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Abstract — The capacity of two dimensional run
length limited codes are studied. Zero capacities are
characterized, bounds on nonzero capacities are given,
and encoding algorithms are also discussed.

I. DEFINITION

A one-dimensional binary sequence is said to satisfy a (d, k)-
constraint if the number of 0’s between any pair of consecu-
tive 1’s is at least d and at most k. A two-dimensional bi-
nary pattern of 0’s and 1’s on an m x n rectangle is said to
satisfy a two-dimensional (d, k)-constraint if it satisfies a one-
dimensional (d, k)-constraint both horizontally and vertically.
The two-dimensional (d, k)-capacity is defined as
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where N,(nd,’,’f) is the number of patterns satisfying the two-
dimensional (d, k)-constraint on an m X n rectangle.

I11. ZERO CAPACITIES

It was shown in [1] that Ci,2 = 0. Theorems 1 and 2 below
characterize all (d, k) such that C4r = 0. We assume k > d.

Theorem 1 For every positive d, Cq,qa+1 = 0.
Theorem 2 Ifd < k, then
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2<j<14+550

where r = d mod j.

Corollary 1 For every positive integer d,

Cir=0&k=d+1.

III. LowER BOUNDS
Theorems 3-5 are given in terms of the quantity C1,oc, which
was bounded in [2] as .587891 < Ci,, < .588339.
Theorem 3 For every positive integer k,
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Theorem 4 If d and k are positive integers such that
is an even integer, then
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Theorem 5 For every d > 2,
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Theorem 6 below tightens the lower bound in Theorem 5 if
and only if d # 3.

Theorem 6 For every d > 2,

Ci0o > max
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where r = d mod s.

IV. UPPER BOUNDS
Theorem 7 For every positive integer k,
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Theorem 8 For every positive integer d,
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V. ASYMPTOTIC BEHAVIOR

Theorems 6 and 8 imply that Cy o decays to zero (as d grows)
exactly at the rate (log, d)/d.
Corollary 2

i d
dlgrolo <log2 d) oo = 1.
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