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Abstract

1t is proven that for every random variable with a countably infinite set of
outcomes and finite entropy there exists an optimal prefix code which can be con-
structed from Huffman codes for truncated versions of the random variable, and
that the average lengths of any sequence of Huffman codes for the truncated ver-
sions converge to that of the optimal code. Also, it is shown that every optimal
infinite code achieves Kraft's inequality with equality.

1 Introduction

An alphabet A is a finite set and A is the set of all finite length words formed from the
elements of A. For each word w € A*, let {(w) denote the word length of w. A D-ary
prefiz code C over an alphabet A (with |A| = D) is a subset of A* with the property that
no word in C is the prefix of another word in C. Let Z* denote the positive integers.

A sequence of D-ary prefix codes Ci,Cy, Cs, ... converges to an infinite prefix code
C if for every i > 1, the i** codeword of C, is eventually constant (as n grows) and
equals the i codeword of C. D-ary prefix codes are known to satisfy Kraft’s inequality
Ywee D7) < 1. Conversely any collection of positive integers that satisfies Kraft’s
inequality corresponds to the codeword lengths of a prefix code.

Let X be a source random variable whose countably infinite range is (without loss
of generality) Z*, with respective probabilities py 2 p2 2 ps 2 -+ where p; > 0 for all
i. The average length of a prefix code C' = {w;,ws, ...} to encode X is s pil(wi). A
prefix code C is called optimal for a source X if no other prefix code has a smaller average
length. The entropy of the random variable X is defined as (X)=-X2 pilogp;. It
is known that the average length of an optimal prefix code is no smaller than H (X) and
is smaller than H(X) + 1.

The well-known Huffman algorithm gives a method for constructing optimal prefix
codes for sources with finite ranges. For each n > 1, let X, be a random variable
with a finite range and with outcome probabilities pﬁ") = p;/Sp for 1 < i < n, where
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S, = E;-‘:l pj. A D-ary truncated Huffman code of size n for X is defined to be a Huffman
code for Xp.

For sources with infinite ranges, several approaches have been taken to construct
optimal codes [1, 2, 3, 4, 5], but in each case some condition on the tail of the probability
mass function of the source random variable was assumed. To the best of our knowledge
there is no known proof in the literature that optimal codes always exist for sources with
infinite ranges.

In this correspondence we present such a proof for sources with finite entropy. In
particular, we show that a subsequence of Huffman codes designed for truncated versions
of the source random variable X lead to an optimal infinite code for X. We provide an
existence proof and cannot, however, specify which Huffman code subsequence is needed.
However, this theorem does suggest that recursive Huffman code construction algorithms
might exist for any source, regardless of how fast the tails of its probability mass function
decay. We also show that any sequence of truncated Huffman codes indeed converges in
the average length sense, whereas only a subsequence is guaranteed to converge in the
code sense.

If a source random variable has a finite range then an optimal binary code satisfy’s
Kraft’s condition with equality, but not necessarily for D-ary codes when D > 3. In
contrast, our theorem also establishes that for all D > 2 an optimal D-ary code for a
source with an infinite range must satisfy the Kraft inequality with equality.

In [4] it was noted that an optimal code for a source with an infinite range must
have a full encoding tree. However, a full encoding tree does not guarantee that Kraft’s
inequality is satisfied with equality.

A simple counterexample to demonstrate this fact for D = 2 is given next. For any
A,B C {0,1}* let AB = {ab€ {0,1}* :a € A,b € B}. Forn >0, let T, = {0,1}*\ {0"}
be the set of all n-bit binary words excluding the all zeros word, and let [] denote binary
word concatenation. Define the prefix code

o0 k
(U (1’[ Tn) o"“) u {00}
k=2 \n=2

{00, 01000, 10000, 11000, .. .}

c

and note that the Kraft sum for C is

1 1 hiad k k+1 .
Y2 = S+ SN[ T) 052 2
weC 4 k=21 \n=2

1 &/ e &
= -+ (2 s=z') He -1
4 k=2 n=2
<! +3 9N ig- Yty
4 =
= i 9—(k+1)
k=1
= 1/2.

Thus the Kraft inequality is strict in this case and it is easy to see that the encoding tree
of the code C is full.
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2 Main Result

Theorem 1 Let X be a random variable with a countably infinite set of possible outcomes
and with finite entropy. Then for every D > 1, the following hold:

(I) There ezists a sequence of D-ary truncated Huffman codes for X which converges to
an optimal code for X.

(II) The average codeword lengths in any sequence of D-ary truncated Huffman codes
converge to the minimum possible average codeword length for X.

(III) Any optimal D-ary prefiz code for X must satisfy the Kraft inequality with equality.

Proof For each n > 1, let C, be a D-ary truncated Huffman code of size n for X,
and denote the sequence of n codeword lengths of C, (followed by zeros) by I™) =
(M i™0,0,0,- ). Let F denote the set of all sequences of positive integers.

t n ?
For each n, the average length 322, [ (")p of Huffman code C,, is not larger than H(X,,)+

1, where the entropy of X,, is

1

n

1
H(Xp) = —= > pilogp; — log — 3

n =1

— H(X) as n — o0,

since S, = X% ,p; > 1 as n = oco. Hence H(X,) +1 < H(X) + 2, for n sufficiently
large, and it is easy to see that Il < (H(X) + 2)/p; for n sufficiently large.

Thus, for each ¢, the sequence of codeword lengths {l(l) l(z) l(3) --} is bounded and
therefore the corresponding sequence of codewords can only take on a finite set of possible
values. Hence, for each i, there is a convergent subsequence of codewords. We conclude
(using a minor modification of {6, Theorem 7.23]) that there exists a subsequence of codes
Cnys Cnzy Chy, - .. that converges to an infinite code C. Clearly C is a prefix code since it
is a limit of finite Huffman codes. Furthermore the subsequence {i)}, of elements of
F, converges to a sequence | = {I},z,--} € F, in the sense that for each i € Z*, the
sequence l( %) converges to ;.

To show the optimality of €, let Ay, Ay, As, . . . be the codeword lengths of an arbitrary
prefix code. For every k, there exists a j such that i = l"'" for every i < k provided
that m > j. Thus for all m > j and k < n,,, the optimality of Huffman codes implies

Zp,l = Zp l(""‘) < Zp l(""‘) S, Ep(""‘)l nm) < g Zp(""‘))\ (1)

i=1 =1

Therefore, by letting first m — oo and then k£ — oo, we obtain

This implies that the infinite code Cis optimal.
To prove part (II) of the theorem, notice that by the optimality of Huffman codes

Yopd =5, Zp‘"’l(") < S Ep‘"’l‘"“’ an b < Z L
i=1
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The sequence ¥, p,l(") is thus an inc
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(o] N Nyn
i;pil.- < lim ;:ml
Next by the optimality of Huffman coc

(n) . i .
n—a»oo ZP s nl-l—{{-lo Sn Ep‘(n>l'(") < nll
i=1

Thus
Jim Z p(")l(") Jim

This proves the second part of the theoren

Next we prove part (III) of the theorem
be denoted §; < I, < I3 < , and assumg

strict, i.e. 3, D% < 1. Let 6— 1-%, D"
such that D% < é for all i > k. Let j be a
of integers | I lg, - such that l, = {; for all

oo R 00
2. DH=Y"ph_pby
i=1 i=1
Thus the integers fl, l;, - satisfy Kraft’s i
having them as codeword lengths. Since l
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are [y, 1y, +-. This is a contradiction.
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The sequence 37, pil; 1™ is thus an increasing sequence which is bounded above by
H(X) + 2 and has a limit L. It follows from (1) that

Nm n
: glnm) _ gln)
A, 2 pil™ = lim 3 pil

oo
> opli <
0

Next by the optimality of Huffman codes

n n n n o0
Jim 3l = Jim, S, 3 i < Jim S0 3 9" = Jim 3 opid = 3 opil
= 1= 1= = =

Thus

. n . 1 n oo "
Jm 3ol = Jim o5 pdl” = 3 pid
This proves the second part of the theorem.

Next we prove part (III) of the theorem. Let the codeword lengths of an optimal code
be denoted ; < Iy < I3 < , and assume to the contrary that the Kraft inequality is
strict, i.e. ;D7% < 1. Let § =1 — 3; D% > 0. Then there exists a positive integer &
such that D% < § for all ¢ > k. Let J be an integer such that I; > ;. Define a collection

of integers ll, l2, - such that l, =; for all ¢ # j and such that l lt. Then

o0 . 00
Y D= D%“-D"

i=1 i=1

o0
4D <y Dl +s=1.

i=1
Thus the integers il,f2, .-+ satisfy Kraft’s inequality, so that there exists a prefix code
having them as codeword lengths. Since l;- < lj, such a prefix code will have a strictly
smaller average codeword length for X than the optimal code whose codeword lengths
are Iy, 1y, - - . This is a contradiction. 0.
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