Positive Capacity Region of Two-dimensional Asymmetric Run Length Constrained Channels*

Akiko Kato

Dept. of Mathematical Engineering and Information Physics, University of Tokyo, Tokyo 113-8656, Japan

(Died on Feb. 27, 2000, at age 32)

I. INTRODUCTION

Run length constraints derive from digital storage applications [2]. For nonnegative integers d and k, a binary sequence is said to satisfy a one-dimensional (d,k)-constraint if every run of zeros has length at least d and at most k (if two ones are adjacent in the sequence we say that a run of zeros of length zero is between them). A two-dimensional binary pattern arranged in an $m \times n$ rectangle is said to be (d_1, k_1, d_2, k_2) -constrained if it satisfies a one-dimensional (d_1, k_1) -constraint horizontally and a one-dimensional (d_2, k_2) -constraint vertically. The two-dimensional (d_1, k_1, d_2, k_2) -capacity is defined as

$$C_{d_1,k_1,d_2,k_2} = \lim_{m,n \to \infty} \frac{\log_2 N_{m,n}^{(d_1,k_1,d_2,k_2)}}{mn}$$

where $N_{m,n}^{(d_1,k_1,d_2,k_2)}$ denotes the number of $m \times n$ rectangles that are (d_1,k_1,d_2,k_2) -constrained. If $d=d_1=d_2$ and $k=k_1=k_2$ (this is called the *symmetric constraint*) then the two-dimensional (d_1,k_1,d_2,k_2) -capacity is called the two-dimensional (d,k)-capacity, and is denoted by $C_{d,k}$. A proof was given in [3] that shows the two-dimensional (d,k)-capacities exist, and essentially the same proof shows that the C_{d_1,k_1,d_2,k_2} exist.

The two-dimensional asymmetric positive capacity region is the set

$$\{(d_1,k_1,d_2,k_2): C_{d_1,k_1;d_2,k_2}>0\}.$$

A basic question is to determine which constraints actually lie in the positive capacity region and which do not. For the symmetric constraints, it was shown in [1] that $C_{1,2} = 0$ and a complete characterization of which (d,k) integer pairs yield positive capacities was given in [3] and is stated as the proposition below.

Proposition 1 $C_{d,k} > 0$ if and only if $k - d \ge 2$ or (d,k) = (0,1).

II. MAIN RESULTS

In the present paper we determine whether or not the twodimensional capacity is positive, for a large set of asymmetric constraints (d_1, k_1, d_2, k_2) , and the main results are summarized in Theorem 1. It is interesting to note that for the symmetric constraint (i.e. when $d_1 = d_2$ and $k_1 = k_2$), the capacity is zero whenever d and k are positive and differ by one, whereas for many asymmetric constraints the capacity is positive when the horizontal constraints or the vertical constraints differ by one (e.g. Theorem 1 part (ii(B)b)). However, in the asymmetric case if, for example, $k_1 = d_1 + 1 \le d_2$ then the capacity is zero (by Theorem 1 part (ii)).

Kenneth Zeger
Department of Electrical and Computer
Engineering,
University of California,
San Diego, CA 92103-0407

zeger@ucsd.edu

Theorem 1 Let d_1 , k_1 , d_2 , and k_2 be nonnegative integers such that $d_1 \leq k_1$ and $d_2 \leq k_2$. Let $d = \min(d_1, d_2)$, $D = \max(d_1, d_2)$, $k = \min(k_1, k_2)$, $K = \max(k_1, k_2)$, $\delta = k - D$, and $\Delta = K - d$. Then the following partially characterizes the positive capacity region of two-dimensional run length constrained channels:

- (i) If $\delta \leq 0$ then $C_{d_1,k_1;d_2,k_2} = 0$.
- (ii) If $\delta = 1$ then
 - (A) If d = 0 then $C_{d_1,k_1;d_2,k_2} > 0$.
 - (B) If $d \ge 1$ then
 - (a) If $\Delta \leq 1$ then $C_{d_1,k_1;d_2,k_2} = 0$.
 - (b) If $\Delta > d_1 = d_2$ then $C_{d_1,k_1;d_2,k_2} > 0$.
 - (c) If $\Delta \geq 3$ and d = 1 then $C_{d_1,k_1;d_2,k_2} > 0$.
- (iii) If $\delta \geq 2$ then $C_{d_1,k_1;d_2,k_2} > 0$.

The only case that is presently not completely characterized in Theorem 1 is part (iiB), namely when $\delta=1, \ d\geq 1$, and $\Delta\geq 2$. If $\delta=1, \ d=1$, and $\Delta=2$ then the only capacities that need be considered are $C_{1,2,1,3}$ and $C_{1,3,2,3}$. But $C_{1,2,1,3}>0$ from part (ii(B)b). Thus if we were able to show that $C_{1,3,2,3}>0$ then we could replace $\Delta\geq 3$ by $\Delta\geq 2$ in part (ii(B)c). However, computer simulation suggests, but does not prove, that perhaps $C_{1,3,2,3}=0$. This remains an open question.

Also, computer simulations suggest the plausibility of Conjecture 1 below, for which we presently do not have a proof either.

Conjecture 1 $C_{d,d+1,d,2d} = 0$ whenever $d \ge 0$.

Conjecture 1 would characterize with Theorem 1(ii(B)b) the positive capacity region for k = d + 1 and $d_1 = d_2$ as:

$$C_{d,K,d,d+1} = C_{d,d+1,d,K} = 0$$
 if and only if $K \le 2d$.

REFERENCES

- J. J. Ashley and B. H. Marcus, "Two-Dimensional Lowpass Filtering Codes," IBM Research Division, Almaden Research Center, IBM Research Report RJ 10045 (90541), October 1996.
- [2] K. A. Immink, P. H. Siegel, and J. K. Wolf, "Codes for Digital Recorders," *IEEE Trans. Inform. Theory*, vol. 44, pp. 2260– 2299, October 1998.
- [3] A. Kato and K. Zeger, "On the Capacity of Two-Dimensional Run Length Constrained Channels," *IEEE Trans. Inform. The*ory, vol. 45, no. 5, July 1999, pp. 1527–1540.

^{*}This work was supported in part by the National Science Foundation and by a JSPS Fellowship for Young Scientists.