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1 Abstract

We show that without knowing-anything about the statistics of a bounded,
real-valued memoryless source, it is possible to construct a sequence of codes, of
rate not exceeding a fixed number R > 0, such that the per letter sample distortion
converges to the distortion-rate function D(R) with probability one as the length
of the message approaches infinity. In addition, it is proven that the distortion
converges to D(R) as \/loglogn/logn almost surely, where n is the length of the
data to be transmitted.

2 Introduction

The problem of universal lossy coding, that is, transmitting messages from
an unknown source under a certain rate R was first formulated by Ziv [8], who
considered a scheme whose expected distortion is proven to converge to D(R) for
any stationary, ergodic process. Problems of this type were further pursued by e.g.
Neuhoff, Gray and Davisson [4], and Pursley and Davisson [7].

The coding scheme that we consider here is essentially Ziv’s, which can be
described as follows. Consider a real-valued data sequence containing n samples
from a source. First we parse the sequence into blocks of equal length k,, and then

*The research was supported in part by the National Science Foundation under Grant No.
NCR-91-57770. !
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design a k,-dimensional vector quantizer with N, reproduction points (codevectors)

that gives the best performance on the vectors obtained from the data. Then we

uniformly quantize the coordinates of the N, quantizer codevectors using b, bits per

coordinate and then transmit this approximation of the codebook. F inally, we use

the quantized quantizer to transmit approximations to the kn-long source vectors.

For a given input sequence length n, the choice of the block length , determines both
the vector quantizer dimension (i.e. k,) and the size (i.e. n/k,) of the vector training
set used to design the vector quantizer. The problem is to choose the parameters of
the code ky, Ny, and b, such that the overall per-letter transmission rate stays below
a fixed number R, and the per-letter distortion approaches D(R) almost surely. We
will show first that such a choice possible, and second (and perhaps more surprising)
that by properly choosing the parameters there is a universal rate of convergence
that applies for all memoryless sources with bounded support. '

To establish such a result, on the one hand, we have to study the rate of conver-
gence of the emirical performance of the empirically designed k,-dimensional vector
quantizer. The other side of the trade-off is the difference between the distortion of
the best k,-dimensional quantizer of rate not exceeding R and the distortion-rate
function D(R). Shannon’s classical source coding theorem tells us that the difference
always goes to zero so long as the dimension k, grows to infinity. This fact is suffi-
cient for the existence of universal coding schemes. However, to derive conditions on
how one should optimally choose the quantizer dimension, one needs to study the

~‘rate at which this difference goes to zero. In Section 5 we discuss the problem for
memoryless real sources.

3 Universal source coding

The distortion rate function D(R) with respect to the mean squared distortion
of a real i.i.d. source X1, Xj,... is defined for R > 0 as

D(R) =igt E|X - Y[,

“where X has the common distribution of the Xi’s and the infimum is taken over all
real random variables ¥ such that the mutual information between X and Y is at
most R:

IX;Y)<R
Since we are dealing with arbitrary real variables, the definition of I(X; Y) cannot be
given in terms of the joint density of (X,Y); a more general definition [1] is needed.
Let Pxy denote the probability measure induced by the pair (X,Y) and let Pyyy
be the product of the marginals Px and Py of Pxy. If Pxy is absolutely continuous
with respect to Pxyy with Radon-Nikodym derivative a(z,y), we have

I(X;Y) = [ loga(z,y)Pry(dz,dy),

otherwise J(X;Y) = oco. If X has a finite second moment, D(R) < oo for all R > 0.
In the sequel we assume that D(R) > 0 (which is satisfied for all R > 0 if the




o1

distribution of X has a continuous component). Next we introduce the notion of
universal lossy coding. :

Definition 1 A sequence of pairs of functions (£, ¢n) of the form
foi R = (0,1} and 4, : {0,1}°R] R

is called a universal source coding scheme with respect to a family of sources if
the random vector (Yiny -+ -y Yan) = &n (fa(X1,... , Xn)) satisifies .

lim & 3(Xi = Yin)? = D(R)

n—00 n i=1
almost surely (a.s.) for all possible sources in the family.

Ziv [8] showed that there exists a sequence of pairs of functions (fn, #n) such that

. 1& 9 -
i B (E506-%aP) DB )
for the family of all ergodic sources. The main purpose of the present paper is
to strengthen Ziv’s result from convergence in mean to almost sure convergence,
and to establish a universal rate-of-convergence result. We do this for the class of
memoryless sources with bounded support, that is, for i.i.d. sources such that there
exists a bounded set K C R such that Pr{X; € K} = 1.

Theorem 1 For every R > 0 there exists a universal source coding scheme for
the family of i.i.d. real sources with bounded support. Moreover, if D(R) is the
distortion-rate function of any such source, then for every R > 0 such that D(R) > 0
there ezxists a constant ¢ such that for every n the difference between the empirical
distortion and D(R) satisfies

] S°(Xi = Yin)? — D(R) < cy/loglogn/logn + o ( (log n/'n)l“‘> a.s.

n =1
forany0<e<l1.

- Theorem 1 will be proved in Section 6.

4 Designing quantizers from data

Let Z,Zy,...,Zm be independent, identically distributed random variables,
taking their values from R*. A quantizer (or vector quantizer) is a measurable
functlon of the form Qv : R* — {y1,.. ,yN} C RF such that

Qna(2) = i if Jlo — il < llo — y))® for all j # 1.




Note, that a quantizer is determined by its range {y1,...,y~} via the nearest neigh-
bor quantization rule. Given a quantizer @y define its average distortion as

A(@ni) = EllZ - Qui(2)|I?

and empirical distortion as

Am(Qn) ——Z”Z Qna(Z)|*.

t=1

A(Qn,) is the average distortion one obtains by designing a vector quantizer based
on training data and then measuring its performance on a true source, whereas
An(@ni) (a random variable since it depends on Zi,..., Z,) is the distortion ob-
tained by designing a vector quantizer based on a training set and then using the
resulting quantizer to encode the same training set.

Let Q% be a quantizer of minimal average distortion, and Qm N & quantizer
with minimal empirical distortion. That is,

Q}’v,k = arg min A(Qw.x)
QN

and
Qmnx = argmin Ap, (Qn k).
Qnx

We are interested in the following random variable:

An(@s) = A@ve), , @)

that is, in the difference between the empirical distortion of the empirically optimal
quantizer @7, yx and the (expected) distortion of the (truly) optimal quantizer Q% Nk
This difference quantifies the gap between the best theoretically achievable perfor-
mance and the best performance achievable in coding the training set. Observe that
the expected value of the random variable in (2) is always less than or equal to zero,

since
EAn( :n,N,k) < EAM(Q;V.I:) = A(Q;V,k)' (3)
Next we show that if the random variables Zy,..., Z,, are independent and identically

distributed (i.i.d.) on a bounded subset of R, then the probability that An(Q, v 1)
is larger than A(Q%,) plus any positive constant is exponentially small in m.

Lemma 1 Assume that Zy, Z,,... form an i.i.d. sequence and there ezists a bounded
set A C R¥ such that Pr{Z, € A} = 1. Then for every t > 0 the difference between
the empirical distortion of the empirically optimal quantizer and the distortion of the
best possible quantizer satisfies

Pr{Anm(Qnng) = Q) > t} < e72m/B,

where the constant B is a number such that ||z||> < B if z € A.
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Proof of Lemma 1 Clearly,
Pr{An(@p ) — AQNs) >t} < Pr{An(Qh,) — A(Q4) >t}
= {1315~ Q@I - EIZ- Qa1 > 1)

-— 232
< % 2mt?/ ,

by Hoeffding’s inequality [3], where B is a bound on ||Z — QR,'k(Z)||2. .0

5 Rate of convergence in the source coding the-
orem

! In this section we demonstrate an upper bound on the rate at which the
distortion Di(R) of the best k-dimensional quantizer of rate R converges to the
distortion rate function as k — oo. For finite alphabet i.i.d. sources the problem.
was settled by Pilc [5] who showed upper and lower bounds of the type clog k/k on
the difference Dy(R) — D(R), where D(R) is the distortion-rate function.

Although it seems possible to extend Pilc’s result to bounded continuous alpha-
bets, the argument would be unduly lengthy. Thus we settle for extending Gallager’s
0 (,/log k/k) rate of convergence result [2]. We consider only mean squared distor-
tion; the result straightforwardly extends to distortion measures p: R x R — R*
such that p(z,z) = 0 and p is bounded over compact subsets of R?.

Let X® = (Xy,...,Xt). If E|X|? < oo, the source coding theorem for mem-
oryless sources [2, Theorem 9.6.2] asserts that

l D(R) = lim{ inf {%E”QN{,C(X(k))_ Xm“z}}

; k—oo | Qu kit log NSR
| = lim Dk(R),
. k—o0

, where the infimum is taken over all k-dimensional N-point quantizers @n,k with rate
. 1log N at most R. We note that in this situation an optimal quantizer achieving
| this minimum always exists [6]. When |X| < ¢ < oo a.s., an upper bound on the
rate of this convergence is given by

Theorem 2 Let X be a scalar source that is bounded with probability one. Let Di(R)
be the minimum mean squared distortion of any k-dimensional vector quantizer for
X and let D(R) be the distortion-rate function of X. Then for every R > 0 there is
a constant ¢ such that for every k

log &k
e

Di(R)—-D(R)<c

[he proof of Theorem 2 will appear in an upcoming publication.




6 Universal source coding schemes

In this section we prove Theorem 1 by constructing a universal source coding
scheme. In the sequel we will omit the subscripts from by, k,,, N, and m,, but they
always will be understood as functions of n. Now, we are prepared to describe the
universal schemes that provide constructive proofs for Theorem 1. Split the data
X into k-long blocks Zy,...,Zn, (m = [%]), where Z; = (X(k-1)i41,. .., Xki) is the
k-dimensional vector formed by the i-th block of X("). Take the k-dimensional quan-
tizer with N codevectors that minimizes the empirical distortion over Zy,..., Z,:

* : 1 “ )
Qo = argmin = || Z; — Qui(Z:)|%.
Qvx M5

Quantize uniformly each of the coordinates of the codevectors of @}, y, with b bits,

a

and transmit them. Denote the quantized quantizer by Q:‘n,N'k, that is, @7, nx is
the quantizer whose codevectors are the codevectors of Q},  ; quantized uniformly
using b bits per coordinate. Finally, quantize the vectors Z; with Q;‘n'N’k, and trans-
mit them. The remaining letters of X(® are not transmitted, and will be decoded
as zeros. Observe, that to transmit the quantizer, we use bkN bits, since every co-
ordinate of the N codevectors'is quantized with b bits. To transmit the Z;’s we use
mlog N bits. Therefore, the overall per letter rate is

mlog N bkN

n n

(4)

The reproduction value for a block Z; = (X(k-1)i+1, - - - » X&i) will be the codevector of
the quantized version of the @, y , which is closest to Z;, and zero for Xpmk41,..., Xn.
Formally,

Tn

a

(Y(k—1)5+1v.m ooy Yhin) = Q:n,N,k(Zc‘) for i = l...,m,

and
Y; =0 for j=mk+1,...,n.

Our aim is to choose the parameters k, N and b (as functions of n) such that r, < R
and the overall per letter distortion converges to D(R).

Proof of Theorem 1 Assume for the sake of simplicity, that a positive constant
co is known to the receiver for which Pr{|X;| £ ¢} = 1. Otherwise a bound for
max(|X1],...,|Xn|) can be transmitted using a constant number of bits, and there-
fore, will not effect the rate asymptotically. The overall per-letter sample distortion
is ' :
. 1 & A% 2 ]‘ = 2

oy 2175 — Qnna(Z)I1P + oy > Xl

i=1 t=km+1

" 1‘ A 1 n 2

= -,;Am(Qm,N,k) + - > I1XR

i=km+1

(X - Vi)

=1
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We want to show that there is a choice of the parameters k, N and b such that

Jgn (13- ¥inp - Dl

remains bounded almost surely, while r, < R. In order to do so, we use the following
decomposition: '

LoK— ¥ -0 = 1 Y I

ni=1 n t=km+1

+(%Am(Q;,N,k) ,lc m(Q:n,N,k))
1

+ (}I;A‘m( mE) — TAQN k))
+ (7A@ - D(R)) - ©

In the sequel we give upper bounds for the four terms on the right hand side of (5).
For the first term, by the boundedness assumption obviously

1 & keo
= Z ||X.~||2§T a.8.. (6)

i=km+1

Therefore, £ &% sy | Xl — 0 aus, if

k/n — 0. (7N
For the second term observe first that by the triangle inequality
12 = Qrna DN = 112 = Qrws(2) + Qruna(Z) = Qw21

1Z = Qs D)+ 212 — Qs EIN|Q(Z) — Qb (D]

<
+HQm vk (Z) — Qi DI _
< 12 -Qnni(Z D) + 6coVE| Qv p(2) — Qv i(2)]] 2.,

where coV/k is a bound on ||Z]| (a.s.). On the other hand, since each coordinate of
the codevector of Q, x4 is uniformly quantized with b bits,

Co\/—

a.s.

@5 v k(2) = Qmn (DIl <

Therefore, we can bound the second term of (5) as



which goes to zero if b — oo as n — oo. For the third term we have by Lemm
that for every t >0

1 2,2 2.4
Pr {75 (Am(Q;.N,k) - A(Q?\r,k)) > t} < g~ mkt [k — p=2mi?/ch

Therefore, Vm=%1 (Am(Q:n,N,k) - A(Q‘;\,_k)) — 0 a.s. for any 6 > 0 by the Bo
Cantelli lemma.
To handle the last term of (5), note, that by Theorem 2 and the convexity of Di

there is a constant c, such that 2A(Q¥x) — D(R) < ¢, (\/Efi +R~— lﬁ%)
Therefore, combining the bounds we have

LS K=Yl - DR

i=1

log k _ log N 1 * *
< oEEE e n-tt ) + 1 (0@ - o005

almost surely, for some constant ¢. Now, the parameters are to be chosen to minin
this upper bound, subject to the constraint

= log N + bkN <R
k n

The choice
1
R

gives the desired result.

kn==(1—¢)logn, N= |_2k(R'1/1°8")_| b=loglogn
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