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1 Abstract

The problem of vector quantizer empirical design for noisy channels or for
noisy sources is studied. It is shown that the average squared distortion of a vector
quantizer designed optimally from observing clean i.i.d. training vectors converges
in expectation, as the training set size grows, to the minimum possible mean-squared
error obtainable for quantizing the clean source and transmitting across a discrete
memoryless noisy channel. Similarly, it is shown that if the source is corrupted by
additive noise, then the average squared distortion of a vector quantizer designed
optimally from observing i.i.d. noisy training vectors converges in expectation, as
the training set size grows, to the minimum possible mean-squared error obtainable
for quantizing the noisy source and transmitting across a noiseless channel. Rates of
convergence are also provided.

2 Introduction

The design of quantizers has been studied over the last four decades from
various perspectives. On the practical side, the Lloyd-Max [1], [2] algorithm provides
an efficient iterative method of designing locally optimal quantizers from known
source statistics or from training samples. The generalized Lloyd algorithm [3], [4]
similarly is useful for designing vector quantizers. A theoretical problem motivated
by practice is the question of consistency: if the observed training set size is large
enough, can one expect a performance nearly as good as in the case of known source
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statistics? The consistency of design based on global minimization of the empirical
distortion was established with various levels of generality by Pollard [5], Abaya and
Wise [6], and Sabin [7]. The finite sample performance was also analyzed by Pollard
(8], Linder, Lugosi, and Zeger [9], and Chou [10]. The consistency of the generalized
Lloyd algorithm was also established by Sabin [7] and Sabin and Gray [12]. An
interesting interpretation of the quantizer design problem was given by Merhav and
Ziv [11], who obtained lower bounds on the amount of side information a quantizer
design algorithm needs to perform nearly optimally for all sources.

Less is known about the more general situation when the quantized source
is to be transmitted through a noisy channel (joint source and channel coding), or
when the source is corrupted by noise prior to quantization (quantization of a noisy
source). In the noisy channel case, theoretical research has mostly concentrated on
the questions of optimal rate-distortion performance in the limit of large blocklength
either for separate [13], or joint [14] source and channel coding, as well as for high
resolution source-channel coding [15],{16]. Practical algorithms have also been pro-
posed to iteratively design (locally) optimal source and channel coding schemes [17],
[18].

For the noisy source quantization problem the optimal rate-distortion perfor-
mance was analyzed by Dobrushin and Tsybakov [19] and Berger [20]. The structure
of the optimal noisy source quantizer for squared distortion was studied by Fine [21],
Sakrison [22], and Wolf and Ziv [23]. The framework of these works also included
transmission through a noisy channel. Properties of optimal noisy source quantizers
as well as a treatment of Gaussian sources corrupted by additive independent Gaus-
sian noise were given by Ayanoglu [24]. A Lloyd-Max type iterative design algorithm
was given by Ephraim and Gray [25] for the design of vector quantizers for noisy
sources. A design approach based on deterministic annealing was reported by Rao
et al. [26]. No consistency results have yet been proved for empirical design of noisy
channel or noisy source vector quantizers.

In empirical design of standard vector quantizers one can observe a finite num-
ber of independent samples of the source vector. The procedure chooses the quantizer
which minimizes the average distortion over this data. One is interested in the ex-
pected distortion of the designed quantizer when it is used on a source which is
independent of the training data. An empirical design procedure is called consis-
tent if the expected distortion of the empirical quantizer approaches the distortion
of the quantizer which is optimal for the source, as the size of the training data
increases. If comsistency is established, one can investigate the rate of convergence
of the algorithm, i.e., how fast the expected distortion of the empirically optimal
quantizer approaches the optimal distortion. Tight convergence rates have practical
significance, since consistency alone gives no indication of the relationship between
the resulting distortion and the size of the training data.

In this paper we investigate the consistency of vector quantizers obtained by
global empirical error minimization for noisy channels and noisy sources. In both
cases, the notion of empirical (sample) distortion is not as simple as in standard
vector quantizer design. For noisy channels, the channel transition probabilities are
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assumed to be known, and the empirical distortion is defined as the expected value
of a source symbol and its random reproduction, where the expectation is taken with
respect to the channel. For sources corrupted by noise, the density of the noise is
assumed to be known and the estimation-quantization structure (see, e.g., [23]) of
the optimal quantizer is used. Here the sample distortion has no unique counterpart.
Although a modified distortion measure can be introduced {25] which converts the
problem into a standard quantization problem, this modified measure cannot directly
be used since it is a function of the unknown source statistics. The main difficulty lies
in the fact that, in general, the encoding regions of a noisy source vector quantizer
need not be either convex or connected. Thus the set of quantizers to be considered
in the minimization procedure is more complex than in the clean source or noisy
channel case.

3 Preliminaries

3.1 Vector quantizers for noisy channels

An N-level noisy-channel vector quantizer is defined via two mappings. The encoder
Q¢ maps RF into the finite set {1,..., N}, and the decoder Qp maps {1,..., N} onto
the set of codewords {y1,¥2,...,yn} C R* by the rule Qp(j) = y;, for j =1,..., N.
The rate of the quantizer is (1/k)log N bits per source symbol. The quantizer takes
an RF-valued random vector X as its input, and produces the index I = Q¢(X).
The index [ is then transmitted through a noisy channel, and the decoder receives
the index J € {1,..., N}, a random variable whose conditional distribution given /
is

P(J =j|I =i)=p(jls), 1<4,5 <N,
where the p(jls) are the channel transition probabilities. The channel is assumed to
be discrete with N input and N output symbols, with known transition probabilities,
and the channel is assumed to work independently of the source X. The output of
the quantizer is

Y =Qp(J) =y,

and the joint distribution of (X,Y) is determined by the source distribution and the
conditional distribution

P(Y = y;|X = z) = p(j]|Qc())-

We will use the notation ¥ = Q(X) as for an ordinary vector quantizer, but now Q
is not a deterministic mapping. The quantizer distortion can be written as

N N
;1 /R; (2_: lly; — ‘1”217(.”7')) Px (dz), (1)

1
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where the encoding regions R; = {z : Q¢(z) = i}, for 1 = 1,... N completely
determine the encoder Q¢. It is obvious from (1) that given the decoder Qp, the
encoder regions

N N
Ri= { 2wy = 2lPp(le) < 3 Ny — = lPpilD), 1= 1,. N}
1=1 =1

determine an encoder (with ties broken arbitrarily) which minimizes the distortion
over all encoders. The above encoding rule is sometimes called the weighted nearest
neighbor condition (see, e.g., [27], [17], [28], [14]).

Let us denote the distortion of an optimal quantizer Q% by
Dy = BLIQx(X) - XIP] = gmin E{IQ(X) - X|,

where the minimum is taken over all (N-level) encoders and decoders operating on
the fixed channel and source X.

3.2 Vector quantizers for noisy sources

Assume that Y is the noisy version of the source X. Y can be viewed as the output
of a channel whose input is X. The noisy source ¥ is to be quantized by an N-level
quantizer ) such that the mean squared distortion

E[[|X — ()|

is as small as possible. In this problem an N-level quantizer Q) is characterized by its
codevectors {y1,...,yn} C R* and the measurable sets B; = {z € R* : Q(z) = ),
i=1...,N, called encoding regions. As was noted in several papers dealing with
this problem (see, e.g., [19], [21], [22], and [23]), the structure of the optimal N-level
quantizer can be obtained via a useful decomposition. Let M : R* — R* denote a
version of the conditional expectation E[X|Y = y]. Then

E[|IX - (M)|*]

E[IX - MY)|P]+ B{|M(Y) - Q(V)|[*]
+2E[(X - M(Y))(M(Y) - Q(Y))]
E[|X — M(Y)|*]+ E[IIM(Y) - Q(V)]*] (2)

where the cross-term disappears after taking iterated expectations, first conditioned
on Y. If the codevectors {y1,...,yn} are given, then the encoding regions minimizing
the distortion must satisfy

IM(y) — will < IM(y) — yjll, for j=1,...,N ify € R 3)
This means that for any Q,

E[[|[M(Y) - QW)I*] S E[IM(Y) - M)’



where @ is an ordinary nearest neighbor quantizer which has the same codevectors
as Q. Thus by (2) we have

Dy ¥ wfE[|X - Y)I"]
= E[|X - M(Y)|*] +i%fE[|lM(Y) - QMM))II],
where the second infimum is taken over all N-level nearest neighbor quantizers Q.

The quantizer @* minimizing E[||X — Q(Y)||?] is obtained by first transforming ¥’
by M and then quantizing M(Y) by a nearest neighbor quantizer @*, that is,

Q(Y) = Q(M(Y)).
Furthermore,

Dy = E[IIX - M(Y)|*] + E[|M(Y) = Q" (M(Y))*]. 4)

4 Empirical Design for Noisy Channels

In most applications one does not know the actual source statistics, but instead
can observe a sequence of i.i.d. copies Z, = (Xi1,Xs,...,Xpn) of X. These m
“training samples” induce the empirical distribution P, which assigns probability to
every measurable G C R* according to the rule

1 m
Pu(G) = — > Iixeoys
=1

where I is the indicator function of the event of its argument. When the source
statistics are not known, one cannot directly search for an optimal quantizer Q™.
Instead, one generally attempts to minimize the empirical distortion, which is a
functional of P,, rather than of the true source distribution. The empirical distortion
Dy is the expected value (expectation taken over the channel use) of the average
distortion of the quantizer when Z,, is quantized,

N N
Dym=% [, (z: s - xn’pmi)) Pa(do). )

=1

The empirical distortion can be rewritten in the simple form
1 m
Dy = —3_do(X1),
m i=1

where dg : R¥ — R* is a function which depends on the quantizer Q) as

do(z) = 3_ Iwery (X_,: lly; — wll%(i!l’)) . (6)

=1
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Assume we design a quantizer based on the training data by minimizing the
empirical distortion over all possible quantizers. This minimization can be carried
out in principle, since given Z,, and the channel transition probabilities, we can
calculate Dy, for any quantizer using weighted nearest neighbor encoding.

Let Q¥(:|Zm) be the quantizer minimizing Dy n,

1m
N(1Zm) = argmin — » dgo(X)),
Qi(172) = axgmin S do(X)

and let
Dy = Bl Qn(X1Zm) — X171,

where X is independent of Z,. Then Dy, is the average distortion of the empiri-
cally optimal quantizer when it is used on data independent of the training set. A
fundamental question is how close this distortion gets to the optimal D% as the size
of the training data increases, and therefore as the source statistics are more and
more revealed by the empirical distribution.

One goal in this paper is to investigate how fast the difference between the
expected distortion of the empirically optimal quantizer and the optimal distortion

E[lQn(X|2n) - X|I*] - Dy
decreases as the training set size m increases.

Theorem 1 Assume that a source X € R is bounded as P(|| X||> < B) = 1 for
some B > 0, and let Zp = (X1,...,Xn), where the X; are i.i.d. copies of X.
Suppose an N-level noisy channel vector quantizer Q% (:|Zy) is designed by using
empirical distortion minimization over the training set Z,,. Then the average dis-
tortion of this quantizer is bounded above as

E[ “QI*V(XlZm) - X“Z] S _D;\] + c”% + O(m—l/Z),

where Dy, is the distortion of the N-level quantizer that is optimal for the source and
the channel, and ¢ = 8B\VEN + 1.

5 Empirical Design for Noisy Source

In the noisy source quantizer design problem we are given the samples Z,, =
(Y1,...,Y,) drawn independently from the distribution of Y. We also assume that
the conditional distribution of the noisy source ¥ given X is known (i.e., the channel
between X and Y is known), and that P(||X||?> < B) = 1 for some known constant
B. In this situation the method of empirical distortion minimization cannot be
applied directly, since we only have the indirect (noisy) observations V1, ..., Y, about
X. However, the decomposition (4) suggests the following method for noisy source
quantizer design:
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(1) Split the data Z,, into two parts, Z0) = (Y4,...,Yn/2) and Z® = (Yjo4ts- - Ym)
(assume m is even) and estimate M(y) = E[X|Y" = y] from the first half of
the samples Z{1) and the known conditional distribution Px|y. The estimate
My (-) = Mp(-, Z8D) is required to be L; consistent:

E[|Mn(Y) - M(Y)|?] =an — 0 as m — oo. (7)
Since the upper bound B on ||X||? is known we also require that

sup 1M ()| < B. (8)

(ii) Using the second half of the training data define a new set of m/2 training
vectors My (Yins241),- -+ » Mm(Ym), and consider a nearest neighbor quantizer
@}, minimizing the empirical distortion:
A 1 m
@ =agmin—z 3 [|Mn(Y:) - Q(Mn(Y))] (9)
e m/ i=m/2+1
Here the minimization is over all N-level nearest neighbor quantizers. The
quantizer for the noisy source designed from the noisy samples is then obtained
from @)}, and M, as R
Qn =Qn oM.
Theorem 2 Assume that a source X € RF is bounded as P(]| X||* < B) =1 for
some B > 0 and let (Yi,...,Y) be i.i.d. samples of the noisy source Y. Suppose
furthermore that the conditional distribution of Y given X, and the constant B are
known, and that the estimator My (y) of M(y) = E[X|Y =y] has Ly error

E[|Mn(Y) = M(Y)|*] = tm,

and is bounded as

sup || Mn(y)|” < B.
yeR*

Then the N-level Q* quantizer designed in steps (i) and (ii) above satisfies

E{IX = Qu(V)IP] < iy + ¢/ E% + O(m~7%) + 8y/Bay +

where D% is the distortion of the optimal N-level quantizer for the noisy source

problem, and ¢ = 8 B{/2(kN +1).

Corollary 1 Assume the conditions of Theorem 2 and suppose Y = X + v, where
v is independent of X and has a density whose characteristic function is almost
everywhere nonzero. Then there exists a bounded estimator My, of M such that

lim E{|M(Y) - Ma(Y)|F] =0,
and the noisy source design procedure is consistent, i.e.,

Jim E[|X — QL.(MII*] = Dx-
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