Concept Learning using Complexity Regularization!
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Abstract — We apply the method of complexity
regularization to learn concepts from large concept
classes. The method is shown to automatically find
the best balance between the approximation error and
the estimation error. In particular, the error probab-
ility of the obtained classifier is shown to decrease as
O(+y/log n/n) to the achievable optimum, for large non-
parametric classes of distributions, as the sample size
n grows. :

In pattern recognition—or concept learning—the value of a
{0, 1}-valued random variable Y is to be predicted based upon
observing an R%valued random variable X. A prediction rule
(or decision)is a function ¢ : R? - {0,1}, whose performance
is measured by its error probability P{¢(X) # Y'}. The error
probability L* = P{g*(X) # Y} of the optimal decision g* is
. called the Bayes risk. Assume that a training sequence

Dn ESS ((lel/l)y- . '1(Xﬂ$Yﬂ))

of independent, identically distributed random variables is
available, where the (X, Yi) have the same distribution as
(X,Y), and Dy, is independent of (X,Y). A classifieris a func-
tion ¢n : R4x (R¥x{0,1})™ — {0, 1}, whose error probability
is the random variable L{¢n) = P{¢n(X,Dn) # Y|Dn}.

The method of empirical risk minimization picks a clas-
sifier from a class C of functions R4 — {0,1} that min-
imizes the empirical error probability over C. More pre-
cisely, define the empirical error probability of a decision ¢
by Ln(¢) = (1/n) Yo, Iig(x)#v;), where I denotes the in-
dicator function. Let é,.“der_x_ote a classifier chosen from C by
minimizing Ln(4), i.e., Ln(¢n) £ Ln(¢), ¢ € C. Vapnik and
Chervonenkis [4], [5] proved distribution-free exponential in-
equalities for empirical error minimization. One of the implic-
ations is that EL(¢n) — infgec L(¢) € cy/(Vlogn)/n, where
V is the VC dimension of the class C and ¢ is a universal
constant (independent of the distribution). Thus, the error
probability of the empirically chosen decision is always within
O(+/log n/n) of that of the best in C. Unfortunately, if V < oo,
then for some distributions, infgec L(¢) may be arbitrarily far
from L* On the other hand, if V = co, then L(@n)—infsec L(¢)
will be large for some distributions {3], [5].

A possible solution to this problem may be derived from the
idea of structural risk minimization (Vapnik and Chervonenkis
[5]), also known as complezity regularization (see Barron [1],
Barron and Cover [2]). The basic idea is to minimize the
sum of the empirical error and a term corresponding to the
“complexity” of the candidate classifier. In our application,
this complexity is a simple function of the VC dimension of
the class from which the candidate classifier is taken.
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Theorem 1 Let 1M, ¢, ... be a sequence of classes of clas-
sifiers whose VC dimensions V1, Va,... are finite. Let ¢; be
the classification rule based on structural risk minimization.
Then for all n,

E{L(¢n)}— L’

< inf (\/mvklogn+8(k+11)+( inf L(¢)—L")).
k>1 n sec(k)

This result is close on spirit of those obtained by Barron
[1}, and Barron and Cover [2], who select a classifier from
a countable list of candidates by minimizing the sum of the
empirical error and a properly chosen penalty. A significant
difference is that the method we study here does not restrict
the search to a countable set of candidates, allowing thus better
approximation ability.

Corollary 1 Let CV,C(3 ... be a sequence of classes of clas-
sifiers such that the VC dimensions Vi, Va,... are all finite.
Assume further that the Bayes rule is contained in the union
of these classes, i.e., g* € C* def U;";lcm . Let K be the smal-
lest integer such that g* € C¥). Then for every n, the error
probability of the classification rule based on structural risk
minimization, ¢}, satisfies

Vilogn+ K/2+6
" .

EL(¢}) - L* < 4\/

Corollary 1 shows that the rate of convergence is always of
the order of /logn/n, and the constant factor Vx depends
on the distribution. The number Vx may be viewed as the
inherent complexity of the Bayes rule for the distribution. One
great advantage of structural risk minimization is that it finds
automatically where to look for the optimal classifier.
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