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Abstract

A technigue analogous to laminated lattice construc-
tion is given for creating spherical codes. These “lam-
inated spherical codes” outperform many other spheri-
cal codes, such as those derived from lattices, concate-
nated codes, and other lower bounds. Additionally, for
fized dimension k, the density of codepoints on the unit
sphere approaches the best known sphere packing den-
sity in k—1 dimensions for k = 3—8, as the minimum
distance d — 0. In particular, the three-dimensional
laminated spherical code is asymptotically optimal, in
the sense that its density approaches the well-known
Fejes Téth upper bound as d = 0. Our codes are also
highly structured, which simplifies decoding.

1 Introduction

A spherical code is a set of codepoints on the surface
of a multi-dimensional unit radius sphere. Let Si be
the surface of the unit radius k-dimensional sphere:

k
S.E{(:,,...,:;.):E:?:l}.

i=1

Denote the surface area of Sx by A(Sk), and the vol-
ume by V(Sk). For a k-dimensional spherical code
C C Si, the minimum distance is defined as

d= min [x -yl
x,y€C
x#£y

where ||x — y|| is the Euclidean distance between code-
points x and y. C(k, d) denotes a k-dimensional spher-
ical code with minimum distance d. The angular sep-
aration between two points x,y € Sk is cos™(x - y).
The minimum angular separation (expressed in terms
of d ), is defined as

g = 2sin~1(d/2). (1)

*This work was supported in part by the National Science
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The set of points on Si whose angular separation
from a fixed point y in Sy is at most ¢ is called a spher-
ical cap centered at y with angular radius ¢, denoted
c(k, ¢). That is,

c(k,¢)={x€ Sk :x-y > cosd}.

Note that if the codepoints of a spherical code with
minimum distance d are the centers of spherical caps
of angular radius 6/2, then none of the caps overlap.
Let A(c(k,$)) denote the surface area of c(k, ¢).

The density Agx,q) of spherical code C(k,d) is
defined as the ratio of the surface area of |C(k,d)|
nonoverlapping spherical caps with angular radius 6/2
to the surface area of Si:

_ [C(k,d)1 - A(c(k,0/2))
- A(Sk) ’

Acik,a)

Let

A(k,d) = Jax Ac(k,d), (2)
and let Ay = limsup,_,o A(k,d). Define Ai“" to be
the highest sphere packing density in k dimensions.

It is currently an open problem to determine
A(k,d) for k > 3, although a few special cases have
been solved and a number of bounds have been pro-
posed [Ran55, Yag58, Fej59, Wyn65, Cox68, DGST77,
GHSW87, EZ95]. For small d, [Fej59] and [Cox68] pro-
vide the tightest known upper bound and [GHSW87]
provides the tightest known lower bound. There is a
gap between these two bounds. We construct spherical
codes which provide a new lower bound that asymptot-
ically meets the upper bound of [Fej59] for dimension
3, as shown in Table 1.

We refer to a class of codes {C(k,d)} as asymp-
totically optimal if Ac(x,a)/A(k,d) = 1 asd— 0. Al-
though A(k,d) is not known, it is not hard to prove
that Ay < AL°F for all k, which can be used to show
that laminated spherical codes developed in this paper
are asymptotically optimal for k = 3. For4 < k < 8,
the laminated spherical codes are asymptotically opti-
mal if and only if the the best known sphere packing



Reference Asymptotic density k ~
achieved p) 3 3 5 6 7 8
L A¢_iV(S5k-1)
Af =t =| 1 9069 | .7405 | .6169 | .4653 3729 2953
[GHSW87] | S4pimizizt) = 1 7854 6046 | < .4585 [ < .3455 | <.2581 | <.1916
[agsg] | 2=t 1 92500 | .1925 | <.1460 | <.1100 | < .08214 | < .06100
[Wyn65] | 2 * = 5000 | 2500 | .1250 | .06250 | .03125 | .01563 | .007813 |
Parameters used
ﬂﬂk T - > - Rl
[LeeTt] | ALTY 2 V' =5 | ¥ | o | w5 1%
[best packing density] = 0069 | = .7405 | = .6169 | = .4653 | = .37290 | =.2953
s [Rogdd] | AL < 1 | x/2V/3) | 7784 | 6478 | 5257 | 4192 | .3298
Sch85) | V(Sk) = Volume of S | = ar/3 72J2 | 8x°/15 | #°/6 | 1677106 | ='/24
Sch85] | A(Sk) = Area of Si 2 4r 274 87%/3 =~ 167 /15 /3
oz 1/4 1/3 172 172 5/8 2/3

Table 1: Summary of asymptotic performance of various spherical codes, as d — 0. The asymptotic performance
may be expressed precisely in terms of the parameters of the bottom rows.

in the previous dimension is optimal. A corollary of
this is that the apple-peeling lower bound [GHSW87]
is not asymptotically optimal for 3 < k < 8.

A summary of the densities of the best spherical
codes and sphere packings is given in Table 1. In Sec-
tion 2, our laminating technique for creating spherical
codes is given and shown to be asymptotically optimal
for k = 3. A plot compares the codes constructed here
to many other codes. In Section 3 the structure of
the code is shown to allow easy decoding of a received
point.

2 Laminated spherical codes

By placing codepoints on concentric (k — 1)-
dimensional spheres and projecting the points onto
Sk, a k-dimensional spherical code may be obtained.
By nesting the concentric spheres closely, and plac-
ing codepoints of one sphere at the radial extension
of the deep-holes of codepoints of the previous sphere,
the method of constructing laminated lattices comes
to mind (see, e.g., [CS88]), and thus we denote our
codes by CE. The procedure is illustrated with k = 3
in Figure 1. The method is similar to the Yaglom
[Yag58] and apple-peeling [GHSW87] lower bounds in
that a projection from k—1 dimensions to k dimensions
is used; the difference lies in the placement of points
before the projection. The technique is practical for
creating codes of any size and thus provides a lower

bound on achievable minimum distance as a function F.igure .1: (a) 5 sca.le.d 2-dimensional .codes: (b) A 3
of code size. For k = 3, this lower bound is tighter dimensional code derived from the 2-dimensional codes

than the Yaglom and apple-peeling lower bounds, and by projecting codepoints out of the page. Codepoints
even tight enough to prove its asymptotic optimality. are the centers of the caps.




Figure 2: The sphere consists of annuli, buffer zones,
and wasted regions. In general, W, and W, may en-
compass one or more annuli. Shown is the case k = 3.

2.1 The laminated spherical code con-

struction

Fix the dimension & and minimum distance d € (0, 1].
Given a finite increasing sequence rp,...,ry of real
numbers in [0, 1], we define a collection of shells, where
the ith shell consists of those points in Bx_; whose dis-
tance to the origin is in the interval (r;_;,r;]. Define
9:Z — Z by g(i) = min{j:r; > iVd} and s:Z = Z
by s(i) = g(max{j:rgy) < ri}). We refer to the ith
annulus as the set of points in Rx_; whose distance to
the origin is in the interval (rg(), rg(i+1)-1]. That is,
an annulus is a collection of consecutive shells. Note
that s(i) is the smallest integer for which the set of
points whose distance from the origin is in the inter-
val (ry¢iy, 7i] is a subset of one annulus. Between the
(i = 1)th and ith annuli is the ith buffer zone. We
call shells, annuli, and buffer zones which are projected
onto the unit k-dimensional sphere Sy again shells, an-
nuli, and buffer zones, respectively. These quantities
are formally defined by:

lk—l
{(::1,...,.1:;;) € Si: z:cf € (7'.'-1,7'1']}
=1

T =
g(i+1)=1
A = U T
F=g(i)+1
k=1
B = {(z1,...,2) € S \ Y7 € (ro(i)-1, (i)
i=1
k=1
W, = :1,...,z;,)ESk:.\Zz?<d”4
i=1
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W = {(21,...,2k) ESk:
I'V = W1 U Wz

T = UTi=U4;

B = UiB.'.

W1 and W, are “wasted” regions, in waich codepoints
are not necessarily as tightly packed s the rest of the
sphere. Each of the sets above is s function of the
sequence of radii {r;} or d. For any -~} and d, §; =
W UT U B, as shown in Figure 2.

Foreach i€ {0,...,N} let

¥
6; = 2sin™! ( !

2rs(l') /:

We define the k-dimensional laminc=d spherical code
with minimum distance d by

{ (Il,. ..,xk_l,:h
N
zx1) € | J G- 1 mid/ry )
1=0

where C;(k — 1 yTid/T,(5)) is a specis. Ype of (k — 1)
dimensional code with minimum dissace d/r,(;) that
has been scaled to lie on a sphere i radius r; (and
hence to have minimum distance rk rs(i)). We de-
scribe the construction of these (k — 1)-dimensional
codes next. The innermost code of 32 annulus, ie.,
one of the form Cy(j)(k — 1, d), is deix=d to be merely
a (k—1)-dimensional spherical code dws2rmined by this
method. The remaining codes of the sanulus are built
up in layers, using the deep-holes of e previous layer.
In particular, the number of codeponts in each layer
of an annulus will be the same. T codepoints of
Coj+2m)(k — 1, 7g(j+2m)d/rg(5)), oF Caiv2m) for short,
will lie at radial extensions of codepomss of Cy(;), while
the codepoints of Cg(j)4+2m will be radal extensions of
deep-holes of codepoints of Cy(;). T determination
of the deep-holes is the same as the ietermination of
the deep-holes for the laminated latti=s—they are the
centroids of certain codepoints.

When k = 3, the layers of 2-din€ﬂ=ional codes is

C(k, d)

Il

(zli"'l

easily defined explicitly. For each i = ., N}, the
set defined by

Y = {(7‘,‘ COSJ'G,', Ty sin JE,)} : Odd
C1(21 d] = { {(1‘; CDS(J' + _;_)B'_’ i sinl':'., -]5)0.')} i even,

i €10,...,|2=/6;) — 1}, is a 2-dimeasional spheric_a.l
code on a circle of radius r;. Note irat every code in
a given annulus has the same numb= >f points.




It remains to determine a formula for the small-
est allowable radius r; for the next concentric sphere,
given rg,...,r;—1. The quantity r; is chosen as small
as possible and yet large enough so that the codepoints
at radius r; are at least distance d from the code-
points at radius r;_; after projecting them onto the
k-dimensional sphere. The solution is obtained by:

(-9

Ts(i)
d?
+ dJ(l =i (1=

__(w_-_x@ /
Ts(4)

ri—1Ckd 2
(1—( Ta(i) ) ) @

4
The solution above is used only for shells within
the same annulus. Between annuli, the radius r; is
defined such that every point on the ith shell is at
least a distance d from every point on the (i — 1)th
shell. This gives:

= id.'-'

Ty

2 2
ri=ra- D rafu-e-5). @

Summarizing, the r;’s may be determined by the fol-
lowing algorithm:

Ty :=rg i=1:=0;
while r; € /1 —-d2/4 {
ti=141;
r := (RHS of (4));
if (r € R) and (r > r;) and (r —r, < V4d)
then r; := r; /* regular solution */
else { /* begin new annulus */
re :=r; := (RHS of (5));
}
}
N:i=i-1;

The apple-peeling spherical code and CLare compared
in Figure 3 when k = 3 and d = 0.05.

2.2 Laminated spherical code density

We are now ready to compute the density of a lami-
nated spherical code. Let A%(k,d) be the density of
the k-dimensional laminated spherical code with min-
imum distance d, and let A} = limy_,o AL(k, d).

Theorem 1 The density of a laminated I.‘spheﬁ'ca! code
in k dimensions satisfies AL(k,d) = Dioy¥ (Sua)

2 /1=ciV(Su_a)
O(dl“).

Sketch of proof: Within an annulus, layers of shells are
stacked much the same as layers of lattices are stacked
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in the construction of laminated lattices. Thus, we
expect that the denmsity of C%(k,d) within an annu-
lus should be nearly the best packing density in k — 1
dimensions. After much algebra and asymptotic analy-
sis, the density of codepoints within region T, denoted
dr can be bounded as:

5 > _AEAV(Si1)

= 5 /1-qV(Si-a)
Consider now the buffer zones. Since o) = Teli)-1 <
d, the area of the jth buffer zone B; is bounded above
by A(Sk-1)d. By construction, the total number of
annuli in CLis 2[d=1/?], where we include annuli with
both positive and negative kth coordinates. Hence, the
total area of B = U; B; is

A(B) < 2A(Sk-1)d[d~?] = O(d"?),
and A(W) = O(d*/*). Thus,

- 0(d'*).

(6)

dr A(T)
Ab(k,d) > = ér(1 — O(d¥/*
(kd) > ZE) = sn(1- 0@/
L
Ak—lv(sft—l) _ O(dll‘l).
2/1 = iV (Sk-2)
Corollary 1 As d — 0, the density of the laminated

spherical code CL(k,d) approaches the density of the
best known (k —1)-dimensional sphere packing. In par-
ticular, CE(3,d) is asymptotically optimal, and the Fe-
jes Toth upper bound is asymptotically tight.

Shown in Figure 4 is a plot of the proposed lower
bound A%(3,d) versus d. The quantity AL(3,d) is de-
rived from actual code constructions, and a logarith-
mic scale is used for d. All code sizes are normalized by
the Fejes T6th upper bound, i.e., AL(3,d)/Ap(3,d) is
plotted versus d, where Ap(3,d) is the upper bound
on density. For small d, the code performance is bet-
ter than any previous codes, and the convergence to
the upper bound is evident. Included in the plot are
other codes obtained by the authors using a simulating
annealing approach which improves upon [GHSW87).
This method produces good codes, but due to time
constraints is limited in the code size that can be con-
structed. Another unstructured code approach is used
in a program by [Slo94], which has produced many of
the best known codes for small code sizes. Spherical
codes can also be generated from shells of lattices (see
e.g., [CS88]). Figure 4 shows codes generated from the
first 1000 shells of the face-centered cubic and Z3 lat-
tices, whose exact minimum distances were obtained
by a computer search. Figure 4 also shows spherical
codes formed from concatenations of MPSK and 2-AM
codes. As can be seen, for d < 0.1 all of these codes
are outperformed by the proposed laminated codes.




Figure 3: k = 3, d = 0.05. (a) The apple-peeling code has 4764 codepoints. Any shell of this code may be
rotated without affecting the minimum distance. (b) €L has 5230 codepoints. Codepoints in adjacent shells are
interlaced. Any annulus may be rotated without affecting the minimum distance, but individual shells may not
be rotated. The 5 annuli are numbered.

Code density (as a fraction of Fejes Toth density)

Spherical Codes in 3 Dimensions
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Figure 4: Comparison of 3-dimensional spherical codes.
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3 Decoding

Let r € S;. An important question in channel cod-

ing and quantization theory is how to find the nearest °

codepoint to r in an efficient manner [GRH88, MN91].
An advantage of having a structured code in this case
is that the codepoints themselves need not be stored.
We consider two approaches to decoding, reflecting a
tradeoff in the time and space complexity of the de-
coding: namely, (I) the decoder stores the sequence of
radii {r;}, or (II) the decoder stores only the minimum
distance d.

We can show that if the spherical code C*(k, d)
has size M, then there is an optimal decoder us-
ing O(v/M) space and O(log M) time, or an optimal
decoder using O(1) space and O(VM) time. This
may be proved as follows. Given the received vector
r = (z1,...,%x), the decoder may perform a binary
search of the sequence {r;} in O(log M) time to de-
termine the index 7 such that r;_; < Zk;'ll ::;?’ < ¥5.
Under (I), the search may be performed c'Iirectly. Un-
der (II), the radii are generated. It is not hard to show
that the length of the sequence {r;} is O(v/M). Only
codepoints arising from a constant number of C;’s are
candidates for being a nearest neighbor, and the near-
est neighbor to r from a shell C; may be determined in
constant time.
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