Variable Fanout Trimmed Tree-Structured
Vector Quantization for Multirate Channels!

Shawn Herman and Kenneth Zeger

Coordinated Science Laboratory, Dept. of Electrical Engineering, University of Illinois
1308 W. Main St., Urbana, IL 61801 USA.
Email: {herman, zeger}@fire.csl.uiuc.edu

Abstract — We introduce a generalized prun-
ing technique called trimming which can im-
prove upon the performance of pruned tree-
structured vector gquantization. The algorithm
is used to optimize the tree structure with re-
spect to a multirate channel. Experimental re-
sults are supplied which demonstrate this per-
formance.

I. INTRODUCTION

Pruned tree-structured vector quantization (PTSVQ)
is a uselul technique for progressive image transmis-
sion due to its successive approximation character.
PTSVQ has also been shown experimentally to have
rate-distortion performance close to full search vector
quantization (FSVQ) over a substantial range of bit
rates [1]. In applications where variable rate coding
is acceptable, PTSVQ’s reduced encoding complexily
makes it an altractive alternative to FSVQ. How-
ever, in a packet network environment where band-
width availability fluctuates in time, it is of interest
to have a data compression system that works well
when averaged over the available transmission rates.
This problem has not previously been addressed with
PTSVQ.

In this paper, we introduce a generalized pruning
technique called “trimming” which improves upon the
performance of PTSVQ. Our algorithm achieves a
lower mean-square encoding error than PTSVQ while
retaining a tree structure for elficient encoding and pro-
gressive Lransimission. Moreover, Lhe Lree struclure is
optimized with regard Lo a given histogram of available
transmission rates on the channel. The interior nodes
of our encoding tree are allowed to have fanouts which
are greater than two. For a fixed number of bits spent
per input vector, this technique can improve the signal-
to-noise ratio at the cost of less flexible progressivity.
The main idea is to first grow a large balanced tree
with variable fanouts and then trim it back to create
useflul subtrees.

The idea of using variable fanout trees is not new [2],
and, in fact, the process of locating all pruned subtrees
which lie on Lhe lower convex hull of the operational
distortion-rate function for nonbinary TSVQs was also
previously studied in [1]. However, our method of trim-
ming, when applied to a variable fanout TSVQ, gener-

!'This work was supported in part by the National Science
Foundation.

417

t22 tay 24

t21

t10 t2s t25 27

Fig. 1: Example of a variable fanout TSVQ; ¢;,;
denotes the j** node at depth-i within
the tree.

ates additional trees (i.e., rate-distortion pairs), some
of which often lie below the lower convex hull as found
by the generalized BFOS algorithm.

1. THE VARIABLE FaNouT TRIMMED TSVQ
ALGORITHM

Although the formulation of the generalized BFOS al-
gorithm presented in [1] assumed a binary tree struc-
ture, it was noted that the algorithm did not, in gen-
eral, require this. By applying the generalized BFOS
algorithm to a broader class of tree structures, we are
able to exploit a new tree operator which finds an im-
proved collection of subtrees. We define a variable
fanout TSVQ to be a TSVQ with the property that
all nodes at the same depth have the same number of
children. Between different tree depths, however, the
number of children may vary, but all node fanouts are
assumed Lo be integer powers of two. Because of these
constraints, variable fanout TSVQs are special ceses of
nonbinary TSVQs.

Let T be a variable fanout TSVQ (e.g., see Figure 1).
As with binary TSVQ, the binary sequence specifying
the path from root to leaf node is an instantaneous
code. Since T is balanced, this code is also fixed-
rate (all paths beginning at the root of T' and ending
at a leaf node are described by the same number of
bits). The variable fanout tree T is completely speci-
fied by the number of bits used to address children of
nodes at each depth, represented by the fanout vector,
b = (bo, by, ... ,br-1), where L is the maximum depth
of the tree and “depth-0" refers to the root. Thus,
each interior node at depth-i has 2% children. As an
example, the variable fanout TSVQ shown in Figure 1
has L = 2 and the fanout vector (bo = 2,b; = 1).

Let $(R) denote the minimum average distortion at-
tainable at rate no greater than R by pruning a given
TSVQ. Let C be a random variable representing the

it |

= AT LI o

#
b
4
r
4

1] SRR TS ST

available transmission rate for a channel connecting a
PTSVQ encoder to its decoder. Let fc be the density
function of available rates for the channel being used.
One measure of performance of a source coder for this
channel is the MSE averaged over available transmis-
sion rales, that is

~ B
b= jo 40r) fo(r) dr (1)

where time-sharing between codebooks is allowed. We
note that D depends on the statistics of both the source
and the channel.

A. Design of the Initial Variable Fanout TSVQ

Our method for producing the initial variable fanout
TSVQ generalizes the design procedure for balanced
binary TSVQ (i.e., “splitting”). For now, we as-
sume a prescribed fanout vector b = (bg, by, ... ,br_1).
Let Cny = {y0,¥1,.--,¥N-1} denote an N-point, k-
dimensional vector codebook generated by the gener-
alized Lloyd algorithm (GLA) using a training set V. If
tiy is the §** node at depth-i within 7', then let V{t.s)
denote all those vectors in V which are closer Lo £
than any other node at depth-i. Using this notation,

(') denotes a size-n codebook designed for node tiy
using V(tis),

Design Algorithm

STEP ZERO: Design Cf'""’) for the root node by find-
ing the centroid of V (initialize counters n + 1 and
t.‘_j | tO,D)-

STEP ONE: Split the vectors in CY*#) and design Gt/
by running the GLA with V{#43) (n ¢ 2n).

STEP Two: If n < 2% the current set of vectors split
again (go to step one), else assign the codevectors in

G'#) to the n = 1 codebooks of each of 1; ;s children.
sTEP TUREE: If all nodes at depth-i have been de-
signed, go to slep four, else move laterally to next node
(n &1, t;j & tij41), determine the new set V(*is),
and go to step one.

STEP FOUR: Il i41 is the terminal level of T', then quit,
clse descend one level in T (n + 1 and 1;; + t;41,0),
determine V(*is) | and go to step one.

The algorithm described above begins by creating a
2%.point FSVQ using the GLA. It then repeatedly
designs a single 2%-point FSVQ for each of the en-
coding cells generated during the previous iteration
(i=1,2,...,L—1). The procedure for generating
balanced binary TSVQs is identical except that 2-point
FSVQs are generated at each ileration (i.e., the else
directive in STEP TWO is always executed). However,
greedily grown binary TSVQs do not follow such a pro-
cedure since there is no constraint on the number of
nodes. Instead, the tree is grown by iteratively split-
ting the node which yields the maximum ratio of de-
crease in MSE to increase in average rate [3] [4].

418

For variable fanout trimmed TSVQ, all
intermediate (or additional) codebooks
{C,(:"") in=24,...,2% Vand t;; ¢ T} are used

for the trimming of T. Note that {CE"'J) iy €T)
represents the set of codevectors used by the initial
tree T, and as such, these are not considered addi-
tional codebooks. It can be shown that the storage
needed for the variable fanout trimmed TSVQ decoder
is identical to that of balanced binary TSVQ at the
same maximum coding rate B. Thus, a decoder using
either of these TSVQs will need to store the same
number of vectors. For greedily grown binary TSVQ,
the resulting tree has experimentally been observed
to require considerably more storage space at the
decoder than variable fanout trimmed TSVQ since
the number of nodes is not constrained [4].

B. Trimming of Variable Fanout TSVQ

The generalized BFOS algorithm is an eflicient method
of locating the pruned subtrees which determine the
lower convex hull of the operational distortion-rate
function. Iowever, the generalized BFOS algorithm
can be modified to exploit the additional codebooks
stored with variable fanout trimmed TSVQ, and thus
potentially generate an even lower convex hull. The
tree operation of trimming provides this extension. We
again let T be a variable fanout TSVQ with fanout vec-
tor b. Let 1; ; denote the j** node at depth-i within
T. We define f(t; ;) as the current fanout of node 1 ;,
so that before trimming, B(t; ;) = 2% for all interior
nodes. In order to trim node {; j, the procedure below
is followed:

Trimming a Node

STEP ONE: Prune any branches extending from {; ;'s
children.

sTEP TWO: Reduce ; ;'s children by a factor of 1/2™
where m is a positive integer such that 2™ < f(t; ;)
(e, B(tiy) + B(tiz)/2™).

sTEP THREE: Il A(f;y) = 1, prune at node #; 4, else
replace the codevectors from the remaining children
with the vectors stored in C&‘,:l) ;

The codebook replacement in STEP THREE guarantees
that ¢; ;s new children generate the minimum MSE
partition (as determined by the GLA) for its input cell.
Without such replacement, the codevectors of the re-
maining children would no longer satisfy the centroid
condition. Figure 2 shows a subtree of a variable fanout
TSVQ with b = (2,2, 1) which could be produced by
this trimming procedure. The dashed portion of the
tree identifies the nodes which are removed in order to
trim #) 3 using m = 1. Note that during trimming, the
remaining two children of t; ; will have their codevec-
tors replaced by the 2-point FSVQ which was created

S

Fig. 2: Example of-a subtree for variable fanout
trimmed TSVQ . The dashed lines indi-
cate a possible way to trim at node £;,3.

for 13,2 during the design of the initial variable fanout
tree.

Let Py denote the set of all subtrees which can be
created by pruning some initial tree T'. Likewise, let
T+ denote the set of all subtrees which can be created
by trimming T. It is important to observe that when
the if directive in STEP THREE of the trimming pro-
cedure is executed, trimming is identical to pruning.
This is because STEP ONE and STEP Two only affect
tree nodes which are then removed by the pruning in
STEP THREE. Thus, trimming is a genecralization of
pruning. This implies Py C Tr. In words, any pruned
subtree of T' can be generated by some trimming se-
quence. However, there exist, in general, trimmed sub-
trees of T' which cannot be generated by any prun-
ing sequence. It is the subtrees in 77 \ Pr which can
enable variable fanout trimmed TSVQ to outperform
PTSVQ in a rate-distortion sense. For this to occur,
there needs to be at least one S € 7 that generates a
rate-distortion pair which lies below the lower convex
hull of Pp. Even if there is no such S in 77 \ Pr, since
Pr C Tr, variable fanout trimmed TSVQ will always
perform at least as well as PTSVQ.

It can be shown, in a manner similar to [1], that the
trimmed subtrees lying on the lower convex hull of the
operational distortion-rate function are nested in the
sense that each can be obtained from its higher rate
neighbor through a sequence of trims. Since the rate-
distortion optimal subtrees are nested, they can be
generated efficiently for use at both the encoder and
decoder from the initial variable fanout tree structure
and its additional codebooks. Numeric tags within
each node can be used to store the optimal trimming
sequence [5].

C. Choosing the Fanout Vector to Minimize D

So far, we have assumed that the fanout vector b was
fixed. However, it can be shown that for a given
maximum rate constraint B, there exist 25-! possi-
ble fanout vectors. This introduces an extra degree of
freedom which is not present in PTSVQ systems. Since
each fanout vector b yields a different initial tree struc-
ture, there is generally a unique lower convex hull asso-
ciated with each b. If the allowable transmission rates

419

for a given channel are known, the fanout vector yield-
ing the trimmed subtrees with the lowest MSEs at or
near these rates should be chosen. Likewise, if a proba-
bility distribution for available transmission rates, f¢,
ig either known or can be estimated for the channel, the
fanout vector which minimizes D (see eq. (1)) should
be chosen.

Since the variable fanout trimming process generates
rate-distortion pairs which determine the lower convex
hull, a numeric integration subroutine can be embed-
ded within the algorithm in order to approximate D for
a given rate density fc. Unfortunately, as the maxi-
mum rate B grows, it may become computationally
infeasible to design all 28! variable fanout TSVQs in
order to minimize D. The following heuristic approach
can be shown experimentally to be satisfactory.

Given a transmission rate density fo with peaks at
r1,72,...,Tn, the initial tree structures which mini-
mize D will be those which satisfy

(rj - %) < gib.' < (r_, + %) (2)

i=0

for each j=1,2,...,n and m; € {0,1,2,...,L—1}.
Tor example, if fc is bimodal with peaks at 5
bits/vector and 8 bits/vector, fanout vectors such
as (bo=5,b] =3,...> or (bo: 1,51:4,53:3,...)
would likely perform well. Thus, if computational re-
sources are limited, these tree structures alone can be
generated and tested.

111. EXPERIMENTAL RESULTS

We now consider several examples which demonstrate
that the heuristic method introduced in Section II.C
for choosing b given fc yields tree structures which
minimize D. To accomplish this, we list the 10
minimum-D fanout vectors for various channel rate
distributions. The variable fanout tree structures were
designed for a maximum rate of B = 10 bits/vector
using two 512 x 512 images (“Man” from the USC
database and “Goldhill” from the RPI database) and
vector dimension k=4. Let fco be uniform on
R€[0,10]. Let fcy and fca both be Gaussian
with ¢? = 0.01, py =5.5 bits/vector, and p3=8.0
bits/vector. Let fc3 = -;—Uc.; + fc,2), a bimodal dis-
tribution. We evaluated D for 444 of the 512 possible
variable fanout trees. The results are presented in Ta-
ble 1.

For fc,0, the uniform distribution, we find that most
of the minimum-D fanout vectors begin with 2 or
3 unitary allocations. This assures that there are
trimmed subtrees at low bit rates. This is important
because the MSE is greatest for subtrees with small
R. For fc,, the Gaussian distribution with py = 5.5
bits/vector, we find that the minimum-D fanout vec-
tors all have b=(1,4,...). It is somewhat surpris-
ing that trees with by = 5 are not ranked highest for

Tab. 1: Fanout vectors which minimize D on the training images “Man” and “Goldhill” for various
available rate distributions (k = 4 and B = 10 bits/vector).

Fanoul Vector b

ank feo Jea Jca Jea

T [(,1,1,5,4) | (,4,2,1,7) : 4,3,
2 (1,1,4,4) (1,4,2,3) 1,6, 14,2,3
3 |a,nu322) | (1,4,221) | (11,2 1,4,2,1,2
4 1,4,2,3) | (1,4,2,1,1,1) | (1,6,1,2) | {1,4,3,11
5| (1,1,1:3,1,3) | (1439 " | (7,21) | {1:4,2,2,1
6 | (LL4L3) [(1,43,5,1) [(1,621)[(1,4,21L1,1)
7 1(,1,1,3,3,1) | (1,41,2,2) |(1,1,5,3 5,3,2
8 1,1,4,% 1,4,1,1,3) |{1,2,4,3 5,2,3
9 §1,4.2,1.2i (1,4,1,2,1,1) | {7,1,1,1 1,4,5
10 1,1,4,2,2 (1,4,1,3,1) | (1,5,4) (5,2,1,2)

Tab. 2: PSNR gain of variable fanout trimmed TSVQ compared to unbalanced binary PTSVQ en indi-
vidual test images for two different channel densities.

JEa Jca
[Test Image | Bits/Level | Gain (dB) | Bits/Level | Gain (dB)
"Plane” 111322 1.433 1243 -0.652
“Woman" 1144 0.810 1243 0.917
“Peppers” 1423 2.364 1612 0.612

fe,, since their trimmed subtrees are approximately
size-32 FSVQs at R w45 bila/vector. llowever, such
trees only have trimmed subtrees at integer rates below
R = b bits/vector (i.e., R=4,3,2,1,0). Furthermore,
we note that for fc,1, the fanout vectors whose D val-
ues ranked 18-32 smallest (not included in Table 1)
all have b = (5,...) while those from 33-44 all have
b=(2,3,...). Thus, a tree's performance is closely
related to whether nodes are located at the channel’s
peak rates. The results in Table 1 for fc 2 can be ex-
plained in a manner similar to fc,1 (note that none
of the top 10 fanout vectors have by = 8 for fc,3). Fi-
nally, fc 3 illustrates the importance of performing well
at those rates which contribute most to D since many
of the best tree structures for fc a are also optimal for
Jea. Il fg1 and fe,2 had been weighted differently in
creating fc,3, this would not necessarily be the case.

We now quantify how well variable fanout trimmed
TSVQ can perform on a single image using the peak
signal-to-noise ratio (PSNR = 10log,;((255?/D)). In
Table 2, we list the maximum PSNRs achieved on each
of three test images (“Plane,” “Woman,” and “Pep-
pers” from the USC database) using the fanout vectors
[rom the first three columns and the top eight rows of
Table 1. All PSNRs in Table 2 are relative to the
PSNR achieved by unbalanced binary PTSVQ on the
corresponding test image (unbalanced binary PTSVQ
is chosen since it typically outperforms both balanced
binary PTSVQ and variable fanout pruned TSVQ).
We find that in many cases, variable fanout trimmed
TSVQ can oulperform unbalanced binary PTSVQ by
a substantial margin. For example, coding “Peppers”
with b = (1,4, 2, 3) provides a PSNR gain of over 2 dB.

420

However, “Plane” transmitted over the channel with
density fc,3 is an exceplion, a result which may be due
to unbalanced binary PTSVQ’s substantially larger
codebook at higher rates.

REFERENCES
[1] P. A. Chou, T. Lookabaugh, and R. M. Gray, “Op-
timal pruning with applications to tree-structured
source coding and modeling,” IEEE Trans. Inform.
Theory, vol. 35, no. 2, pp. 299-315, 1989.

D.Y. Wong, B.-H. Juang, and A. H. Gray, Jr., “An
800 bit/s vector quantization LPC vocoder,” IEEE
Trans. Acoust. Speech Signal Process., vol. 30,
no. 5, pp. T70-779, 1982.

(2

[3] P. A. Chou, “Application of information theory
to pattern recognition and the design of decision
trees and trellises,” Ph.D. dissertation, University

of California, Stanford, CA, 1988.

E. A. Riskin and R. M. Gray, “A greedy tree grow-
ing algorithm for the design of variable rate vector
quantizers,” IEEE Trans. Signal Process., vol. 39,
no. 11, pp. 2500-2507, 1991.

[6] S.-Z. Kiang, R. L. Baker, G. J. Sullivan, and C.-
Y. Chiu, “Recursive optimal pruning with applica-
tions to tree structured vector quantizers,” IEEE
Trans. Image Process., vol. 1, no. 2, pp. 162-169,
1992.

4]

Ry e

1996 IEEE International Symposium
on
Information Theory and Its Applications

Victoria, B.C., Canada
September 17-20, 1996

PROCEEDINGS - Volume

A

SPONSORED BY: The Society for Information Theory and Its Applications

o il

In cooperation with IEEE IT Society, IEICE, and the Canadian Society for Information Theory

