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Abstract

Consider encoding a source X into two descriptions, such that the first, the second and
both descriptions allow decoding of X with distortion levels d;, ds and dy, respectively, relative
to a distortion measure p(x, ). Ozarow have found an explicit characterization for the region
R*(0?;dy,da,dy) of admissible rate pairs of the two descriptions, for a Gaussian source X* ~
N(0,0?), relative to the squared-error distortion measure p(z,%) = (x — £)2. In fact, this is
the only case for which the multiple description rate-distortion region is completely known. We
show that for a general real valued source, a locally quadratic distortion measure of the form
p(z,2) = w(z)?(z — £)? + o((z — £)?), and small distortion levels, the region of admissible rate
pairs equals approximately

R* (P$22E{10gw(X)};dl,dz,do)

where P, is the entropy-power of the source. Applications to companding quantization are also
considered.

Key Words: multiple descriptions, non-difference distortion measures, Shannon lower bound,
high resolution.

I. Introduction and Main Result

The multiple description problem [3] arises in communication of analog source information (speech,
image, video) via lossy packet networks. In this increasingly frequent scenario, a source code is
broken into a few packets, some of which may not arrive to the destination. The decoder wishes to
achieve a certain basic reproduction quality if a small subset of the packets arrives, and an improved
quality if more packets or the whole source code arrives. Thus, portions of various size of the code
should contain individually good, complementary descriptions of the source.

The basic formulation of the multiple description problem in the information theoretic literature
involves two (lossless) sub-channels of rates R; and Rs, corresponding to two “packets”, and three

receivers. Each receiver corresponds to a possible case of packet arrival, the first arrived, the second



arrived or both arrived. In response to a source block & = (z1,...z,), the encoder generates two

code words (indices) f;(x) and fo(x) at rates
R; = Llog|f;()] i=1,2

where | f;| denotes the size of code f; (-), and transmits codeword f; through sub-channel 7,7 = 1, 2.
The two individual (“marginal”) receivers and the combined (“central”) receiver then generate

reconstructions Z1, Z and Ty, respectively, using the decoding functions g1, gs and gy, i.e.

z1 = g1(f1(z))
T = go(fo(x))
zy = go(f1(z), f2()) -

Assume that X; € R!,j =1,...,n is a real memoryless source, with a generating random variable
X, and we wish to satisfy distortion levels d1, ds and dj in the three non void cases of packet arrival,

ie.,

1 ~
=Y Bp(X;, Xij) <d; i=0,1,2
n

where the reconstructions Xy, X1, X, are vectors in R", and the distortion measure p(z,Z) is

common to all receivers. Let
Rx(dy,dy,ds) = {(R1,Rs) : dy,d1,ds are achievable for some n} (1)
be the set of achievable rate pairs, or inversely let
Dx(R1,Rs) = {(do,d1,d2) are achievable with rates (R1R2)}

be the set of achievable distortions for a given rate pair (R;, R2). The multiple description problem
differs from the classical rate-distortion problem, since it is usually impossible to satisfy the Shannon
limits Ry = Rx(d1), R2 = Rx(ds2), where Ry (d) denotes the rate distortion function of the source,
and at the same time obtain from the central receiver distortion dy which satisfies the Shannon
limit Ry + Ry = Rx(dy)-

A “single letter” characterization of the set of achievable distortions Dx (R, R2) for the case
of a Gaussian source and squared error distortion measure was found by Ozarow [7]. This set,
denoted D*(0?; Ry, Ry), and its inverse set R*(0?;dg,d1,ds), where o2 is the source variance, are

described in the next section. For general source and distortion measure, however, the complete



solution for Rx(dy,d1,ds) is still unknown. El-Gamal and Cover [3] characterize an inner bound
for Rx(dg,d1,d2), i.e., a set of achievable rates; see Section IV. Only the special case of no excess
rate sum, i.e., R; + Ro = Rx(dp), was solved completely by Ahlswede [1]. For the case of a discrete
source, Zhang and Berger [9, 10] provide inner and outer bounds which are relatively tight for the
case of no excess marginal rate, i.e., R; = Rx(d;),i = 1,2.

In a recent paper [8], the second author found inner and outer bounds on R x(dp,d;,ds) for
general sources and the squared error distortion measure, in terms of the Gaussian rate region

R*(-). These bounds have the form
R* (0’3; d(), dl, d2) - Rx(do, dl, d2) C R*(Px; d(), d17 d2) ’ (2)

and they parallel Shannon’s lower and upper bounds for the rate-distortion function subject to a

mean squared error constraint [2]
R*(03;d) > Rx(d) > R*(Py;d) 3)

where 02, h(X) and P, = 2?"X) /27¢ are the variance, the differential entropy and the entropy-
power of X, and
R(o,d)—QIOg(d> (4)

denotes the rate-distortion function for a Gaussian source X* ~ N(0,0?). Equality in (2) and (3)

2
T

holds for a Gaussian source X*, in which case P, = o
As is well known, the Shannon lower bound (right hand side of (3)) is asymptotically tight for
small distortion level, i.e., Rx(d) = R*(P,;d) as d — 0 [4]. Similarly, it is shown in [8] that the
“Shannon outer bound for multiple descriptions”, i.e., the right hand side of (2), is asymptotically
tight for small distortion levels. (Note that these functions diverge to infinity in the limit of small
distortions!)
In another recent paper [5], the first two authors generalized the concept of the asymptotic

tightness of the Shannon lower bound to a class of non-difference distortion measures. Under some

technical conditions, they have shown that for a locally quadratic distortion measure of the form

p(z,y) = w’(z)(y — 2)* +o((y — 2)*) , (5)

2 A
0 79(@/2’ Y) ’ (6)

1
p(z,y) >0 with equality iff y = z, and w(z)? = 3
y=g



the rate distortion function is given asymptotically for small d by

Q

Rx(d) R*(Py;d) + Elogw(X)

B (P$22E log w(X), d) . (7)

Namely, at high resolution conditions the rate-distortion function associated with the weighting
function w(z) exceeds the quadratic rate-distortion function (i.e., that associated with w(z) = 1)
by Elogw(X), or the entropy-power effectively increases by a factor of 22Flogw(X)

In this paper we combine the two concepts of high resolution coding discussed above, i.e.,
the asymptotic tightness of the Shannon lower (outer) bound, and the correction figure of a non-

difference distortion measure. Qur result is summarized in the following theorem.

Theorem 1 For any real source X with entropy-power P, > 0, and distortion measure p satisfying

Linder-Zamir’s conditions [5], the multiple description rate region equals asymptotically
Rx(do,d1,d2) = R* (Pz22Elogw(X);d0,d1,d2) (8)

where R*(-) is the quadratic-Gaussian multiple description rate region (see its characterization
in the next section), w?(-) is the quadratic Taylor coefficient of p(x,y) defined in (6), and the
approzimate equality ~ between the rate regions Rx and R* means that for any given ratios dy/dy >

0 and dy/dy > 0, and any € > 0, if dy,dy,ds are small enough, then
R*) C Ry C R*¥HO) (9)
where R(+6) 2 {(R1,R2): (R1+ ¢ Ry+e€)ER}

briefly describing Ozarow’s solution for a Gaussian source in Section II.

II. Ozarow’s Solution of the Gaussian Case

Ozarow [7] proved that the set of achievable distortions D*(0?, Ry, Ry) for a Gaussian source with

variance o is the union of all triplets dy, dy, dy satisfying

d > o?.27% (10a)

dy > o%.272R (10b)
2, 2—2(R1—|—R2)

dy > = (10c)

1= (VA= VE)



where 7 = (1—d; /0?)(1—dy/0?) and A = d1dy/o* —2-2F1+82) T the sequel we will need also the
inverse function of (10). Given a triplet of mean square errors dy,d;,ds, the set R*(o2,dg, d1, do)

of admissible rate pairs is the union of all (R;, Ry) satisfying

Ry > R*(0%dy) (11a)
Ry > R* (02; da) (11b)
Ry +Ry > R*(c%d)+ R*(0%dy) + 0 (11c)

where R*(-) is the quadratic-Gaussian rate-distortion function (4), § = 6(0?,do,d1,ds) is defined

by

5= %log (1—1,02) ’ do < domaz (lld)
O, dO > dOmaz )
Vet +y — \/eg
p = — (10_ e(?;\/el—q 0 4 =(1—e)[(e1 — €0)(€a — €0) + €perea — €3] (11e)
T = (1—e)l—e), e =d;/o® for i=0,1,2 (11f)

and

P 1 B didy
mar = Ly 1L 1" dy+dy—didp/0?

Note that 4,7 >0 and —1 < p <0 for all dy,dy < 0? and dy < dyyes- Note also that ¢ depends
on dy,dy,ds and o2 only through the ratios d;/o?. As we will see in Section IV, p has the meaning
of a correlation coefficient in the Gaussian optimal test channel. The right hand sides of (11a)-(11b)
are the rate-distortion functions of the Gaussian source X* ~ N (0,02) at distortion levels d; and
do respectively. Thus, the quantity 6 = §; + d2 > 0 above represents the total excess marginal rate
(TEMR) in the Gaussian case, where §; = R; — slog(c?/d;), i = 1,2 1. In the case of no excess
marginal rate?, i.e., § = A = 0, we have the maximum central distortion dy = dgnez- As d increases
from zero to infinity (p varies from zero to —1), the central distortion dy decreases from dp,qz t0
zero as O(27%9).

The case of no excess rate sum, i.e., R1 + Ry = Ry(do) = 1log(c?/dy) (v = A in (10)),
whose solution was a breakthrough in the research of multiple descriptions [1], turns out to be

not interesting practically in the Gaussian case. That is since no excess rate sum happens when

!We borrow the term “excess marginal rate” from [10].
’Both § and A measure the excess of Ri + Ry over £ log(c®/d1) + 1 log(c”/d>); & is their direct difference and A

is their exponent difference.



dy +dy = 0%(1+2 2Bt R2)) — 52 1 g (see [7]), i.e., when at least one of the two marginal receivers
suffers from distortion higher than ¢2/2, meaning signal-to-noise ratio that is worse than 3dB.
Having both types of excess rate (marginal-rate and rate-sum) zero is possible only in the trivial
case where one of the sub-channels is disabled (e.g. R = 0 and dy = 02).

A case of special interest for us is that of high resolution coding, i.e., the limit as d;/o? and
dy/o? go to zero. In this limit the TEMR and the maximum central distortion do not depend on

the variance of the source. Specifically we have

Sur(do,di,do) 2 lim §(02,do,dy,ds) 2 lim 6(02, Ao, A1, Ada)
0—00 A—0

1 1
= —log <7> (12)
2 1- P%{R
where
p— Vdi/dy —1/dy/dy — 1 — 1 (13)
Vdidso/d3
and
. d1dy
ali>nolo domazr = di+dy (14)

Using these definitions, the asymptotic form of the multiple description rate region R* (Px22E logw(X). g0 d, dg)

in the right hand side of (8) can be written as the set of all rate pairs (R1, R2), satisfying

R, > R*(0%d)) + Elogw(X) (15a)
Ry > R*(0%dy) + Elogw(X) (15b)
Ri+ Ry > R*(0%d))+ R*(0%dy) +2Elogw(X) + dgg . (15¢)

ITI. A Converse Theorem

In this section we derive an asymptotic outer bound for the set of achievable distortions, which

establishes the converse part of Theorem 1.

Lemma 1 Under the conditions of Theorem 1, the set of achievable distortion triplets (dy,d1, ds)

satisfies
Dx(R1, Ry) C D* (P$22E1°gw(x>; Ry, RQ) (16)

where D*(-) is the quadratic-Gaussian distortion region, and the asymptotic inclusion C is defined

similarly to =~ in (8) but with the RHS condition of (9) only.



Note that the RHS of (16) can be written also as D* (Pw; R; — Elogw(X), Ry — Elog w(X)).
Proof: The proof follows the line of the proof of the converse in [7], and its generalization to a
non-Gaussian source in [8], except that at few points it uses the Linder-Zamir formula [5] instead
of the explicit rate distortion function, and at one point it uses a high resolution approximation to

the entropy of the sum of independent random variables instead of the exact value of the entropy.

IV. A Direct Theorem

In this section we use the El-Gamal-Cover inner bound [3] to prove the direct part of our main
result in Theorem 1. We recall from [3] that a distortion triplet (dy,d;,ds) is achievable from two
descriptions of a source X with rates Ry and Ry if (but not necessarily only if!) there exist random
variables U and V jointly distributed with X, and three functions X; = X1(U), X = X5(V) and
Xo = Xo(U,V), such that?

Ry > I(X;U) (17a)
Ry > I(X;V) (17b)
Ri+Ry > I(X;UV)+I(U;V) (17c)
d; > Ep(X,X;) i=0,1,2 . (17d)

The El-Gamal Cover solution is optimal for a Gaussian source and square error distortion measure;

the entire rate region R*(02;dg, d1,ds) characterized in (11) is realized in this case by choosing

U = X+N1 VZX-I-NQ (18&)

~

X1 = aU XQ =V X\() = (U + BV (18b)

where (N7, Ny) are correlated Gaussians, independent of X, with covariance matrix

2
o7 pPo102

COV(Ny, Ny) = (19)

pPo109 0'%
whose parameters p, 01 and oy are chosen so that VAR(X|U) = dy, VAR(X|V) = dy and VAR(X|UV) =
dp, where VAR(A|B) 2 E [A— E(A|B))? denotes conditional variance. The scaling factors aq, aso, 81
and [, are chosen to yield the conditional means X, = E(X|U), X, = E(X|V) and Xo = E(X|UV),

which are linear functions since (X,U,V) are jointly Gaussian. The above implies that o2 =

3The characterization of the achievable rate region in (17) might be looser than that of [3], but it suffices for our

purpose.



o2d;/(c2 —d;), i = 1,2, and that p is given by the expression in (11e). See [7] for explicit charac-
terization of a1, az, 81,32 as a function of 02, dy, d1, ds.
At high resolution conditions, i.e., as (dy, d1,d2) — 0, we have the following limiting values for

the parameters of the quadratic-Gaussian solution above:

1 2 COV(Ny, Ny) = 1 PHRV Q102 (20)

Br=1—pr = ﬁHR pHRV d1d2 do

where pyp is given in (13), and Sur = (d2 + |prr|Vdidz2)/(d1 + 2|p|yv/dide + d2) (see [7, 3]). We

use this set of parameters in proving the asymptotic inner bound below.
Lemma 2 Under the conditions of Theorem 1, the set of achievable rate pairs (R1, Rp) satisfies
Rx(do,dy,d2) D R* (Px22Elogw(X);d0,d1,d2) : (21)

Proof To make the proof more transparent we assume the simplified form of an input weighted
distortion measure p(z,y) = w?(z)(y — z)2. Let us substitute the following auxiliary random vari-

ables in the El-Gamal Cover inner bound (18):

s 1 N No
X, = Xo=V=X+ ———- d
1 'LU(X) b 2 + ’LU(X) b a‘n
BurN1 + (1 — Bur)N2

Xo = BurU+Q—PBur)V =X+ (22)

w(X)
where (N7, N3) are Gaussian with the covariance matirx in (20). It is easy to verify that that this

choice of Xy, X; and X, satisfy the distortion constraints in (17d). Thus, ineq. (17a)-(17¢) describe

an inner bound for R x (dy,d1,ds2) , which includes all rate pairs (Ry, Ry) satisfying

R > I(X X + ](V)l()) (23a)

Ry > (XX+ ) (23b)
Ri+Ry > (X,X+ ,X+%>+I(X+%;X+%) (23c)
= I(X,X—l— )+I(X;X+%>+I(%;% X) (23d)

- (e ) or{roee ) o)

where pgr is given in (13), eq. (23d) follows using the identity I(A; BC) = I(A;B) + I(4;C) +

I(B;C|A) — I(B;(C), and in (23e) we used the fact that T ( (1); w](vf() X) = I(Ny; N»), and then




applied the formula for the mutual information between correlated Gaussians. The theorem now

follows from the limit

N; 1
I(X,X—I— w(X)) = Elog(Pm/d,) + Elogw(X) +o0(l), asd; —0

shown in [5], after substituting (4) and (12), and comparing with (15).

V. Discussion: Companding Model for Multiple Description

The proof of the direct theorem in the previous section has a side benifit of directing the desing
of an asymptotically optimal multiple description coding scheme. Note, first, that as d; — 0, the

mutulal informations in the RHS of (23a) and (23b) satisfy

I (X;X+ w](v)lc)> ~ I1(q¢(X);¢(X) + N;)

where g(z) = [* w(t)dt; see [5, 6]. Furthermore,
q_1<(I(X) + Nz’) ~ X + N;/w(X) .

Thus, the realization of R* (Pm22E logw(X). gy d, dg) in (22) is equivalent to passing the source X
through the mapping ¢(-), then applying the quadratic-Gaussian multiple description test channel
of (18), and finally passing the reconstructions through the inverse mapping ¢~ '(-).

This information theoretic realization suggests that in practice, a combination of a compressor
q(-), a “standard squared error” multiple description quantizer, and an expander ¢ !(-), can ap-
proach the optimal performance for locally quadratic distortion measures p(z, %) ~ w?(z)(% — )2,
in the limit of high dimension and small distortion. The work of the authors [6], on entropy-coded
compnding quantization for non-difference distortion measures, further supports the feasibility of

such a simple modular solution.
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