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1. VECTOR QUANTIZATION

It has become widely recognized in the past decade that a vector, i.e., an
ordered set of signal samples or parameters, can be efficiently coded by
matching the input vector to a similar pattern or code vector in a codebook.
For a given input vector, the encoder simply identifies the address, or in-
dex, of the best matching code vector. The index, as a binary word, is then
transmitted and the decoder replicates the corresponding code vector by a
table lookup from a copy of the same codebook. Since the codebook con-
tains a finite set of entries, the matching code vector is one of a finite set
of possible approximations. In this sense, analog-to-digital conversion has
been performed. The index is a digital code that allows the receiver to repro-
duce an approximation to the original. Hence, the operation of quantization
has taken place directly on a vector. The vector components are not coded
individually as in scalar quantization, but rather all at once. Considerable ef-
ficiency is achieved, fractional bit rates (bits per vector component) become
possible, and the average distortion (e.g., average squared error per compo-
nent) for a given bit rate is generally much reduced in comparison to scalar
quantization of the components. Figure 1 illustrates the basic idea of vector
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Figure 1 Vector quantization.

quantization (VQ). From this description, it is evident that VQ is in essence
a pattern-matching algorithm; such an approach to pattern recognition was
in use long before the age of digital electronics.

Perhaps the first application of pattern matching to speech coding dates
back to Dudley (1958). The first major application of VQ to speech coding
was reported by Buzo et al. (1980), who substantially reduced the bit rate of
a linear predictive coding (LPC) vocoder by applying VQ to the LPC param-
eters. Subsequently VQ found its way into waveform coding as well and a
generalization of DPCM using vector prediction together with VQ was de-
veloped. Today VQ is a well established and widely used technique. It has
been applied to the efficient coding of LPC parameters, pitch predictor filter
parameters, gain parameters, block waveform coding and coding of the exci-
tation or residual signal in analysis-by-synthesis predictive coding techniques,
such as VXC, CELP, and VAPC.

In this chapter we first review the fundamentals of vector quantization,
including optimality and design considerations. Current applications of VQ
to speech coding are then discussed, including waveform coding, analysis-
by-synthesis predictive coding, and parameter coding. Important complexity
issues inherent in VQ are examined, and finally, a discussion is presented of
various recent techniques that are incorporated in VQ to combat some of the
detrimental effects of channel noise.

1.1. Vector Quantization Fundamentals

Quantization plays a fundamental role in the coding of speech signals. Vector
quantization is a generalization of scalar quantization to the quantization of
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a vector, an ordered set of real numbers. (For comprehensive discussions of
VQ and its applications to speech coding, see Gray, 1984; Gersho, 1982; Abut
et al., 1982; Gray et al., 1980, 1981; Jayant and Noll, 1984.) The jump from
one dimension to multiple dimensions is a major step and allows a wealth
of new ideas, concepts, techniques, and applications to arise that often have
no counterpart in scalar quantization. While scalar quantization is primar-
ily associated with analog-to-digital conversion, VQ deals with sophisticated
digital signal processing in which the relevant input signals already have some
form of digital representation and VQ is usually, but not exclusively, used for
the purpose of data compression. Nevertheless, there are interesting paral-
lels with scalar quantization and many of the structural models and analytical
techniques used in VQ are natural generalizations of the scalar case.

A vector can be used to describe almost any type of pattern, such as a
segment of a speech waveform, by forming a vector of samples from the
waveform. An important example in speech coding arises when a set of pa-
rameters (forming a vector) is used to represent the spectral envelope of a
speech sound. Vector quantization can be viewed as a form of pattern recog-
nition in which an input pattern is “approximated” by one of a predetermined
set of standard patterns; or in other words, the input pattern is matched with
one of a stored set of templates or code words.

Vector quantization can also be regarded as a building block for a vari-
ety of complicated signal processing tasks, including classification and linear
transformation. In such applications VQ can be viewed as a complexity-
reducing technique because the reduction in bits can simplify the subsequent
computations, sometimes permitting complicated digital signal processing to
be replaced by simple table lookups. Thus VQ is far more than a general-
ization of scalar quantization. Its scope and implications are vast. In the last
few years it has become an important technique in speech recognition as well
as in speech compression. Recently, it has been used in speech enhancement
and other speech processing applications. The importance of VQ continues
to grow and the range of applications continues to expand.

A vector quantizer Q of dimension k and size N is formally a mapping
from k-dimensional Euclidean space R¥ into a finite set C, containing N
output or reproduction vectors from R*. Thus,

O:R¥ —C

where C = {yo,¥1,...,¥v—1} and y; € R¥ for eachi € J = {0,1,...,N — 1}.
The set C is called the codebook and has N elements, each a distinct vector
in R*. The codebook is typically implemented as a table in a digital memory.
The resolution or rate of the quantizer isr = (log, N )/k, which measures the
number of bits per vector component used to represent the input vector (and
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thus the degree of accuracy). It is important to recognize that for a fixed
dimension k the resolution is determined by the size N of the codebook and
not by the number of bits used to describe the code vectors stored in the
codebook.

Associated with every N point vector quantizer is a partition of R into
N regions or cells, R; fori € J. The ith cell is defined by

R = {XER" =Q(x)=)’i}

or in terms of inverse image notation as R; = Q~(y;). From the definition
of the cells it follows that the R; are pairwise disjoint and their union covers
all of R¥.

A vector quantizer can be decomposed into two component operations,
the vector encoder and the vector decoder. The encoder E is a mapping
from R* to the index set J, and the decoder D maps the index set J into the
reproduction set C. Thus,

E:R"———aJ and D:J— RF

and the overall operation of VQ can be regarded as the cascade or compo-
sition of two operations:

Q(x) = D(E(x))

In the context of a speech coding system, the encoder of a vector quantizer
performs the task of selecting an appropriately matching code vector y; to ap-
proximate, or in some sense to describe or represent, an input vector x. The
vector x may represent a number of different possible speech coding param-
eters including, among others, consecutive speech samples, LPC coefficients,
and prediction residual samples. The index i of the selected code vector is
transmitted (as a binary word) to the receiver, where the decoder performs
a table lookup procedure and generates the reproduction y;, the quantized
approximation of the original input vector.

To conveniently assess the performance of a particular vector quantizer,
we use a distortion function d(x,y) that indicates the distortion between any
two vectors x and y in R where x is the original and y the reproduced vector.
The “overall” measure of performance for a given quantizer is given by the
average distortion between an input vector and the quantized output vector,
E[d(x,Q(x))], where E represents the expectation operator. As an example,
the mth power distortion measure is defined by

d(xy) = [lx=y["
The most common and perhaps natural distortion measure is the squared
error function, defined by setting m = 2 above. In this case the average quan-
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tizer distortion is the mean squared error, E||x — Q(x)||*. Another useful (and
more general) distortion function is the weighted squared error function given
by

d(x,y) = (x—y)W(x—y)

where W is a symmetric nonnegative definite matrix. In some cases W may
be a function of the original vector, x, to be quantized.

The Itakura-Saito distance function (Gray et al., 1980; O’Shaughnessy,
1987) computes a distortion between two input random vectors by using their
spectral densities. It is defined by the following L, norm:

_ |15 (ﬁ)
dix,y)=|=—-In| = ) -1
(x,y) 3 5 1
where f, and f, are the spectral densities of the input random vectors x
and y, respectively. This measure can also be conveniently computed using
autocorrelation functions.

An important issue for speech coding with vector quantization is the de-
sign and implementation of quantizers to meet performance objectives. That
is, for a given source, distortion function, and constraint on the bit rate, what
are the best vector quantizer encoding and decoding rules? In general there
is no known method for explicitly specifying the optimal quantizer, although
certain optimality conditions do exist.

For a general class of distortion functions, it is known that the best vector
quantizer encoder for a given decoder satisfies the nearest-neighbor rule; that
is, each input vector x is quantized to an output vector Q(x) which is at Jeast
as close to x as any other vector in the codebook. If there happen to be two
or more code vectors which are at least as close to x as any other code vector,
then the value of Q(x) can be chosen arbitrarily from among the set of nearest
code vectors to x.

If the squared-error distortion function is assumed, then for a given
quantizer encoder, an optimal decoder must satisfy the centroid condition;
that is, each code vector y must be the conditional mean, or centroid, of its
corresponding cell R;.

The problem of designing a vector quantizer for a particular source is of
fundamental importance. If one assumes the nearest neighbor and centroid
rules, then the design problem reduces to determining the best codebook
for a given source (the nearest-neighbor rule is implicitly assumed). The
generalized Lloyd algorithm (GLA) (Linde et al., 1980) utilizes these two
necessary rules to perform an iterative descent procedure based on a finite
training set representation of the source. During each iteration in the GLA
each vector in the training set is compared with every vector in the current
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codebook to find the closest code vector, thus partitioning the training set
into nearest-neighbor cells. The centroid of each partition cell is then com-
puted and serves as a code vector for the next iteration, and the process is
repeated.

For a fixed transmission rate r (bits per vector component) the size of
a VQ codebook is 2¥, where k is the dimension of the vector. Hence the
complexity of a full codebook search increases exponentially as the vector di-
mension grows. This is one major drawback of using the GLA for VQ design
and for using a full-search VQ encoder in general.

The GLA yields locally optimal codebooks that perform well in practice
but may not perform as well as is theoretically possible. Some probabilistic
methods have been developed that can find near-globally optimal VQ code-
books in a reasonable amount of computation time (Vaisey and Gersho, 1988;
Cetin and Weerackody, 1988; Flanagan et al., 1989; Zeger and Gersho, 1989).
One of the most successful of these probabilistic search techniques is simu-
lated annealing, which iteratively “perturbs” a given codebook in a random
manner. Each perturbed codebook is “accepted” if the quantizer improves
or is probabilistically accepted if the quantizer performance degrades. The
probability of accepting degraded codebooks is gradually reduced as the algo-
rithm progresses, which eventually settles the codebook into a good stationary
point, avoiding many poor local minima.

Other VQ design techniques have been developed with the purpose of re-
ducing the computational complexity of the GLA and achieving better local
minima. The splitting method (Gray, 1984) begins by constructing a code-
book containing one code vector. It then “splits” the code vector into two
new code vectors and designs a new codebook of size two with the GLA, us-
ing these two vectors as initial code vectors. At each stage in the algorithm, all
of the previous code vectors are split and a new codebook is designed which
is twice the size of the previous codebook. The design terminates when the
desired power-of-two codebook size is reached. Other VQ design techniques
include using a gradient descent (Chang and Gray, 1986), a conjugate gra-
dient descent (Yair et al., 1990), and a learning algorithm related to neural
networks (Yair et al., 1991; Nasrabadi and Feng, 1988).

Because of the large search complexity of ordinary VQ, there have been
several research efforts to develop fast algorithms for the nearest-neighbor
search process. Algorithms exploiting the constrained geometry of the encod-
ing regions find nearest-neighbor code vectors within a time whose expected
value is a logarithmic function of the codebook size (Friedman et al., 1977,
Cheng and Gersho, 1986). Other fast search techniques are given in Cheng
et al. (1984), Fukunaga and Narendra (1975), Soleymani and Morgerai
(1987), and Vidal (1986).
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For a given codebook size N, the transmission rate of a VQ system is
log, N bits per vector. The output indexes of a given VQ encoder consti-
tute a finite ensemble and have a certain associated probability distribution.
In general, this distribution is nonuniform and hence entropy coding can be
exploited. If a VQ encoder is followed by a variable-rate entropy coder,
such as a Huffman coder, the output average bit rate of the encoder can be
reduced while maintaining the same average distortion. This increases the
performance of the system in the rate-distortion sense. An algorithm for op-
timal design of a vector quantizer with a constraint on the entropy of the VQ
indexes is given in Chou et al. (1989a). The algorithm, known as entropy-
constrained VQ (ECVQ), closely resembles the GLA and assumes that the
quantizer is followed by an ideal entropy coder, which in practice works well.

In principle, if the probability distribution fx(x) of the input vector X is
known, it is possible to evaluate the average distortion achieved for a partic-
ular vector quantizer. In practice, it is sufficient to estimate this figure from
the training set as part of the codebook design process. On the other hand, it
is of great interest to know the minimum average distortion attainable for an
optimal vector quantizer for a statistically specified input and a given code-
book size. Unfortunately, no general theory is available to provide an answer.
However, there exists a useful and relatively simple formula for the squared
Euclidean distance measure in the asymptotic case of high resolution, that is,
as the codebook size N approaches infinity. It turns out that this formula is
reasonably accurate for moderately high-resolution applications, and it pro-
vides considerable insight into the gain that VQ offers compared to scalar
quantization. Specifically, we have:

D ~ N~ CyHy(fx)

where Cj is the coefficient of quantization and depends only on the vector
dimension and

Helf) = sl = | [ GGl d

The constant Cy, drops relatively little as the dimension increases from one to
infinity. The equation clearly shows how the minimum distortion decreases
with increasing codebook size. The dependence on the joint probability den-
sity of the input vector is not so easy to see, but it can be shown that as the
statistical interdependence of the vector component grows, the distortion de-
creases as expected. In particular, in the case of a jointly Gaussian random
vector, we get

] (k+2)/k

(k+2)2
Hi(fx) = 27 (’%3) (det Ry )V
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where R, is the covariance matrix of X. It is well known that the kth
root of the determinant of the covariance matrix is a useful measure of
the degree of correlation between the vector components. When the vec-
tor is a block of consecutive scalar samples of a stationary random process,
(detRy)Y approaches the minimum mean squared prediction error for
one-step prediction with infinite memory.

Perhaps the simplest form of VQ for speech coding is block waveform
coding or vector PCM (VPCM), as it is sometimes called. The digitized
speech waveform is divided into consecutive blocks (or vectors) of length k,
and each vector is encoded to the index of one of the k-dimensional vectors
in a codebook. The speech waveform is thus converted into a sequence of
binary data (code vector indexes) which can be transmitted or stored. The
performance of this simple VQ technique is generally much lower than can
be achieved when VQ is embedded in a more sophisticated system.

If the digitized speech waveform is immediately followed by a waveform
predictor, then the output residual waveform can be vector quantized and
an increase in performance generally results. The most common predictor is
one employing scalar linear predictive coding but another possibility is vec-
tor linear prediction. A generalized version of scalar predictive quantization
(as in DPCM) combines the use of vector prediction and VQ (Gersho and
Cuperman, 1982; Gersho and Cuperman, 1985). A pth-order vector linear
prediction %, of a k-dimensional vector x,, at time instant n, is of the form

P
i‘:M = ZAixn—-i
i=1

where each A; is a constant k x k matrix. The prediction gain ratio (in dB) in
this case is defined as

where a zero-mean input is assumed. Vector predictive coding has also found
applications to interframe coding of LPC parameters and to image coding.

2. GAIN-ADAPTIVE VECTOR QUANTIZATION

The wide dynamic range of a speech waveform contributes to the difficulty
of directly applying VQ to blocks of samples. Vectors formed in this way will
require an excessively large codebook to accommodate not only the wide vari-
ety of shapes of the waveform segment represented by the vector but also the
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wide range of amplitude levels that can arise. In scalar quantization methods
for speech, the technique of gain-adaptive quantization has become widely
used to reduce the inefficiency of directly coding samples that have a wide
dynamic range. Its use in ADPCM is widely known.

The same concept has been extended to the vector case and has proved
to be an effective means of combating the dynamic range problem for wave-
form coding (Chen and Gersho, 1987). In various forms, it is applicable not
only for direct waveform coding of speech but also for coding subband sig-
nals generated by an analysis filter bank as in subband coding (Gersho et al.,
1984).

In a typical application of gain-adaptive VQ, a codebook for gain-
normalized speech vectors is first designed by a codebook design algorithm
optimized specifically for this application. Input vectors are scaled in am-
plitude by a gain-normalizing factor which is adaptively generated by either
forward or backward adaptation. Each normalized vector is then vector en-
coded and the received index is decoded to produce a corresponding code
vector which is then scaled back to the normal level by using the same adaptive
gain value as in the encoder. This effectively allows a much greater dynamic
range for signal vectors than would be possible with conventional VQ with a
reasonable codebook size.

If the gain is produced via forward adaptation, the input speech is
buffered and an average gain value is measured, quantized, and then used for
an entire frame consisting of several signal vectors. Side information is trans-
mitted to the receiver to identify the needed gain value. Because one gain
value serves several successive vectors, a relatively small bit rate is needed to
specify the gain.

In the more interesting case of backward adaptation, no side informa-
tion is needed and the gain control is generated as an estimate of the norm
of the current input vector by operating on the past of the reconstructed vec-
tors. The gain estimation operation can be viewed as a linear or nonlinear
prediction operation and, in particular, LPC techniques can be applied to the
random process consisting of the sequence of vector norms. Often it is con-
venient to work on the logarithm of the vector norm, the log-norm, in which
case linear prediction methods can be applied to predict the current log-norm
value from the past of the sequence of log-norms of the reconstructed vec-
tors. One particularly important application of backward gain adaptive vQ
is in low-delay speech coding (Cuperman et al., 1989; Chen, 1989), which will
be discussed later in this chapter. It is expected that a forthcoming CCITT
standard for 16 kb/s speech coding will incorporate a form of gain-adaptive
vaQ.
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3. STRUCTURALLY CONSTRAINED VECTOR QUANTIZATION

Although it is not possible to quantize a vector better than by using an optimal
full-search codebook, there are serious drawbacks to this owing to computa-
tional complexity and storage requirements. For a fixed transmission rate,
both the storage and the search complexity of a vector quantizer grow expo-
nentially with the vector dimension. For example, in simple VPCM coding
of 8-kHz sampled speech at a rate of 1 bit/s, the size of the codebook is 2%,
where k is the vector dimension. The amount of time available to search the
codebook grows linearly in proportion to k, whereas the codebook size grows
exponentially in k. If we choose k& = 20 then at most 2.5 ms would be available
to search over one-million 20-dimensional vectors for a best match, requiring
over 8 billion floating-point arithmetic operations per second, an infeasible
task with existing signal processor chips.

There are, however, several suboptimal VQ coding schemes which pro-
vide reduced-complexity alternatives to full-search optimal VQ. Each such
technique to be described in this section introduces some structural con-
straint on the VQ system. This means that the set of code vectors cannot
have arbitrary locations as points in k-dimensional space but are distributed
in a restricted manner that allows lower-complexity search methods for near-
est neighbors. Some of the structurally constrained techniques do not even
find the true nearest-neighbor code vectors. Hence the performance of these
VQ codes are suboptimal due to both the constrained locations of the code
vectors and the suboptimal search procedure. The constrained VQ tech-
niques discussed in this section include tree-structured VQ, multistage VQ,
and gain/shape VQ. All of these are applicable to speech compression and
have been used in various speech coding schemes in the past.

3.1. Gain/Shape VQ

Gain/Shape VQ (GSVQ) is another structurally constrained VQ technique
that can help reduce the inherent computational complexity of VQ. The ba-
sic premise of GSVQ is that many different input vectors will have similar
“shapes” but will have varying “norms.” This leads to the idea of storing in
a codebook a finite set of typical shapes and storing in a scalar codebook a
finite set of typical “gains.” GSVQ was introduced in Buzo et al. (1980) and
later optimized in Sabin and Gray (1984).

In the most basic form of GSVQ, the norm (or gain) g = ||X|| of each
input vector X is extracted and encoded into § by a scalar quantizer, and
the resulting unit norm shape vector S = X/g is encoded into S by a vector
quantizer. The decoder generates the product ¢S as its approximation to the
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input vector X. One method of quantizing the gain and shape is to find in-
dependently nearest-neighbor matches for them in their codebooks. It turns
out that this encoding technique is not optimal for GSVQ. The optimal en-
coding scheme consists of first finding which shape vector S in a unit-norm
shape codebook maximizes the scalar product X'S, where the superscript ¢
denotes the transpose, and then finding which gain § in the scalar codebook
best approximates X' S. This solution, however, assumes a shape codebook
with unit-norm code vectors.

In the more general setting, where the shape code vectors need not have
unit norm, slightly better performance can be attained but the optimal encod-
ing strategy involves a full search of all possible products of gain and shape
code vectors, thus eliminating the complexity reduction advantage.

3.2. Multistage VQ

Another complexity reduction VQ technique that can be used when codebook
storage size must also be reduced is multistage VQ (MSVQ), In MSVQ an
input vector X is successively encoded by a series of quantizers. The input
to the first quantizer is X and the output is X. The residual vector X — EIS
the input to the second quantizer. At each stage, the input to a quantizer
is the residual vector from the previous quantizer. The decoder output is a
reconstructed vector obtained as the sum of X plus all of the residual code
vectors from each stage. The basic structure of MSVAQ is illustrated in Fig. 2.

If the i th stage has a codebook with N; code vectors, then both the search
complexity for each input vector and the storage requirement are equal to the
sum of the N;’s, whereas the size of the equivalent codebook (i.e., size of a full
search) is equal to the product of the N;’s. Thus the complexity and storage
requirements are greatly reduced using MSVQ.

Generally, the components of the quantization error vector at each stage
of MSVQ tend to be less statistically dependent on one another than those
of the input vector at the same stage. Thus, the coding gain of the quantizers

=6 =765 63
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Figure 2 Multistage VQ.
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tends to diminish in the later stages. In practice, usually only two or three
stages are used in MSVQ because of diminishing returns.

3.3. Tree-Structured VQ

One of the most effective complexity reduction techniques for VQ, called
tree-structured VQ (TSVQ), is based on a specially designed codebook that
allows a successive approximation search procedure with a tree structure.
The search for the best code vector is performed in stages; each stage elim-
inates a substantial number of candidate code vectors from consideration.
The outcome of each stage determines how the search will proceed in the
next stage.

An m-ary tree search begins at the root node of the tree and continues
along a sequence of branches until a terminal node or leaf is reached. At each
nonterminal node, the input vector is compared with m predesigned test vec-
tors, each of which is associated with a particular child node connected by an
edge from the parent node. A unique path through the tree is determined by
following the edge at each stage associated with the test vector that is nearest
to the input vector. The number of remaining candidate code vectors at each
stage is equal to 1/m of those remaining at the previous stage.

Anm-ary (balanced) tree of length d corresponds to a codebook of length
N = m4. In encoding an input vector, a particular path down the tree is
determined that ends at a leaf. Each leaf node is associated with a partic-
ular code vector, which also serves as a test vector for the final stage of the
search process. An index identifying the selected code vector is transmitted
by the encoder to the decoder. Note that an m-ary tree with lengthd = 11is
equivalent to a full-search vector quantizer of size m.

The number of vector comparisons performed for a tree search is d,
which equals log,,N, a significant reduction from the N comparisons nec-
essary in full-search VQ. The total search complexity for an m-ary tree is
md because each of the d stages requires m vector comparisons. This is a
substantial reduction from m¢, the total number of comparisons required in
full-search VQ. In contrast, all of the test vectors must be stored in addition to
the code vectors, increasing the storage requirement over conventional VQ
by a factor of m/(m — 1).

The decoder for TSVQ operates in the same manner as in conventional
VQ and stores a copy of the codebook but does not need to store the test vec-
tors. Alternatively, for progressive transmission of an encoded vector, digital
information (an m-ary symbol) is sent as each edge in the path through the
tree is determined by the encoder. This allows the decoder to make succes-
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sively improved approximations to the ultimate code vector by using the test
vectors associated with the traversed edges as successive approximations to
the input vector. In this case, the decoder must also store the test vectors and
utilize the tree structure.

A standard method of designing tree-structured vector quantizers is
somewhat analogous to the “splitting method” for designing ordinary vector
quantizers. Initially, the entire training set is used in the generalized Lloyd
algorithm to design a codebook with m code vectors. These m code vectors
are the test vectors for the first level of the tree being constructed. The subset
of the training set lying in the nearest-neighbor region of each test vector is
then used by the GLA to design an m-vector codebook for the subregions.
The m new code vectors at each of the m branches of the root node become
the test vectors for the second stage of the tree. As this process is repeated,
the tree grows and the quantization error of the resulting codebook decreases.
TSVQ has been successfully used in speech coding applications in Makhoul
et al. (1985), Buzo et al. (1980), and Gray and Abut (1982).

Another successful approach in tree-structured VQ is to use unbalanced
trees, in which some paths from the root node to a leaf node are longer than
others. Unbalanced trees offer a natural way to obtain variable-rate transmis-
sion codes, which can be useful in some applications. For example, ina binary
tree one bit can be allocated for the choice between the two edges at any given
node. Any path through the tree is then uniquely specified by a binary word
with length in bits equal to the number of edges traversed to reach the leaf.
The rate-distortion performance of an unbalanced tree-structured VQ can be
significantly better than that of a balanced tree. The most common technique
for designing unbalanced TSVQ coders is to grow a large balanced tree and
then prune away edges. An efficient algorithm that prunes a tree in an opti-
mal rate-distortion sense has been given by Chou et al. (1989b). An improved
technique is given in Riskin and Gray (1991), in which an unbalanced tree is
grown and then pruned back.

4, WAVEFORM VECTOR QUANTIZATION

The most direct and primitive application of VQ to speech coding is to per-
form block waveform coding, or VPCM, on the speech signal vector with
a codebook of size N and dimension k (Abut et al.,, 1982; Gersho and
Cuperman, 1983). VPCM is illustrated in Fig. 3, where the box labeled S/P
performs serial-to-parallel conversion on each group of k samples and the
box P/S performs the corresponding parallel-to-serial conversion.
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Figure 3 Vector PCM.

Although VPCM indeed offers a substantial coding gain over PCM
(which does not exploit redundancy at all), it is nevertheless by itself a prim-
itive coding technique and not of practical significance. For example, a bit
rate of 8 kb/s based on k = 8 and N = 256 results in speech with a signal-to
noise ratio in the neighborhood of 10 dB and with a substantial level of gran-
ular noise. The quality is roughly similar to that of delta modulation coding
at 16 kb/s. This poor quality (by contemporary standards) is due largely to the
limited vector dimension, implying that only local correlation among a small
number of samples within a block is considered and no correlation between
adjacent blocks is being exploited.

From distortion-rate theory we know that increasing the block size (vec-
tor dimension) for the same rate will asymptotically approach the ultimate
performance limits. If we use dimension k = 40 and a rate of 1 bit per sam-
ple, we would indeed be exploiting substantial correlation and could expect
a significant performance improvement. Indeed, it is reasonable to speculate
that this would provide a very high-quality speech coding scheme. However,
this implies the use of a VQ codebook of size N;°, which has an impractically
high search complexity as well as storage requirement.

How do we circumvent this complexity barrier? Constrained codebook
schemes such as tree structures or multiple stages of VQ can certainly reduce
the complexity, but the price in performance to obtain the drastic reduction
in complexity that is needed in the above example can be severe and may be
overshadowed by alternative coding methods that do not use VQ.

Alternatively, we can greatly simplify the problem by making use of
parametric modeling of speech (specifically linear prediction methods) as a
redundancy removal technique. In particular, we can improve on direct wave-
form coding by performing residual coding, where the unpredictable residual
is coded as a waveform and the prediction parameters are separately coded
as side information. This idea is described below.

5. RESIDUAL CODING WITH VECTOR QUANTIZATION

When we subtract from the current speech sample a prediction of this sample
based on past values of the speech signal, the prediction error waveform or
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residual is much less correlated and has much lower power. It also has a sta-
tistical distribution that is relatively invariant to changes in speech statistics.
The residual signal is therefore an easier waveform to quantize with VPCM
than is the original speech signal.

There are two primary ways to use VQ for coding the residual. One way is
to extend the DPCM concept from sample-by-sample processing to process
vectors of samples at a time. This approach leads to vector DPCM or vec-
tor predictive coding, where vector prediction is combined with VQ to code
successive blocks of prediction residuals with the usual feedback structure
corresponding to scalar DPCM (Gersho and Cuperman, 1985). An alter-
native approach is to use an open-loop configuration as shown in Fig. 4.
Although both methods offer enhanced performance over direct VQ of the
speech waveform, we focus here only on the second, which can be viewed as
an evolutionary step toward analysis-by-synthesis predictive coding methods
of particular importance in speech coding today.

In Fig. 4, the buffer stores a frame of speech samples so that analysis
can be performed to determine the predictor parameters. The quantized pa-
rameters are used to control the time-varying prediction error filter A and,
after transmission to the decoder, the corresponding synthesis filter B, which
is the inverse of A. These filters may be based on long-term or pitch-based
correlation as well as on short-term correlation. It is reasonable to expect
that a codebook of dimension 40 with size N = 1024 might be adequate
for coding this residual with reasonable accuracy. Thus, we may expect that
10 bits (rather than 40 bits) per vector will be sufficient for high-quality speech
coding.

Although this coding method improves on VPCM of the speech wave-
form itself, there is one significant weakness to the residual encoding scheme
of Fig. 4. The VQ encoder, as used here, performs a nearest-neighbor search
to minimize the distortion between the input residual vector and the code
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Figure 4 Residual coding structure with VQ.
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vector. Regardless of the particular distortion measure used, there is some-
thing fundamentally wrong with this method: reducing the quantization error
in the residual does not necessarily result in a corresponding reduction in the
error between the reconstructed speech and the original speech. In fact, the
quantization error produced by the VQ will be filtered by the synthesis filter
so that the final synthesized output speech will have a spectrally altered quan-
tization noise and may have a substantially higher power level than the error
produced by the quantizer itself. We next describe a better way to search for
the best code vector.

6. ANALYSIS-BY-SYNTHESIS PREDICTIVE CODING

Vector excitation coding (VXC) and code-excited linear prediction (CELP)
are different names for a powerful and effective family of speech coding al-
gorithms that are increasingly being adopted for a variety of applications at
bit-rates ranging from 4.8 up to 16 kb/s. The term CELP is becoming asso-
ciated with the specific coding algorithm adopted by the US government as
a standard for 4.8 kb/s (Campbell et al., 1990). Henceforth we refer to the
generic family of algorithms that perform predictive coding using analysis-
by-synthesis techniques as VXC. Since this family of algorithms is described
elsewhere in this book (see Chapter 5), in this section we focus only on the role of
VQ in VXC algorithms and provide some insight into the operation of VXC by
giving an evolutionary interpretation of the approach starting with basic waveform
VQ, or vector PCM.

We now reexamine the residual coding structure and take an important
conceptual leap that leads from the residual coding structure of Fig. 4 to VXC.
Suppose that the codebook used in the scheme of Fig. 4 has an adequate set
of candidate code vectors. In other words, if the encoder magically knew the
right indexes to transmit to identify the sequence of code vectors to be used,
the codebook would be adequate to provide the desired speech quality.

We wish to find the best sequence of code vectors that minimizes the
distortion between the reproduced and original speech. Therefore, for each
code vector search, we examine the corresponding block of input speech sam-
ples viewed as a vector and search for a code vector that leads to the best
matching block of output (reconstructed speech) samples, also regarded as
a vector. Thus, we directly examine the output speech vector which is pro-
duced by filtering the samples of the code vector through the synthesis filter.
Of course, the output vector also depends on the filter memory due to prior
inputs and this must also be taken into account. For each candidate code vec-
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tor, the output speech vector is compared to the original input speech vector.
The search process then identifies the best possible code vector.

It is striking to note that with this approach the residual VQ encoder and
the residual signal itself are no longer needed! The new encoding system
requires a replica of the decoder in order to compute what output speech
vector would be produced for any given candidate code vector and given state
(memory) of the synthesis filter. The resulting search process is called analysis
by synthesis and the overall coding scheme is VXC.

In VXC it is helpful first to examine the operation of the VXC decoder,
since it determines how the speech is synthesized (reconstructed) from trans-
mitted data. The encoder is in a sense a servant of the decoder, since its job is
to examine the original speech and determine what data must be delivered to
the decoder. The VXC decoder structure remains the same as the decoder al-
ready shown in Fig. 4 for the residual VQ scheme. The VXC decoder receives
and demultiplexes the data needed to specify the synthesis filter parameters
and the excitation code vector. Each frame is divided into subframes of k
samples corresponding to the duration of one excitation vector.

For each subframe, the decoder receives an index consisting of ¢ excita-
tion code bits which identifies the index that specifies one of 2° excitation code
vectors by means of a table-lookup procedure. This vector is serialized as k
successive samples and is applied to the synthesis filter. The filter is clocked
for k samples, feeding out the next k samples of the synthesized speech; then
the filter is “frozen” until the next scaled excitation vector is available as the
next input segment to the synthesis filter.

In many applications an adaptive postfilter is added to the decoder as
a final postprocessing stage to enhance the quality of the recovered speech.
This filter is usually adapted to correspond to the short-term spectrum of the
speech (Chen and Gersho, 1986).

6.1. The VXC Encoder

The VXC encoder structure is shown in Fig. 5. We describe its operation in
the simplest way, ignoring the many shortcuts and tricks which greatly reduce
the complexity involved in the search process. For simplicity, the S/P and P/S
blocks are omitted from Fig. 5; they are easily determined from the context.
Also omitted are the frame buffer and the analysis and quantization of the
synthesis filter parameters.

The encoder forms input speech vectors V() from successive blocks of k
input speech samples. The task of the encoder is to determine the next ¢ bits
of data to be transmitted to the decoder so that the decoder will then be able
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to synthesize a reconstructed output speech vector that closely approximates
the original input speech vector.

This implies that the decoder must embody a replica of the decoder, as
shown in Fig. 5, which can locally generate each of the N = 2¢ possible speech
vector candidates that the decoder would produce for the same transmitted
data values.

The error minimization search module sequentially generates new test
indexes corresponding to particular code vectors. Each test index is fed to
the replica of the decoder, which generates a synthesized speech vector that
would be produced by the actual decoder if this index were actually transmit-
ted. The replica decoder is initialized by setting the synthesis filter memory to
the initial conditions that were determined after the prior search process was
completed. Then the test index is applied to the excitation codebook, yield-
ing an excitation vector. The excitation vector is then applied to the synthesis
filter to produce the output vector R(n). The vector R(n) is then subtracted
from the input speech vector V(n), and the distortion between these two vec-
tors, i.e., the sum of the squares of the components of the difference vector, is
computed by the distortion computation module. This error value is applied
to the search module, which stores the distortion value, compares it with the
lowest distortion value obtained so far in the current search process, and, if
appropriate, updates the lowest distortion value and the corresponding vector
index.

Speech samples emerging from the synthesis filter are configured into
corresponding vectors of k contiguous samples.

Because the replica decoder is operating repeatedly in the search pro-
cess, we must ensure that each candidate output speech vector, corresponding
to a candidate index being tested, is produced under the conditions that
will be present when the actual decoder generates the next output vec-
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tor. After each test of a candidate index, the memory state of the replica
decoder has changed and is no longer at the correct initial condition for
the next test. Therefore, before generating each of these candidates, the
memory in the replica decoder must also be reset to the correct initial
conditions.

Several important modifications to this basic scheme are important to
practical implementations but have not been described here. Among them is
the use of a perceptual weighting filter to compute a more meaningful mea-
sure of distortion. Another is the use of GSVQ, with separate gain and shape
codebooks instead of a single standard VQ codebook.

6.2. Vector Sum Excitation Codebooks

A question of practical importance is how the quality of a given VXC coder
can be improved if more bits are made available and to which components
of the coder these bits should be assigned for the maximum benefit. Gen-
erally, the best performance gain comes from increasing the codebook size.
However, adding just one bit per code vector doubles the codebook size
and the corresponding search complexity. Thus, computational and stor-
age constraints quickly force one to limit the codebook size and lead to
alternative designs in which the vector dimension is reduced and more bits
are given to synthesis filter parameters. On the other hand, the use of
specially constrained codebook structures offers the possibility of larger code-
books and significant performance improvements while maintaining tolerable
complexity.

A novel and powerful technique for reducing the complexity of the ex-
citation codebook search procedure was introduced by Gerson and Jasiuk
(1990). Rather than have each of M code vectors be independently gener-
ated either randomly or by a design procedure, they design b “basis” vectors
and then generate the M = 2% code vectors by taking binary linear combi-
nations of the basis vectors. The resulting coding algorithm, a derivative of
VXG, is called vector sum excited linear prediction (VSELP), and an 8-kb/s
version of this algorithm has been adopted as a standard for the U.S. cellular
mobile telephone industry. We next explain the basic idea of this technique
for fast codebook search.

Let v; denote the ith basis vector of a given set of b basis vectors. The
code vectors are then formed as

b
Uy = Z:H,'V,' 5
i=1
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by taking all possible linear combinations where §; = %1 for eachi. Thus each
binary-valued vector # determines a particular code vector ug. Naturally, the
b-bit binary word transmitted over the channel can simply correspond to a
mapping of 6 values with +1 being a binary 1 and —1 being a binary 0. Since
the code vectors are so simply generated, only b basis vectors, rather than an
entire codebook of M code vectors, need be stored.

This special codebook structure can be searched very efficiently. Instead
of finding the vector output of the weighted synthesis filter for each of the M
code vectors, only the filtered output of the b basis vectors needs to be de-
termined because from these any synthesized output can be readily obtained
by addition. Furthermore, the search for the optimal code vector is com-
putationally simplified by noting that the mean squared error between the
weighted input vector and a filtered code vector depends in a simple manner
on the values of §;. By ordering the b-bit binary words in a Gray code, only 1
bit changes from one word to the next. This means that only a simple change
is needed to compute the mean squared error for the next candidate code
vector from the previous candidate code vector.

The basis vectors are designed from a training set of speech data by
solving for each component of each basis vector in a large set of simulta-
neous equations. These equations are obtained by minimization of the total
weighted squared error, which is a function of the basis vector components.
The design is iterated in a closed-loop manner, starting with Gaussian random
numbers for the components (Gerson and Jasiuk, 1990).

The vector sum approach can be augmented by combining it with MSVQ.
MSVQ was applied to VXC in Davidson and Gersho (1988). It becomes
more effective when each stage consists of a vector sum codebook and joint
optimization of the gains for each stage is performed. The joint optimization
becomes easy to implement by an orthogonalization procedure (Gerson and
Jasiuk, 1990)

6.3. Low-Delay YXC

Vector excitation coding (VXC) combines techniques such as vector quanti-
zation, analysis-by-synthesis codebook searching, perceptual weighting, and
linear predictive coding to successfully achieve good speech quality at low
bit rates. However, one important aspect of coding has been ignored in the
development of VXC or other conventional low-bit-rate excitation coding
schemes; that is the coding delay. In fact, most existing speech coders with
rates at or below 16 kb/s require high delays in their operation and cause var-
ious problems when they are applied to practical communication systems. In
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VXC, a large net coding delay, excluding computational delays, results from
the use of buffering needed to perform the LPC and open-loop pitch analy-
sis. New methods have been proposed to adapt synthesis filters without the
high coding delay mentioned above while maintaining the quality of encoded
speech.

With the conventional VXC scheme described above, the synthesis fil-
ter is adaptively updated every frame by what is sometimes called forward
adaptation, the process of recomputing and updating the desired filter pa-
rameters from the input speech. The use of forward adaptation has two
disadvantages: it requires transmission of side information to the receiver
to specify the filter parameters and it leads to a large encoding delay of at
least one analysis frame due to the buffering of input speech samples. The
input buffering and other processing typically result in a one-way codec delay
of 50 to 60 ms. In certain applications in the telecommunications network
environment, coding delays as low as 2 ms per codec are required. Recently,
the CCITT adopted a performance requirement of less than 5 ms delay with
a desired objective of less than 2 ms for candidate 16-kb/s speech coding al-
gorithms to be considered for a new standard intended to achieve essentially
‘the same quality as the 32-kb/s ADPCM standard, G.721. Such a low delay
is not feasible with the established coders that are based on forward adap-
tive prediction coding systems. Although ADPCM satisfies the low-delay
requirement, it cannot give acceptable quality when the bit rate is reduced
to 16 kb/s.

An alternative solution is based on proposed backward adaptation con-
figurations (Iyengar and Kabal, 1988; Watts and Cuperman, 1988; Cuperman
et al., 1989). In a backward adaptive analysis-by-synthesis configuration, the
parameters of the synthesis filter are not derived from the original speech sig-
nal but are computed by backward adaptation, extracting information only
from the sequence of transmitted codebook indexes. Since both the encoder
and decoder have access to the past reconstructed signal, side information
is no longer needed for synthesis filters and the low-delay requirement can
be met with a suitable choice of vector dimension. The remarkable feature
of these low-delay coders is that only the indexes that specify excitation code
vectors need to be transmitted. All side information usually associated with
VXC-based algorithms is completely eliminated.

A particular version of low-delay coding with backward adaptation,
known as low-delay CELP (LD-CELP), is under consideration for the 16-
kb/s CCITT standardization (Chen 1989). This method uses block rather
than recursive adaptation for updating a 50th-order LPC-based synthesis
filter.
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7. VECTOR QUANTIZATION OF LINEAR PREDICTOR
COEFFICIENTS

Linear prediction is perhaps the most widely used technique in speech cod-
ing. It can remove near-sample or distant-sample correlations in a speech
waveform. The former, which we usually call short-term or “spectral” pre-
diction, effectively matches the spectral envelope of the signal. The latter,
often referred to as “pitch” prediction, removes distant-sample redundancy
in quasi-periodic speech segments, typical in voiced sounds.

In high-bit-rate waveform coding schemes, such as ADPCM and APC,
short-term linear prediction results in an error signal of significantly lower
power than the original waveform, and it can thus be encoded more accu-
rately. In contrast, in low-bit-rate vocoding systems the short-term predictor
is the basis of a time-varying filter modeling the vocal tract characteristics. In
vector excitation systems this is augmented by long-term prediction to more
fully remove redundancies in the error signal.

Since speech is a nonstationary process, it is necessary to update the
prediction coefficients periodically. With forward adaptation, the predictor
coefficients need to be transmitted to the decoder for synthesis. Therefore,
the efficient quantization of these parameters becomes an important task in
any adaptive prediction coding system.

LPC parameters have traditionally been individually (scalar) quantized.
To obtain an acceptable quantization distortion with scalar quantization, usu-
ally 30 to 40 bits are needed to quantize a 10th order predictor (Tremain,
1982).

Since linear prediction can be viewed as a spectral matching process, dis-
tortion measures used for LPC quantization can be as effectively defined in
the frequency domain as in the time domain. A number of spectral distortion
measures have been discussed by Gray and Markel (1976). One of the most
meaningful distortion measures, which has the property of being consistent
with the residual energy minimization concept of the LPC analysis process,
is the likelihood ratio:

M ;
iun (o 1) = 50 04235 20
i=1

E’A ap

wherer, (i) andr, (i) are the autocorrelation sequences of the input frame and
of the polynomial coefficients of A(z), respectively, where 1/4 (z) is any Mth
order all-pole filter and 1/4(z) is the optimal LPC model of input frame
X (z). The term ay is the residual energy resulting from inverse filtering
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X (z) with Ay (2). The likelihood ratio is closely related to the Itakura—Saito
distortion measure defined earlier.

Studies of this distortion measure (Juang et al., 1982) illustrate that the
amount of parameter deviation allowed for a specified level of distortion is
highly dependent on the entire input vector. This coupling effect is called
nonlinear dependence. This property cannot be fully incorporated into the
sensitivity approach for scalar quantization, in which the distortion is mea-
sured approximately by a sum of incremental distortions due to individual
LPC parameters, without accounting for the coupling effect.

Vector quantization can remove redundancy in a vector effectively by
making use of four interrelated properties of vector parameters: linear de-
pendence (correlation), nonlinear dependence, the shape of the probability
density function, and vector dimensionality itself. It is the existence of such
significant nonlinear dependencies in the space of spectral parameters for
speech which makes vector quantization truly attractive in this application.
Kang and Coulter (1976) made the first effort in introducing the technique
of vector quantization into LPC parameter quantization. Their work was
mainly based on intuition, rather than on a well-defined mathematical dis-
tortion and methodology for designing an optimal codebook. Buzo et al.
(1980) developed a mathematical framework and procedure for vector quan-
tization of LPC parameters. Their experimental results showed that vector
quantization permits a significant bit-rate savings over scalar quantization
at the same distortion level, making efficient utilization of the statistics of
coefficient vectors (clustering property) and of the coupling effect between
coefficients. Wong et al. (1982) applied this framework to develop an 800-b/s
vector-quantized LPC vocoder. Subjective evaluation showed that, overall,
the 800-b/s vocoder approached a quality quite close to that of a 2400-b/s
LPC vocoder. Their work has demonstrated that vector quantization appears
to preserve more continuity from frame to frame than scalar quantization.
Kang and Fransen (1984) also applied VQ to quantize the line spectral pairs
in an 800-b/s vocoder which achieved a DRT (diagnostic rhyme test) score
only 1.4 below that of a 2400-b/s LPC vocoder.

Most applications of vector quantization in speech coding have until re-
cently focused on very low bit-rate coding, where the quantization resolution
of LPC parameters with 10-12-bit vector quantizers are adequate to maintain
acceptable speech intelligibility and quality. For some medium- and high-
bit-rate coding systems, high-resolution LPC quantization, say 30 to 40 bits
per frame, is demanded. If we improve the quantization resolution with
straightforward VQ, the codebook search complexity and codebook storage
will increase exponentially. For example, in a 10 bit/frame VQ for an Mth
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order linear prediction with the d; g measure, 210 x (M + 1) multiply-adds
are needed to quantize one input vector. If we use a 30 bit/frame LPCVQ, the
computation for quantizing one input vector would be 230 x (M + 1) multiply-
adds which is 10° times as many as the computations in the 10 bit/frame
VQ. The complexity in both computation and storage has thwarted the di-
rect application of vector quantization to high-resolution LPC parameter
quantization.

The simplest solution for overcoming the difficulties in complexity is to
use TSVQ. The major advantage of TSVQ is the substantial decrease in com-
putational cost compared to full search with a relatively small decrease in
performance. However, the storage requirements are increased and may be
prohibitive. On the other hand, MSVQ reduces the storage requirement as
well as search complexity but leads to a somewhat greater degradation in per-
formance than does TSVQ, particularly when more than two stages are used.
Nevertheless, MSVQ has been found to be a useful way to quantize log-area
ratio (LAR) parameters.

An alternative to MSVQ is a product-code approach to VQ. In this type
of VQ, the input space is partitioned into two or more subspaces; the vec-
tor dimension in each subspace is usually reduced and often considerably
reduced. In fact, GSVQ is a special case of a product code. The subvector for
each subspace is then quantized separately with a relatively small codebook
designed for that subspace.

There are several ways to partition LPC parameter vectors, including vec-
tor splitting and band splitting. In the vector-splitting method, a vector is
split into two or more subvectors and each subvector is quantized indepen-
dently. For example, a vector with 14 LARs is divided into two vectors and
two codebooks are used: a 6-dimensional, 10-bit codebook for parameters 1
to 4 and an 8-dimensional, 5-bit codebook for parameters 5 to 14. With a
band-splitting method, proposed in Copperi and Sereno (1984), the spectral
vector is split into two frequency bands and separate LPC model parameters
for each band are vector quantized separately. Besides the advantage of re-
ducing complexity in these methods, we gain the flexibility of controlling the
bit allocation to the subvectors according to their perceptual importance in
speech coding. For example, in the band-splitting method, we can make use
of the fact that the human ear is generally less sensitive to high-frequency
distortions than to low-frequency distortions and assign more bits for the
lower-order vector.

In another VQ technique the LPC polynomial is represented as a cascade
of two lower-order polynomials, a separate codebook is used for each poly-
nomial, and quantization of the two components is jointly optimized using a
likelihood-ratio distortion measure (Shoham, 1989). The LPC all-pole filter
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is represented as a cascade of two lower-order all-pole filters. The quantizer
uses two codebooks to quantize each of the lower-order filters. Splitting the
LPC filter into two filters reduces the coding complexity, while the efficiency
of VQ is largely preserved.

7.1. Interframe Coding of LPC Parameters

So far, we have discussed only memoryless VQ for LPC parameter quanti-
zation, in which each input vector is quantized independently of any other
input vector. Because of the nonstationary characteristics of speech, the LPC
parameter set used for modeling the vocal tract transfer function needs to be
updated during successive speech frames, with a frame size of 20 to 30 ms.
However, for some segments of speech, especially for sustained vowels, the
speech spectral envelope is actually a slow time-varying process, and spectra
of adjacent frames are highly correlated. Figure 6 illustrates a typical evolu-
tion of log-magnitude speech spectral envelopes for successive frames, spaced
20 ms apart. This time dependence inherent in the LPC parameter sets sug-
gests that any quantization method which exploits interframe redundancy will
further reduce the coding bits for a given average distortion.

One way to exploit interframe correlation is to use vector linear predic-
tion (VLP), introduced in Gersho and Cuperman (1985). Vector prediction
of a frame’s parameter set from previous frames is essentially equivalent
to predicting the spectrum of the frame from the evolving pattern of spec-
tra of the prior frames. By applying VLP, each spectral parameter in the
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current frame is predicted not only from corresponding parameters of pre-
vious frames but also from the other spectral parameters of previous frames.
In this way, correlation between different speech frames can be maximally ex-
ploited. Works which combine VLP with VQ for LPC parameter quantization
(Davidson et al., 1987; Yong et al., 1988; Shoham, 1987) have shown that the
coding performance is greatly enhanced by exploiting interframe correlation.

In Yong et al. (1988), a switched-adaptive interframe vector prediction
(SIVP) scheme tracks statistical changes in the time-varying spectral pa-
rameters while maintaining reasonably low complexity. The line spectral
frequencies (LSFs) were chosen as the spectral parameter set in this study,
and it was found that very little gain is offered with higher than first-order
prediction. Thus, a single predictor matrix is used to predict the LSF pa-
rameter vector x, in the current frame from the corresponding vector x,_;
for the prior frame, according to %, = Ax,_;. With switched adaptation,
the predictor matrix A is updated vector by vector. For each input vector
to be predicted, a predictor matrix is selected from a fixed set of such ma-
trices via a statistical classification of the input vector. An index identifying
the selected predictor matrix is transmitted to the receiver as side informa-
tion. For a statistically specified source of vectors, the optimal predictor
matrix is given by A = CmCﬁl, where the covariance matrices are defined
byC; =E{x,_; x,ir_j }. To design the predictor matrices, a training sequence
of LéF vectors is used to compute the covariance matrices for each class.
Thus, if the current vector x,, is assigned to class i, the running estimate of
Cy; is updated with the product xmx,'ﬁ_j. After passing through the training
sequence in this way, the prediction matrix for each class is then computed
from the corresponding covariance matrices.

The block diagram of a switched-adaptive predictive coding system is
shown in Fig. 7 for the simple case with only two predictor matrices so that
only 1 bit per frame of side information is required. In the figure, x, repre-
sents an input vector and £, represents its prediction. The prediction error
vector e, obtained by subtracting £, from x,, is vector quantized and sent to
the decoder. The positions of the switches at the encoder and the decoder are
synchronized by a flag signal (index). The reconstructed signal X, is obtained
by adding the quantized prediction error to the prediction of the signal.

Another approach to removing interframe redundancy from the spec-
tral parameter coding is to apply vector quantization to quantize jointly the
ordered set of spectral parameter vectors in a superframe (a group of consec-
utive speech frames). When the number of frames in a superframe is fixed, it
is called matrix quantization (Tsao and Gray, 1985). If the number of frames is
variable (according to a dynamic segmentation algorithm), the term segment
quantization (Roucos et al., 1983; Wong et al., 1983) is used.
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Figure 7 Switched-adaptive predictive coding system.

Motivated by rate-distortion theory, matrix quantization extends VQ
techniques to matrices of n spectral parameter vectors. Matrix quantizers,
designed with the GLA and a summed Itakura-Saito distortion measure, are
locally optimal quantizers. For a given quality of reproduction, they generally
require substantially lower coding rates than standard VQ. A matrix quan-
tizer operating at 150 b/s with a 9-bit codebook and N = 3 is claimed to be
comparable to a standard VQ operating at 350 b/s (Tsao and Gray, 1985).

In segment quantization, a segment which contains a number of LPC
parameter sets corresponding to a spectral steady-state region in the input
speech is quantized as a single entity to the nearest template in a codebook.
Assuming the segmentation to the input is given, a segment X = [xx3---x;]is
defined as a variable-length sequence of k-dimensional LPC vectorsx;. In or-
der to simplify the codebook design and distortion measure in the codebook
search, a time-warping transformation is performed on X prior to the quan-
tization, which converts a variable-length segment to a fixed-length segment.
The converted segment is denoted as Y = [yy2-+-¥m] in the transformed
space, where m is the segment length after the time-warping transformation.
The segment quantizer uses a Euclidian distance to search for the nearest
template in a codebook. The codebook given in Roucos et al. (1983) has
8192 segment templates where each template is a k x M matrix.

This type of quantization indeed removes most of the intra- and inter-
frame redundancy from the LPC parameters but usually requires a large
time delay and high complexity. Therefore, it is more attractive for very low
bit-rate vocoding applications.
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Vector quantization can also be applied to long-term (pitch) predictor
coefficients. It not only codes pitch predictor parameters efficiently for mul-
titap pitch predictors but also guarantees the stability of the pitch synthesis
filter. Since the stability of a pitch synthesis filter depends on all the filter
coefficients, if the parameters are quantized individually, small deviations in
one coefficient might render the filter unstable. With VQ, a codebook can be
designed with each code vector representing a stable synthesis filter.

8. VECTOR QUANTIZATION FOR NONLINEAR PREDICTION

Linear prediction of speech is the one most important technique used in
speech coding. Yet speech is non-Gaussian, so linear prediction is not the op-
timal way to estimate a sample from prior values of the waveform. Nonlinear
prediction of speech in principle offers a way to enhance the redundancy-
removing feature of linear prediction and provide a superior model of the
speech production mechanism. Recently, a method for performing nonlin-
ear prediction was proposed based on the use of VQ (Wang et al., 1990). The
method is based on a general theory of optimal nonlinear interpolation from
vector-quantized observables, which includes nonlinear prediction as a spe-
cial case (Gersho, 1990). The nonlinear prediction method, simply stated, is
to vector quantize the set of past samples and then obtain the prediction of the
new sample from a lookup table of prestored values. The table is addressed
by the index of the quantized vector that approximates the past history.

In theory, the optimal predictor is the conditional expectation of the new
value given the set of prior values. With this method, two approximations
are made. One is to replace the past with a finite-resolution quantization of
the past values using VQ. The accuracy of this approximation grows with
the size of the VQ codebook. The second approximation is to compute the
conditional expectation of the new value given the quantized past by using
a training set of speech data rather than the “true” analytical model of the
speech statistics.

The approach has been validated by testing it on a moving-average ran-
dom process for which the optimal nonlinear predictor is known. When it
is applied to open-loop prediction of speech, the results show that rather
large codebook sizes are needed for representation of the past and very large
training sets are necessary for designing the predictor table. Typically, the
segmental prediction gain in this way exceeds that of linear prediction by only
a very small margin. Nevertheless, the most striking indication of the effec-
tiveness of nonlinear prediction is that the prediction residual is much less
intelligible than the corresponding linear prediction residual. This result was



Vector Quantization Techniques

77

observed with a fixed nonlinear predictor which was designed using speech
training data different from the speech on which the effect was tested.

Figure 8 shows the spectrum of one frame of the residual for both linear
and nonlinear prediction with a fourth-order predictor in each case. The
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spectrum of the original speech frame is also shown. It is remarkable that the
spectral envelope has been notably flattened and the higher pitch harmonics
have almost disappeared.

These results motivate further study of nonlinear prediction, but practi-
cal application to speech coding may be premature. The only speech coding
algorithm tested so far with nonlinear prediction was (nonadaptive) DPCM.
With a fifth-order predictor, DPCM with nonlinear prediction gives a some-
what higher coding gain than with linear prediction at rates of 3 or 4 bits
per sample. There are several nontrivial problems with nonlinear prediction
that must be solved before it can become a useful technique for analysis-by-
synthesis coding systems. Nevertheless, it is an interesting new direction in
speech coding that is worthy of further study.

9. COMBINED SOURCE AND CHANNEL CODING

Of particular importance in a voice communication system is the effect of
transmission errors on the performance of the recovered speech. This issue is
relatively minor for optical fiber or other guided-media channels, but it must
receive substantial consideration in other speech coding applications such as
in radio channels (because of transmitted power constraints and propagation
conditions). In mobile satellite and cellular radio systems, bit error rates as
high as 0.001 or 0.01 must be considered and, typically, reasonable speech
quality must be maintained at the 0.001 error rate and tolerable quality at the
0.01 rate.

Traditional channel coding techniques, such as error correction or detec-
tion, can be employed to protect transmitted VQ information from the effect
of channel noise. Channel coding normally requires an increase in the rate
of the transmitted bit stream, as well as additional processing delay incurred
in the process of calculating the redundant bits and decoding the informa-
tion bits. For speech communication systems on narrow-bandwidth channels,
every bit allocated for channel coding implies sacrificing a bit that would oth-
erwise help to improve the intrinsic speech quality of the coder. Furthermore,
error correction codes do not take into account information about the specific
character of the data source; they merely attempt to reduce the likelihood that
binary channel words are incorrectly received. Recent research has focused
on methods for parsimoniously and efficiently alleviating the effect of chan-
nel noise on the output speech quality. Two different approaches have been
investigated for tackling this problem: selective protection and joint source
channel coding.
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The first approach consists of determining which transmitted bits are the
most important in terms of speech quality and selectively protecting them
against channel noise using known channel coding methods. A typical data
frame of encoded speech may contain several binary words representing VQ
indexes for different vectors of parameters, and the more sensitive indexes
can be selectively protected. By understanding the relative sensitivity of dif-
ferent speech coding parameters to bit errors, techniques for maintaining
robustness to such errors can be developed. This form of selective chan-
nel coding can protect the transmitted speech information in a limited way
without greatly increasing the overall bit rate (Cox et al., 1988).

The other approach is one that incorporates combined source and chan-
nel coding techniques with VQ. Combined source and channel coding can
significantly improve the performance of the reconstructed speech signal on
poor channels.

It is also possible to reduce the sensitivity of the bit stream to errors with-
out adding redundant bits, simply by carefully allocating codewords to the
signal parameter values. In particular, redundancy-free error protection codes
for VQ have been introduced (Zeger and Gersho, 1991, 1987; Chen et al.,
1987; De Marca and Jayant, 1987; Farvardin, 1988) and effective design algo-
rithms for this purpose have been developed. An important feature of these
techniques is that no added delay occurs in the coding system. The only cost
is some fairly intensive off-line computation during the design process.

The basic idea of the technique, known as pseudo-Gray coding, is to de-
termine carefully which channel words should be associated with which VQ
code vector indexes, by way of an index assignment function. In the past,
source code designers using VQ generally made the assignment arbitrary. In-
tuitively, vectors that are “close” to each other should be assigned indexes
which differ in as few bit positions as possible. In this way, channel errors
cause an index to be decoded as a vector which approximates the code vector
that was supposed to be correctly decoded (i.e., without channel noise).

Another approach to joint source-channel coding with vector quantiza-
tion is to design the quantizer’s encoder and decoder taking into account the
statistics of the channel (Kumazawa et al., 1984; Zeger and Gersho, 1988).
For a given noisy channel, the problem is to find the best encoder for a fixed
decoder and then find the best decoder for a fixed encoder. Equivalently,
for a fixed partition of the input space, the goal is to find the best codebook,
and vice versa. It has been shown that the optimal encoder and decoder of
a quantizer of a noisy channel must satisfy two necessary conditions, known
as the weighted nearest neighbor and weighted centroid rules, which generalize
the nearest neighbor and centroid conditions that are necessary for quantizer
optimally on a noiseless channel.
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10. CONCLUDING REMARKS

The concept of vector quantization is clearly a general and powerful one with
many specialized techniques that have emerged for combating the complexity
obstacle. This chapter has given only a brief overview of the use of VQ in
speech coding. There remain many coding applications where VQ techniques
are still too costly in complexity or storage to be incorporated into hardware
products. Research in VQ techniques is continuing with the aim of expanding
its utility and applicability for the next generation of speech coding algorithms
and implementations.
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