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Abstract

A new class of spherical codes called wrapped spherical
codes is constructed by “wrapping” any sphere packing A
in Euclidean space onto a finite subset of the unit sphere
in one higher dimension. The mapping preserves much of
the structure of A, and unlike previously proposed maps,
the density of wrapped spherical codes approaches the
density of A, as the minimum distance approaches zero.
In particular, wrapped spherical codes are asymptotically
optimal as the minimum distance shrinks, whenever the
packing A is optimal. Additionally, wrapped spherical
codes can be effectively decoded using a decoding algo-
rithm for A.

1 Introduction

A k-dimensional spherical code is a set of points in B* that
lie on the surface of a k-dimensional unit radius sphere.
See [1,2] for applications of spherical codes. In this paper
we concentrate on the generic spherical code design prob-
lem (with respect to minimum distance), rather than a
particular application of spherical codes.

Denote the surface of the unit radius k-dimensional Eu-
clidean sphere by

SkE{(Il,...,Ik)GJRk:ZI?=1}, (1)

the (k — 1)-dimensional content (surface area) of S, by

Ap = %:—) and the k-dimensional content (volume) of

Sk by Vi = ﬁ%, where T is the usual gamma function
2

defined by I'(z) = f;~ e~*¢t*~! dt. The minimum distance
of a k-dimensional spherical code C C Sy is defined as

d= min [|[X-Y]|, (2)
X,YecC
X£Y

where || X — Y| is the Euclidean distance in B* between
codepoints X and ¥. The minimum distance of a spher-

ical code is directly related to the “quality” of the code
in many channel coding applications. For channel codes,
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one generally desires to maximize the minimum distance
for a given number of codepoints.

As this paper concentrates on asymptotically small d,
it is important to clarify some notation. For functions
f and g, we use the notation “f(d) = O(g(d))” to mean
that there exist positive constants ¢ and do such that
0 < f(d) < cg(d) foralld € (0,dy). The dimension k shall
be regarded as a constant in the asymptotic analysis.

The angular separation between two points X, Y € S,
is cos™}(X - Y). The minimum angular separation of
spherical code C is defined as

)

2sin™(d/2) (3)
ds 'Y

&= d+§Z+O(d)‘ (4)

The set of points on S). whose angular separation from a

fixed point X € Sy is less than ¢ is called a spherical cap

centered at X with angular radius ¢ and is denoted by

cx(kd) ={Y €Sk:X Y >cos¢). (5)

When the center X of a spherical cap is not relevant, the
notation may be abbreviated as c(k,@). If two spherical
caps of angular radius 6/2 are centered at different code-
points of a spherical code with minimum distance d and
minimum angular separation ¢, then the caps are disjoint.
The (k—1)-dimensional content of ¢(k, 6 /2) is denoted by
Alc(k,0/2)).

A sphere packing (or simply packing) is a set of mu-
tually disjoint, equal radius, open spheres. The packing
radius is the radius of the spheresin a packing. As defined
in [3], “A packing is said to have density A if the ratio of
the volume of the part of a cube covered by the spheres of
the packing to the volume of the whole cube tends to the
limit A, as the side of the cube tends to infinity.” The
density Ac of a spherical code C C S, with minimum dis-
tance d is the ratio of the total (k—1)-dimensional content
of |C| disjoint spherical caps centered at the codepoints
and with angular radius 6/2, to the (k — 1)-dimensional
content of Si; that is, Ae = |C] < Ale(k,8/2))/Ak. Let
M(k,d) be the maximum cardinality of a k-dimensional
spherical code with minimum distance d, and let A(k,d)
be the maximum density among all k-dimensional spher-
ical codes with minimum distance d. Then,

Atk 0 = MDAl 02)

(6)
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The value of M (k,d) is easy to compute for all d when
k = 2. However, M(k, d) is unknown for all k > 3 except
for a handful of values of d, although a number of bounds
have been given [4-11]. For asymptotically small d, the
tightest known upper bounds on M (k,d) are given in [7]
for k = 3 and in [4] for k > 4, and code constructions
in [10,12,13] provide the tightest known lower bound.
However, in several dimensions, there exists a nonvanish-
ing gap between these upper and lower bounds as d = 0.

A family of codes {C(k,d)} is asymptotically optimal
if |C(k,d)|/M(k,d) =+ 1 as d —+ 0, or equivalently, if
Acey/D(k,d) — 1 as d — 0. It bas been shown
that limg—o Ac(k,q) 18 equal to the density of the dens-
est (k — 1)-dimensional sphere packing in [1]. Given this
packing, we show that this limit can always be achieved
using our construction. Hence, given a densest packing
in BF—1, we construct asymptotically optimal spherical
codes. Figure 1 shows bounds on the asymptotic densi-
ties of the best spherical codes for up to 49 dimensjons.

2 Known lower bound construc-
tions

Any known k-dimensional spherical code with minimum
distance d gives a lower bound on M(k,d), and hence
on A(k,d). Much work has been done to find the best
spherical codes, such as from binary codes [14], shells of
lattices [15], permutations of a set of initial vectors [16],
simulated annealing or repulsion-energy methods [10,17],
concatenations of lower dimensional codes [11], projec-
tions of lower dimensional objects {6, 8, 10], and other
means [18,19]. For more comprehensive references, see
(1,2).

Unfortunately, none of the spherical coding methods
above performs well in a fixed dimension k, as d —
0. Also, many of the methods above produce spheri-
cal codes for only a finite number of minimum distances
d. Recent developments have shown that it is possible
to obtain asymptotically optimal k-dimensional spheri-
cal codes whenever the laminated lattice is the densest
(k — 1)-dimensional sphere packing [2,12,13]. This pa-
per improves upon this result by providing a construc-
tion method which directly maps any (k—1)-dimensional
packing onto a finite subset of Sy. Tt also allows efficient
decoding to be performed by using a few simple opera-
tions in conjunction with the best decoding algorithm for
the underlying packing.

3 Wrapped spherical codes

Any spherical code can be described by the projection of
its codepoints to the interior of a sphere of one less dimen-

J1-Tioiet) =
(z1,...,Tk-1). Conversely, a k-dimensional spherical
code may be obtained by placing codepoints within Sk
and projecting each codepoint onto S using the reverse
mapping. This simple mapping was used by Yaglom (6]
to map a (k — 1)-dimensional lattice A onto Sk. However,

sion via the mapping | Z1s--- »Tk—1:

the distortion created by mapping A to Sp gives poor
asymptotic spherical code densities, even if A is the dens-
ost lattice in k— 1 dimensions, as summarized in Figure 1.
This is due to the “warping” effect on the codepoints near
the boundary.

In this section we introduce a new mapping which re-
sults in less distortion of the original lattice. The map-
ping effectively “wraps” any packing in R+~ around Sk
(actually into a finite subset of Si), and hence we refer
to the spherical codes it constructs as wrapped spherical
codes. This technique creates codes of any size and thus
provides a lower bound on achievable minimum distance
as a function of code size. We shall show that the spheri-
cal code density approaches the density of the underlying
packing, as d — 0.

3.1 Construction of wrapped spherical
codes

Let A be a sphere packing in R*~* with minimum distance
d and density Ajx. A may be either a lattice packing
or a nonlattice packing. Let 0 = § < - < Ev =1,
and for z € [0,1], let £(2) = max{& : & < =z} and
E(z) = min{& : & > ¢ }. The real numbers €, ... ;N
are referred to as latitudes and will be chosen later to yield
a large code size. The ith annulus is defined as the set
of points (z1,- .- , o) € Sk that satisfy & < zx < &iqr
(i.e., points between consecutive latitudes). Define the
many-to-one function f': Sk = RE-1 by

[Il,. .a ,mk_]_)

Flzyy. . o) = glze) - —4\/1—_——7———;—‘,
1=z

where
glz) = (m—

(1a] — @2 + (/1 - €= ~ \/1'-72)2)+
and (z)s = max(0,2). T X = (z1,...,) and ¥ =

F(X) # 0, then
St -l = (i) -
=

which is shown geometrically in Figure 2. Define the
buffer region as the set

B' = {(2:1,...,:r;;)ESkIUIkI-'Q{Ik)):‘P

( l—g(zk)z—\/;—mi)z <d2}.

A useful spherical code with respect to A is defined by
éh = (f)7Y(A\ {0}) \ B'. Figure 3 illustrates this three
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Figure 1: Comparison of the asymptotic density of various spherical codes versus the density of wrapped spherical
codes. The wrapped codes were constructed with respect to the densest known packing in each dimension.
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Figure 2: (a) Geometrical interpretation of f(X). (b) Annuli.
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Figure 3: Perspective view of a wrapped spherical code
with respect to the hexagonal lattice.

dimensional spherical code with respect to the hexagonal
lattice with minimumn distance 0.05.
Let

f(X)— f'(II)"' 1Ik—2=xk—lsrk) ]fll:cklz.él/z
=\ flzr,.. s Te-2: ks Ek—1) I |zl >1/2 7

and let
2

B = B'U{(zl,...,mk)esk:(lxk]-%) +

(%— l—zi)2<dz}.

The wrapped spherical code with respect to a packing A
having minimum distance d is defined by

h = A\ 0D\ B.

Note that C* depends on those latitudes & which satisfy
€ < 1/v/2. Geometrically, C A is identical to C* for points
whose last coordinate has magnitude at most 1/+/2, and
is a rotation of C* by #/2 for the remaining points. In
the following two subsections, we show that C* has good
asymptotic density properties and has an efficient decod-
ing algorithm.

As this paper is chiefly concerned with asymptotic per-
formance, we will not concentrate on small codebook im-
provements possible for moderately large minimum dis-
tances. A number of simple improvements are possible.
One such improvement involves the buffer regions B’ and
B, which are included in the code definitions solely to
:nsure the minimum distance requirement is met. For a
particular value of d, a careful choice of a latitudes {&:}
may make much of the buffer region unnecessary.

The inverse mapping (f')~! may be computed using
the following lemma.

Lemma 1 For every ¥ € RF1\ {0},

giY

(f’)dl(Y) = {nﬂ (0,...,0, l‘Q?)ZDSh{(

\/(;H = &P+ (\ﬁ—' & — \ﬁ— 5?+1)2 }1

where h; = /1 — 5? —|Y|| and g: = (1 - %i) 1-& -

Proof: Omitted.
Lemma 1 also allows f~! to be calculated, via

) = (@m0 1 S 1VE
U{(:cl,. Tk, Tha k1) € (F)THY) ¢

Iy > 1/'\/5}

The image under f' of an annulus in Sy is a region
bounded by two concentric (k — 1)-dimensional spheres
in Ré-1.

Lemma2 If X = (Z1,..: zk) € S and ¥ =
(y1,.-. ,Yk) E Sk belong to the same annulus of C®, then

I (x) = FIR < IX - Y17

If, additionally, & = sin (iﬁ), T Uk < 1/‘/5, and
IlF(X) = (V)| £d, then

1X = Y2 - 3d%/2 + O(d®) < [If'(X) — FIP.

Proof: Qmitted.
Note that if § =1 /\/5 for some i, then Lemma 2 also

holds when f' is replaced by f.

Corollary 1 If A is a sphere packing with minimum dis-
tance d, then the minimum distance of the wrapped spher-
ical code C is also d.

Proof: If distinct X,Y € C* belong to the same annulus,
then || X - Y|l > |If(X) - F(Y)|| > d, since the minimum
distance of A is d. If X and Y belong to different annuli,
then the definition of B gnarantees their separation is d.
]

3.2 Asymptotic density of the wrapped
spherical code

Let {£/}) be the partition of 0,1//2) used in the def
inition of a wrapped spherical code C* that has mini-
mum distance d. Let ¢ = sin“lgf-i)l —sin™? §§d) de-
note the angular separation of the ith annulus. We show
El_lat if the maximum angular separation between annuli,
¢ = max; ¢; approaches 0 as d — 0 and the minimum an-
gular separation ¢ = min; ¢; does not approach zero too
quickly, then the ‘density of the wrapped code approaches
the density of A.
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Theorem 1 Let A be a (k — 1)-dimensional sphere pack-
ing with minimum distance d. LetC* be a wrapped spheri-
cal code with respect to A and with latitudes &,,... ,Ex. If
the mazimum and minimum annulus angular separations
satisfy limg (¢ + (d/¢)] = 0, then the asymptotic density
of C* approaches the density of A, i.e., limg_q Apa = Ay,

Proof: Omitted.
One line in the proof implies the following corollary.

Corollary 2 Let A be a (k—1)-dimensional sphere pack-
ing with minimum distance d, and let C be a wrapped
spherical code with respect to A and with latitudes given

by & = sin (z\/c_i) for 0 < i < w/(2vd). Then the spher-
ical code density satisfies |Aon — Ay| < O(VA).

3.3 Decoding wrapped spherical codes

An important question in channel decoding and quan-
tization encoding is how to efficiently find the nearest
codepoint to an arbitrary point in R* (see, e.g., [18]). Of-
ten, an advantage of a structured code is that codepoints
themselves need not be stored explicitly.

If the k-dimensional signal X € C? is sent across an
additive white Gaussian noise (AWGN) channel, then the
received signal is R = X + N, where N is a zero-mean
Gaussian random vector with variance o?. The maximum
likelihood decoder is a minimum distance decoder, i.e.,
given R, the decoder output is X = arg miny qa || X~ R,
the closest codepoint to R. For any R € R* and any
spherical code C(k,d), the nearest codepoint of C(k,d)
to K is the same as the nearest codepoint of C(k, d) to
R/||R||. Hence, in the following, we assume R € Sj.

We now evaluate the performance of an efficient subop-
timal decoding method. Given a received vector R € Sk
let the decoder output be

X = arg min |I/(X) - f(R)||

Note that X € C* implies f(X) € A. Let Y be a nearest
neighbor of f(A) in A. There is at most one candidate
in the set f~*(Y) which could be a nearest neighbor to
R, namely, the element E which is in the same annulus
as R. However, because of the buffer region B, F might
not be in CA. This happens with probability O(v/d) or
less, for B covers O(V/d) of the sphere. (Such an E exists
provided ||Y|] < 1 and R is not within d of the border
of an annulus, which holds with probability 1 — O(/d).)
Thus, with probability 1 — O(v/d),

% s (arspilv - 51

which involves only f, f~1, and the decoding algorithmm
for A.

It is known that when points from the packing A with
minimum distance d are used on an AWGN channel, the
probability of symbol error is 7Q() (see, e.g., [20]),
where 7 is the average number of codepoints at distance

2d from a codepoint and where Q is the co

mplemep_ ¥
tary error function defined by Q(z) = 7_12—; f:"e_zzlzdl, L

The following theorem shows that the performance of ol
ficiently decoding C? is asymptotically close to the per. -
formance of A.

Theorem 2 Let A be a (k- 1)-dimensional packing wigh
minimum distance d, and let C* be a wrapped spherieq]
code with respect to A and with latitudes = sin(i\/a')_
Let P, be the probability of symbol error when CA is used
on an AWGN channel with equiprobable nputs and the
decoder output is X = argminy .oa || F(X) — F(R)||. Then
P 27Q (52(1 - O(d"/4))) .

Proof: Omitted.

4 Conclusions

A new technique was presented that constructs wrapped
spherical codes in any dimension and with any minimum
distance. The construction is performed by defining a
map from R*~! to Si. Although any set of points in
E*=! may be wrapped to S; using our technique, if the
densest packing in R*~! is used the wrapped spherical
codes are asymptotically optimal, in the sense that the
ratio of the minimum distance of the constructed code
to the upper bound approaches one as the number of
codepoints increases. This demonstrates the tightness of
the upper bound in (7], asymptotically, and that previous
lower bounds are not asymptotically optimal.
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