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Abstract Rates of convergence results are estab-
lished for vector quantization. Convergence rates are
given for an increasing vector dimension and/or an in-
creasing training set size. In particular, the following
results are shown for memoryless real valued sources
with bounded support at transmission rate f: (1) If a
vector quantizer with fixed dimension k is designed
to minimize the empirical MSE with respect to m
training vectors, then its MSE for the true source
converges almost surely to the minimum possible
MSE as Ofy/log m/m); (2) The MSE of an optimal k-
dimensional vector quantizer for the true source con-
verges, as the dimension grows, to the distortion-rate
function D(R) as O(/log k/k); (3) There exists a flxed
rate universal lossy source coding scheme whose per
letter MSE on n real valued source samples converges
almost surely to the distortion-rate function D(R) as
0(\/log log n/log n); and (4) Consider a training set of
n real valued source samples blocked into vectors of
dimension k, and a k-dimensional vector quantizer de-
signed to minimize the empirical MSE with respect
to the m = |n/k] training vectors. Then the MSE
of this quantizer for the true source converges al-
most surely to the distortion-rate function D(R) as

O(/loglog n/log n), if one chooses k = |4(1 —¢)(logn)]
(0,1)

Ye € (0,1).

Let Qu.x denote a k dimensional, N level nearest neigh-
bor vector quantizer. Let Z,Zy,...,Zm € R* be indepen-
dent identically distributed random vectors (training data)
and define the average distortion (mean square) as A(Qn ) =
E|Z - Q,-."k[Z)"J and its empirical distortionas A (Qns) =
LUl Iz - QnalZ)IP
Theorem 1 Let Zy, Za,... € R* be ia.d. random veclors
such that Pr{||Z:]* < B) = 1 and m(1/88)° > 2. Sup-
pose an N -level, k-dimensional quantizer, Q;, y, 13 designed
to minimize the empirical MSE over a training sel of m vec-
tors Zy,...,Zm. Then the difference between the MSE of this
quantizer for the true source and that of the best quanlizer,
for the true source, salisfies

Pe{A(@hwa) — B(Qha) > t) € d(2m) A1,
(1)

Corollary 1 Let Zy,Z3,... € R* be an i.id. source that
is bounded with probability one and suppose an N-level, k-
dimensional guantizer, Q7 yx, 13 designed to minimize the
empirical MSE over a training set of m vectors Zy,...,Zm
Then its MSE for the true source converges almost surely as
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m — oo to the minimum MSE of the best quantizer, QY ., for
the lrue source, al a rale

A(Qr k) —A(QNe) =0 ( lc”’i) a.s.

m

Theorem 2 Let Xy, Xz,... be a real valued i.1.d. source thal
is bounded with probability one and has distortion-rate func-
tion DD(R). Then for every R > 0 with D(ft) > 0 there is o
conatant ¢ such that for every k the difference between the per
letter MSE of the best k-dimensional quantizer of rate R and
D(R) salisfies

- : k
De(R) — D(R) < ¢ "’: ‘

Definition 1 For B > 0 a sequence of pairs of functions
(fn,én) of the form

fuiR™— (0,1}"”) and ¢, {0,1)"" ~ &"

is called an almost sure universal source coding scheme
of rate R with respect to a family of real sources, if for each
source Xy, Xa, ... in the family, the n-blocks (Yin,..., Yun) =
&n (Jul X1, ...y Xn)) satisify (D(R) is the distortion-rate func-
tian of the source) limp—oe 2 3" (X — Yin) = D(R) a.s.

Theorem 3 For every rate K > 0 there exists an almost sure
universal source ceding scheme for the family of stationary
and ergodic real sources with finite second moment. More-
over, if D{R) is the distortion-rale function of any source in
the subfamily of i.i.d real-valued sources with bounded support,
then for every R > 0 such that D(R) > 0, there is a conaslan!
¢ > 0 such that the difference between the per letter sample
MSE and D(R) decays ¥e € (0,1/2) as

1 = T {log log n log n §-e
n Z('\' Yin)y ~D(R) << log n +u((T) =
=

Theorem 4 Let Xy,...,Xn be n samples from a real val-
ued i.i.d. source that are bounded with probability one, and
suppose these samples are blocked into k-dimensional “train-
ing” veclors Zy,. .., Zm, where Z, = (X(i—1)k41s--- ) Xki) and
m = [}]. Lel Q) nx be a k-dimensional vector quantizer de-
signed to minimize the empirical MSE for the m training vec-
tors. Then by choosingk = [lR(I. ~¢)logn], for anyc € (0,1),
the per letter MSE of Q}, .k, for the true source, converges
to the distortion-rate function at the rate

'Iaca:n_ﬂ,k)—ufm:fr(,/"’—{“ﬁ) as. (2)
Og M
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