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Abstract

In order to investigate the theoretical limits in lossy cod-
ing of sources with mixed distribution, the asymptotic
behavior of the rate-distortion function of a source vec-
tor with mixed distribution is derived. The source dis-
tribution is a finite mixture of components such that
under each component distribution a certain subset of
the coordinates has a discrete distribution while the re-
maining coordinates have a joint density. The expected
number of coordinates with a joint density is shown to
equal the rate-distortion dimension of the source vector.
Also, the small distortion asymptotic behavior of the rate-
distortion function of a special but interesting class of
stationary information sources is determined.

1 Introduction

Consider a random vector X™ = (X1,...,X,) taking val-
ues in the n-dimensional Euclidean space R™®. The rate-
distortion function [1] of X™ relative to the normalized
squared error (expected squared Euclidean distance) cri-
terion is defined for all D > 0 by

1

Ryn (D) = inf -
x~(D) n—isnxz-n—yv-u?gn n

Inxm"ym

where the infimum of the normalized mutual information
LI(X™;Y"™) (computed in bits) is taken over all joint dis-
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tributions of X™ and Y™ = (13, ... ,Y5) such that
1 rn n|2 1 - 2
— - = — i — Y; < D.
nEI|A bal! - ,-Ezl E[(X;-Y)*)<D

The function Rx~(D) characterizes the minimum rate
achievable in coding with mean squared distortion D a
vector source which emits independent copies of X™. It
is therefore of interest to determine Ry (D). However,
except for a few special cases, closed form analytic ex-
pressions for Rx~ (D) are not known, and only upper and
lower bounds are available. Arguably, the most important
of these bounds is the well known Shannon lower bound
(1]. For X™ having an absolutely continuous distribution
with density f and a finite differential entropy

h(x™) = - [ (o) 10g f(a)de
the Shannon lower bound states that
Rxn (D) > %h(X") - %Iog(?vreD)

where the logarithm is base 2. The right hand side equals
Rx« (D) if and only if X™ can be written as a sum of
two independent random vectors, one of which has in-
dependent and identically distributed (i.i.d.) Gaussian
components with zero mean and variance D. In more
general cases, the Shannon lower bound is strictly less
than Ry« (D) for all D > 0, but it becomes tight in the




limit of small distortions in the sense that
Rxa(D) = %h(X") - %]og(?‘.rreD) +o(l) (1)

where o(1) — 0 as D — 0 ([2] (3] [4]).

One important feature of the Shannon lower bound is
that it easily generalizes to stationary sources. Let A =
{X:}2, be a real stationary source and for each n, let
X" denote the vector of the first n samples of . The
rate-distortion function of X is defined by

Rx(D) = lim Rx~(D) (2)
n—oc

(the limit is known to always exist [1]). The quantity
Ry(D) represents the minimum achievable rate in cod-
ing X with distortion D (see, e.g., [5]). Let X™ =
(Xi,...,X,) have a density and finite differential en-
tropy h(X™) for all n, and assume that the differential
entropy rate h(X) = lim, e =h(X™) is finite. Then the
generalized Shannon lower bound [1] is

Rx(D) > h(X) — %Iog(ereD) (3)

and just as in the finite dimensional case, this lower bound
becomes asymptotically tight in the limit of small distor-
tions ([3] [4]).

For source distributions without a density the Shan-
non lower bound has no immediate extension. How-
ever, Rosenthal and Binia [6] have demonstrated that
the asymptotic behavior of the rate-distortion function
(which for sources with a density is given by (1)) can still
be determined for more general distributions. They con-
sidered the case when the distribution of X™ is a mixture
of a discrete and a continuous component with nonneg-
ative weights 1 — & and a, respectively, where the con-
tinuous component is concentrated on an L-dimensional
linear subspace of " and has a density with respect to
the Lebesgue measure on that subspace. Equivalently,
we are given an n-dimensional random vector X 1) with
a discrete distribution, and another n-dimensional ran-
dom vector X?) which is obtained by applying an or-
thogonal transformation to X' = (X},...,X},0,...,0),
where the L-dimensional random vector (X7,... , X} ) has
a density. Let v be a binary random variable with distri-
bution P(r =0) =1 —a and P(r = 1) = a, and let » be
independent of (X1, X(2)), It is assumed that X" can
be written in the form

X"=(1-»)X" +px®, (4)

The main result of [6] shows that as D — 0, the rate-
distortion function of X™ with such a mixed distribution
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is given asymptotically by the expression

l—o

Ryn(D) = ZH() + -2 H(X®) Q
a W al 2menD
+Eh(X)—Elog( ol )+o(1)

where H(v) and H(X(!)) denote discrete entropies and
h(X') is the differential entropy of X'. We note here that
Rosenthal and Binia made an error in the derivation (see
equation (27) in [6]) and in fact arrived at an incorrect for-
mula instead of the correct expression (5). Their asymp-
totic expression exceeds (5) by the nonnegative constant
5% log(3)-

Although the mixture model Rosenthal and Binia con-
sidered can be very useful for modeling memoryless sig-
nals encountered in certain practical situations, its use
in modeling information sources with memory is rather
limited. In particular, it is easy to see that a source
{Xi}32, cannot be ergodic if for all n, the samples X" =
(X1,...,Xn) have a mixture distribution in the form of
(4) with 0 < @ < 1. Thus in general (5) cannot be used
to obtain the asymptotic behavior of Ry (D) for station-
ary and ergodic sources which have infinite memory and
mixed marginals. For example, such source models are
used in lossy coding of sparse images [7].

In this paper we propose a more general mixture model
and provide an extension of (5) to this class of source
distributions. Our model has the advantage of allowing
stationary and ergodic information sources. We assume
that the distribution of X™ is a mixture of finitely many
component distributions such that each component has
a certain number of coordinates with a discrete distribu-
tion while the remaining coordinates have a joint density.
More formally, let {X), j = 1,...,N} be a finite col-
lection of random n-vectors such that for each j exactly
d; coordinates of X(7) have a discrete distribution (the
d;-dimensional vector formed by these “discrete coordi-
nates” is denoted X (7)) and the remaining ¢; = n — d;
coordinates have a joint density (the ¢;-dimensional vec-
tor formed by these “continuous coordinates” is denoted
X)), Without loss of generality, we assume that X (/)
and X (") do not have all their discrete coordinates in the
same positions if j # j'. Let V be a random variable
taking values in {1,..., N} which is independent of the
XUs. Our model for X™ assumes that X™ = X(V) | that
is, if V = j, then X® = XU, Note that V is a function
of X™ with probability 1.

Let h(X )| X)) denote the conditional differential en-
tropy of the continuous coordinates of X7 given its dis-

crete coordinates, and let H(X 7)) denote the entropy of
the discrete coordinates. Qur main result, Theorem 1,

=




shows that as D — 0,

Rx~(D) = SH(V) + = 3" aH(X) ©)

N

+ ;1; ; a;h(XP | X)) — %log(%eD/A) +0(1)
where a; = P(V = j) and A = %Ef:: ajc;. Note that
the quantity nA is the average number of “continuous
coordinates” of A™. Formula (6) proves that nA is also
the so-called rate-distortion dimension of X™ [8].

To illustrate the application of this result to sources
with memory, let {Z;}{2, be an arbitrary binary sta-
tionary source. We construct another stationary source
{Xi}:2, in the following manner. If Z; = 0, let X; have a
fixed discrete distribution P, while if Z; = 1, let X; have
a density f. We assume that the generating procedure
is memoryless so that the X; are conditionally indepen-
dent given {Z;};2,. Then X = {X;}%2, is a stationary
source and for all n the distribution of X™ has a mixture
form for which (6) applies. (Note that (5) cannot be used
for X™ in this example if n > 2.) As a consequence of
Theorem 1, Corollary 1 shows that as D — 0,

Rx(D) = H(Z)+(1-a)H(P)+ah(f)
- %mg(zwep/a) +o(1) (7)

where H(Z) = lim, 2H(Z™) is the entropy rate of Z,
H(P) and h(f) are the discrete and differential entropies
of P and f, respectively, and a = P(Z; = 1).

2 Sources with Mixed Distribu-
tion

Let {X@ = (x{,..., X/, i =1,...,N} be a finite
collection of R"-valued random vectors such that each
X has d; coordinates which have discrete distribution,
and ¢; = n — d; coordinates which have a joint den-
sity. More formally, let A7 = {a?,... ,az,j} be a subset of
{1,...,n} of size d; such that o] < @} <--- < a';j, and
let BY = {b],... ,bL} ={1,...,n}\ A%, bl <bl<--<
bl be the complement of A7 in {1,...,n}. We assume
that the dj-dimensional random vector

X0 =(xP,....x9) (8)
1 d,

which is chosen from among the coordinates of X by
the index set 47 has a discrete distribution with a finite
or countably infinite number of atoms, while the ¢; di-
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mensional random vector
X0 =xD,... ,x2) (9)

has an absolutely continuous distribution with a density.
We also allow d; = n (X'9) has a discrete distribution)
and dj = 0 (X9) has an n-dimensional density).

Let the source vector X™ have a distribution which is a
mixture of the distributions of the X(¥) with nonnegative
weights aq,... ,apn (Zf:l a; = 1). This means that for
any measurable B C R”?,

N
P(X" e B) =) o;P(X"Y € B). (10)

=1

Equivalently, we can define an index random variable
V' taking values in {1,..., NN}, which is independent of
the X and has the distribution P(V = j) = aj,
j=1...,N.If X" is defined by

X =x" (11)

(i.e., if V = j, then X" = X)) then X™ has a distribu-
tion given by (10).

Without loss of generality we will assume that if j #
j', then XU) and X" do not have their discrete (and
consequently their continuous) coordinates at the same
positions, i.e.,

Al £ AT if §# (12)

For otherwise, by mixing the distributions of X¥) and
X" with weights a; and ajr, one would obtain a new dis-
tribution which, when assigned the weight a; + e, could
replace X¥) and X" in the definition of X™. Therefore,
we can assume that N < 2™ since there are 2" different
possibilities for choosing discrete coordinates.

In what follows we require that X satisfy the following
mild conditions.

(a) All XU) have finite second moments E|| X |2 < oo,
j=1,...,N.

(b) For each XU), j = 1,..., N, the conditional differ-
ential entropy h(X )| X (7)) is finite, and the entropy
of the discrete coordinates H (X)) is finite.

The next theorem is proved in [9]

Theorem 1 Assume X™ is of the mizture form (11) such
that each component X) has d; coordinates with a dis-
crete distribution and c; = n—d; coordinates with a joint
density. Suppose the XU) satisfy (a) and (b). Then the
asymptotic behavior of the rate-distortion function of X™




relative to the normalized squared error is given as D — 0
by

N
1 1 .
- = i P et . 7 (7)
Ry~ (D) nH(‘l)+nJ§=;a}H(A ) (13)
§ 2 T |
+= ,-Zl: ajh(XD X)) — 5 log(2reD/A) + o(1)

where A = %Z;\;, ajc; and o(1) = 0 as D = 0.

Remark Kawabata and Dembo [8] defined the rate-
distortion dimension of X™ by

nRy- (D)
mm————
5= ~Flog(D)

provided the limit exists. The rate-distortion dimension
of X™ with an n-dimensional density is n» by (1). The
result of Rosenthal and Binia in (5) demonstrates that if
the continuous component of X" has an L-dimensional
density and weight a, then its rate-distortion dimension
is aL. Theorem 1 shows that for the mixed distributions
we consider, the rate-distortion dimension is

nqu (D)

fim RoXel2L _gA.
03 “Tlog(D)

Thus the expected number of continuous coordinates n/\
is also the effective dimension of X™ in the rate-distortion
sense.

Example One immediate application of Theorem 1 con-
cerns processes which are obtained by passing a binary
stationary source through a memoryless channel. Let
Z = {Z;}%, be an arbitrary stationary source taking
values in {0,1}, and consider a time-invariant memory-
less channel with binary input and real valued output.
The output of the channel has a discrete distribution P
if the input is 0, and an absolutely continuous distribu-
tion with density f if the input is 1. We will assume that
H(P) and h(f) are finite.

Suppose the stationary process X' = {X:}22, is gener-
ated as the output of this channel if the input is {Z;}32,.
Fix n > 1. Since the channel is memoryless, X, X0
are conditionally independent given Z". For 2" € {0,1}",
let X=") be a random n-vector having distribution equal
to the conditional distribution of X" given Z™" = z", and
let d(z") and ¢(z") denote the number of 0’s and 1's, re-
spectively, in the binary string 2". Then the coordinates
X" for which z; = 0, form a d(z")-dimensional i.i.d.
random vector X ") with a discrete marginal distribu-
tion P, and the X\*") for which z = 1, form a ¢(z")-
dimensional i.i.d. random vector X"} with marginal
density f. It follows that X™ has the type of mix-
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ture distribution considered in Theorem 1 with 2™ com-
ponents X ") indexed by z", where X (") has weight
P(Z" = z"). Therefore, we can apply Theorem 1 with
V = Z" and a(z") = P(Z™ = 2") to obtain that as
D -0,

Rx~(D) = ~H(Z") + L $ p(gn=mEERE)
n:“E{O.l}"
1 e
= n_ N (=" 3 (=")
+ = S P27 = 2MA(XEXE)
me{0.1}™
—5'25 log(2reD /a) + o(1) (14)
where
1 2 [ n n
6 = = Z P(Z™ = z2")e(2")
zne{0,1}"

%E[c(zﬂ)} —P(Zi=1)

since {Z;} is stationary. Moreover, by independence,
we have H(XG")) = d(z")H(P) and h(XG"|XC") =
c(z™)h(f). Since we also have

1

Y P(zr=:)d(") =1-a

" =nef{0,1}"

(14) can be simplified to

Ry-(D) = %H(Z")-&—(I-Q)H(P)-t-ah(f)

- %log(2wep/a) +o(1). (15)
From this the following corollary of Theorem 1 is almost
immediate.

Corollary 1 Let X = {X}I., be the stationary process
of the previous ezample and let H(Z) = limn - H(Z™) be
the entropy rate of the generating binary stationary source
Z ={Z;}2,. Thenas D = 0,

Rx(D)

H(Z)+ (1 —a)H(P) +ah(f)
- 9‘2.105(21:@/0:) +o(1).

Proof. Using more precise notation, (15) can be rewrit-
ten as

Rx~ (D)

%H(zn) + (1 - a)H(P) + ah(f)

- %Iog(?weD/a) +e(n,D)  (16)
where ¢(n, D) = 0 as D = 0 for all n. Since we do not
claim that e(n, D) converges to zero uniformly for all 7,
we cannot simply take the limit as n — oo of both sides



of (16) to obtain the asymptotic behavior of Rx(D)
limp, Rxn (D). Fortunately, it is known [10] that

1 -
[Rxn (D) — Ry(D)| < ;I(-YR§XD,A—1: Shelf

where Xy, X_;,... are samples from the two-sided
stationary extension of {X;}2,. Therefore if
limp 11(X™; Xo, X_1,...) 0, then Rx«(D) con-
verges to Ry (D) uniformly for all D. Since each Z; is
a function of X; with probability 1, and since the X;
are conditionally independent given {Z;}, an equivalent
condition is limy, +1(Z%; Zg, Z_1,...) = 0, which always
holds because the Z; have a finite alphabet. On the
other hand, denoting

Ra(D) = ~H(Z")+(1-a)H(P)+ah(f)
= %log(?.vreD/a)
and
R(D) = H(Z)+(1- a)H(P)+ah(f)

- %log(:?vreD/a)

we obviously have that R,(D) converges to R(D) uni-
formly for all D as n — oco. These two facts readily imply
that

lim

lim (RX(D) + %log(?weD/a) — H(2)

~ (1-a)H(P) —ah(f)) =0

which is equivalent to the claim of Corollary 1.

Corollary 1 suggests a method that is near optimal for
encoding {X;} with small distortion. Since Z™ is a func-
tion of X™ it can be losslessly encoded using approxi-
mately H(Z™) bits. The binary vector Z" specifies the
positions of the “discrete” and “continuous” samples of
X™. Therefore the d(Z™) discrete samples can be loss-
lessly encoded using d(Z")H (P) bits and the ¢(Z") con-
tinuous samples can be encoded with overall squared dis-
tortion ¢(Z™)D/a using a vector quantizer which is opti-
mal for the ¢(Z")-dimensional i.i.d. random vector with
marginal density f. By (1), the vector quantizer will need
approximately c¢(Z")h(f) — %_"] log(2meD/«) bits. The
normalized expected squared error of this scheme is D,
while for large n and small D, the per sample expected
rate will be close to H(Z) + (1 — a)H(P) + ah(f) —
7 log(2meD/a). Intuition tells us, and Corollary 1 proves
it formally, that this strategy is asymptotically optimal.
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