel, | 8 | 8 1000 | 8 1000 | 12 1100| O 0000
nor for the FBC on a BSC. The previously known BSC 9 |9 1001 | 9 1001 |13 1101) 2 0010
formulas are given Propositions 1 and 2. 10| 10 1010 [ 10 1010 |15 1111 | 4 0100
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Our main result in this paper is to derive formulas for | 12 | 12 1100 | 12 1100 | 10 1010 | & 1000
the NBC, GC, and FBC for an arbitrary binary DMC, 13|13 1101 | 13 1101 | 11 1011 | 10 1010
assuming a uniform source and uniform scalar quantizer. 14 1'} 1110 | 14 1110 | 9 1001 1 12 1100
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Of course, in particular our results hold for such channels
as the BSC and the Z-channel. In addition, we introduce
a new code, which we call the Odd-Even Code (OEC),and  Table 1: Examples of Common Redundancy Free Codes
derive a formula for its MSE on a binary DMC. We show
that the OEC is equivalent in performance to the NBC on

a BSC, but is always superior to the NBC for any binary o The Gray Code (or Reflected Binary Code) is defined

channel other than the BSC. For this reason it would be recursively as

advantageous in general to use the OEC rather than the

NBC. We also observed experimentally that the OEC is m(eo)(i) = o9 ) i<on-lo
the best code overall for most useful binary channels for " =14 P —1-4) 2*tgi

the special cases of 1,2, and 3 bit codes. Finally, we prove
that the GC is never the best code for any binary channel, with the initial condition 113""’(0) =

perhaps a somewhat surprising result.

e The Odd-Even Code is defined as
Theorems 1-4 give our MSE formulas and Theorem 5 pro- .
vides a comparison of the codes’ performances. Due to MOEC)(3) = { 2i+1 0 Sli <2nml-
— : n— . n
space constraints, we only include a proof of Theorem 1 " 2i =27 2 i< —1

v gaen. P sesusing proots: willbe g b, & Note that the OEC can be obtained from the NBC

t blication. '
future publication _—

N HgoEC)(i) = rotate[ﬂ&”‘ac)(i)] @1,
2. Definitions

where rotate[j] is a left cyclic shift of the binary rep-

A redundancy free code with 2" levels is a permutation resentation of j and & is componentwise modulo-2
I, of the set {0,1,...,2" = 1}. addition.

e The One’s Complement code X, of a code X, is de-

e The Naiural Binary Code is the identity mapping: fined by

(NBC)(\ — ; : oon _ .
L@ =i 0<is? -1 (@) =2"-1-0%@G) 0<i<2—1
o The Folded Binary Code (or Sign-Magnitude Code)

i difned af A code can be conveniently viewed by a list-

ing of the binary representations of the numbers
271 =1 T,(0),0.(1),...,0a(2" = 1). An example for n = 4 is
3

n(FBO) () = { ?“'1 = = §
given in Table 1.

1058

e ——




1-p
0 0
q
P
1 1
1-¢
Figure 2: BAC with P(1/0) = p and P(0|]1)'=¢

3. Mean Square Error Formulas

Let i and ; be binary words and let P(jli) =
P(j received | i sent) be the word transition probabilities
of a binary discrete memoryless channel. The MSE of a
2" level scalar quantizer with encoder cells Ry, ..., Ron_1
that satisfies the centroid condition, can be decomposed
into a source component and a channel component as
D = Dg + D¢, where

2"-1

D E(X -w)*| X € RiP(X € Ry)
1=0

2" ~12"~1

3 3" (w - u)?P(X € Ri)P(li)

i=0 j=0

Ds

i

D¢

If the source is uniform on the interval [a, b] and a uniform
quantizer is used then

A}
Dg = T
P(Xe€R) = 2"

where A = (b—a)/2". Formulas for D¢ are derived here
for various important codes and for all memoryless binary
channels, such as shown in Figure 2. The most common
examples are the BSC (with p = g¢), and the Z-channel
(with p=10or¢=0).

If maximum likelihood decoding is used and a 0 (resp. 1)
isreceived, then a 0 (resp. 1) is decoded as the estimate of
the transmitted binary symbol provided P(0|0) > P(0|1)
(resp. P(1[1) > P(1/0)),ie. p+g< 1. p+g>1 then
the roles of 0 and 1 are reversed and the channel performs
the same as a binary channel with P(0|1) = 1 — ¢ and
P(1|0) = 1 — p. Hence, throughout this paper we assume
p+q<l.

Let us denote the 2" x 2" channel transition probability
matrix by T, = [t(")] where
47 = P(ls);

i,j €{0,...,2" =1} = {0,1)".

The memoryless property of the channel yields the fol-
lowing recursion

_[a-p1, P,
Ton = T,  (1-qTu (1
(with Ty = [1]) since t7 51 = P(y|z)-1{" for 2,y € (0,1},

where zi (and similarly yj) denotes conca.tena.tlon. It will
be convenient to define another 2™ x 2™ matrix S, = [s,(-:-)].
where

(ﬂ)_(

= (0716) - I;2()°; 4,5 €{0,...,2"—1}.

(2)

Then we can write

2"—-12"-1

p=nA2 z Z ,_J)2P I, (5) | Tn (1)) (3

=0 jy=0
2"-12"-1

- TS T .

i=0 j=0

De =
(4)

Definition 1 Let Cy = {An = [a{7] [V € R; i,j €
{0,...,2" = 1}} be the class of 2" x 27 recu’ matrices. The

linear operator L(-) : C, — R is given by

=12 =1
L4 2 Y Y o2, (5)
i=0 j=0

where A, € Cp and [t‘(:)] is the channel transition matriz.

An important property of this operator is due to the re-
cursive structure of Tj,:

Lemma 1 For every matriz

AS,W) Agm)

A1 = Agm) Aﬁ.“)

] G cﬂ+1:

where AS,OOJ, Af,m),A.(,m),As,u) € Cn, we have

L(Ans1) = (1-p)L(AD?Y) +pL(ALY)
+  gL(AZ?) + (1 - gL(ATY).  (6)

Since S,, € C, the operator notation can be used to write

De = 27"AL(S,).

Proposition 1 (Huang[4][5]) The channel distortion
of a uniform 2" level scalar quantizer for a uniform source
on the interval [a,b], which transmits the Natural Binary
Code (NBC) across a Binary Symmetric Channel (BSC)

with P(1|0) = P(0|1) = p, 1s given by

U5 (1-4).

NBC
oo
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The NBC has recently been proven optimal under the
assumptions in Proposition 1 by McLaughlin, Ashley and
Neuhoff [9].

Proposition 2 (Huang(5]) The channel distortion of a
uniform 2" level scalar quantizer for a uniform source on
the interval [a,b], which transmits the Gray Code (GC)
across a Binary Symmetric Channel (BSC) with P(1|0) =

P(0|1) = p, is given by

ey _ (b—a)? [4“—1_ 1-2p\ 4" — (1—2p)"
DC - 4n 6 ( 5 ) 4_(1_2p)].

Theorem 1 The channel distortion of a uniform 2" level

scalar quantizer for a uniform source on the interval [a, b],

which transmits the Natural Binary Code (NBC) across a

binary discrete memoryless channel with P(1|0) = p and
(NBC)

o052 o 3) o0 3]

where a = p+gand f=¢—p.

P(0|1) = g, is given by

Proof
First we write the NBC recursively as ?

;% (3)
"+ I;H(i—-2")

0<i<2" -1
M <igntl o]

M;3.(1) = {

We introduce a matrix U, = [u(")] defined by

o;i(j); 44 €{0,...,

uy = I;2(5) - gh —1}. (7)

Using (2) and (7) we obtain

e Fori,j €{0,...,2" -1}

s = (IR0 - T () =

o Fori €{0,...,2" =1} j €{2",...,2"" -1}

S = (MO -2 -GG -2)
= (o) - oG -2)°
= 2 21'1 (u—l(- _l(j——2"))+4"

— ("\) —ont+ly (n) 4o +4°

IJ— I,J-

! For notational simplicity here and throughout the proofs, the
symbol TI;' denotes the inverse of the actual permutation in
question.

o Fori g{2",...,2"1-1};j €{0,..., 2" = 1)
SO = (20 TN 2Y) - IR ()
= (I;'G-2%)-1;'()°
+ 2.2 (O;Y(i—-2") - O;7'(9) +47
= l(",‘_zvt +2n+1 (2)2u +4“
e Fori,j € {2",...,.2"1 -1}

{n-H)

si (@ +I;' (i -2") - 2" - ;Y - 2")°

= 53:)2-,;'-2-

From these we can immediately deduce that

[ S S, — 2"t + 471,
Sn+1 =

Si + 271U, +471, Sn
(8)

where 1, is the 2" x 2" matrix of all ones. In order to ob-
tain a solvable recursion for S,.41 we must first explicitly

solve for U,. This can be accomplished recursively.

e Fori,j €{0,...,2" -1}
W = 070 - I5(6) = uf
o Fori €{0,...,2"-1}; j € {2*,..., 2" -1}

WiV = I5NE) — 2t~ I

U - = uf';) =2

o Fori €{2",...,2"*1 -1}; j €{0,...,2" =1}
53+1) "4 H;l(i— 2ﬂ) _ l(]) = ust)gn 499
e Fori,j €{2°,... J ol 1}
w7 = ol e
Thus we have
U _ Un Un - 2'111'3
n+l — Un i 2111" Un 4
Using Lemma 1 we have
L(Un+1) = 2L(Un)+(qg—p)4" (9)
L(Sa41) = 2L(Sa)+2"* (g — p)L(Un)
+(p+ q)8" (10)

The initial conditions L(Sp) = L(Uo) = 0 we obtained
from the definitions of S, and U,. Applying these, solving
(9), and then substituting and solving (10), one obtains

1w = @-n(5) ()
and
usy = wro”7 ) +e-07(5) @
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® 4. Comparison

It is interesting to note that as n — oo, DE,NBC) —
Ib——gg: [a * ﬁz] : We note, that since a, ¥, and 3* are symmetricin pand g,
so are the formulas for the distortions of the NBC and the
OEC. Hence the one’s complements of these codes yield
Theorem 2 The channel distortion of a uniform 2" level the same performances as the codes themselves. This does
scalar quantizer for a uniform source on the interval[a,b], Dot, however, hold for the FBC and the GC, since they

which transmits the Folded Binary Code (FBC) across a contain odd powers of 3, and J is not symmetric in p and

)? binary discrete memoryless channel with P(1|0) = p and - Let us therefore examine the one’s complement of these
P(0]1) = q, is given by . codes, denoted by FBC and GC. Formulas for Dg‘Bc)

5 and DE:GC) can be obtained by exchanging p and ¢ (or

D(Cf‘ﬂc) = U’__SE‘)_ [a (1 - 4%) +a(l —c) (i —~ %) equivalently, changing the sign of 3) in the corresponding

y y . 3 y equations for DE;FBC) and DE;GC), respectively.
+# (1-Fara)-oo{3-50 )| |
: Theorem 5 Given a uniform 2" level scalar quantizer
for a uniform source on the interval [a,b], the channel
distortions of the Natural Binary Code (NBC), the Folded
It follows that as n — oo, we have DY) — Binary Code (FBC), the Gray Code (GC) and the Odd-
H u_;), [a + “(lq_a) + ﬂ_"' — 3—:21 Even Code (OEC) on a binary discrete memoryless chan-
nel with P(1|0) = p and P(0]|1) = g, satisfy (assuming

0#g¢>pandp+g<1):

where a = p+gand S =¢q—p.

Theorem 3 The channel distortion of a uniform 2" level
scalar gquantizer for a unmiform source on the inierval

[a,b], which transmits the Gray Code (GC) across a bi- (7) Dg‘Tc) > DE.’.FBC) ¥a > 1,¥p,q (13)
;:;71;‘“"1.6 m'emor’;yless channel with P(1]0) = p and (i) DE:GC) > Dg;_é) VYn>1, Vp,q (14)
= g, is given
b SR () DIVBO > DEEC)  yas1vpg (15)
D(CGC) _ (b _ 8)2 (4!\ -1 B 1471 - i B8 (“J) DE—;FBC) = DS:OEC) (16)
4n 6 2 4- 2(2 — .
T S P ) 7(23)" (—7"ﬁ) et T phatsy —8pe-q’ 20 i-
"1T3 T"a-y " T2-1 7T 25—, D Vn < 1+log, (””)("“'”2 '8
. T p+a+5p—8pg—g g
where f=q—pandy=1-p—gq. if p+q+5p° —8pg—q® <0 '[
; _ and . p+q+2p° —5pg—q® >0, _ |‘i<
G s GC a f
In the limit one gets Df:. ) - (b - a)zm as (v) Dg“.&C) > D(C.NBC) (17) i
e ¥n >1 if  p+q—p +4pg-T0"20 i
(r+dp+q-1) i
v < 141 i
e T s 5:_
Theorem 4 The channel distortion of a uniform 2™ level if p+q—p° +4pg—T¢% <0 48
scalar quantizer for a uniform source on the interval [a, b], and p+q—p®+pg—4g® >0, !

which transmits the Odd Even Code (OEC) across a bi-
nary discrete memoryless channel with P(1/0) = p and
P(0|1) = g, is given by

(wi) DD >  DYFE  wvasavVpq (18)

T AT T Ty

The inequalities (i),(ii),(iii) hold with equality iff p = q.

OEC (b—a)? 1 1 2
pPEe) = = [ﬂ' (1 - 4—“) -5 (5 = 4—,,)] - The regions of the p vs. g plane identified in the theorem -

are shown in Figure 3.

ST T R

e

where «a = p+ ¢ and § = q —p.

" _ ; Corollary 1 The OEC has the same performance as the
Thus DE: = '(;sd)_ [a = %] A8 B'=F OC: NBC on a BSC bul is sirictly better than the NBC for all
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Figure 3: Illustration for Theorem 5. In each graph two codes
are compared. The region where one of them is uniformly
(i.e. Vn) better than the other is marked by the name of the
superior code. (a) FBC vs. OEC. (b) FBC vs. NBC.

other binary channels. Thus the NBC is not optimal on
a binary channel unless the channel is symmelric.

Corollary 2 The GC is never optimal on a binary chan-
nel.
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