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Abstract

We study joint source-channel coding for a power
constrained Gaussian channel and its application to
progressive image compression. For a given power
constrained, we consider the optimum allocation of
energy per bit for a BPSK transmitter and the best
choice of channel code rate, when the performance is
measured by end-to-end average quantizer distortion.
Choosing the average energy per transmitted bit in con-
junction with both the source rate and the channel code
rate provides an additional degree of freedom with re-
spect to previously proposed schemes, and therefore
can achieve higher overall PSNRs for images.

1 Introduction

For a source (such as an image) with distortion-
rate function D(-) and a binary symmetric chan-
nel with capacity C, Shannon’s “separation princi-
ple” ensures that transmission of the source at a
rate of R bits/sample over the noisy channel can be
achieved with a distortion arbitrarily close to D(RC),
by choosing independently the source and channel
coders. However, this theoretical result assumes un-
boundedly long block lengths and unrestricted compu-
tational complexity. In practice, delay and complexity
constraints motivate the search for source and channel
codes which efficiently trade off the available transmis-
sion rate between source coding and channel coding.

The “cost” of using a discrete channel is generally
described in terms of the transmission rate, measured
in channel uses (i.e. bits sent) per source symbol. In
contrast, the “cost” of using a power constrained non-
discrete channel (with unlimited bandwidth), such as
the additive white Gaussian noise (AWGN) channel,
is described by the average energy transmitted per
source symbol. That is, the number of signal constel-
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lation points transmitted per source symbol is a design
parameter that can be chosen to optimize the end-to-
end mean squared quantization error of the system. If
one chooses a higher transmission rate, then there is
less energy transmitted per bit, and thus a larger bit
error probability results per transmitted bit. There
is thus a trade-off between the transmission rate, the
source coding rate, and the channel code rate. In this
paper, we describe an optimization over this triple of
parameters. In particular, we demonstrate this op-
timization for the case when the source coder is a
progressive zerotree wavelet-based coder (SPIHT), the
channel coder chosen from a family of BCH block
codes, and the modulator used is binary phase shift
keying (BPSK).

Under high resolution assumptions, an optimum
trade-off between fixed-delay source coding and block
channel coding was derived in [1] for the binary sym-
metric channel (BSC), and in [2] for the Gaussian
channel. The derivations in [1] and [2] assumed the us-
age of error correcting codes achieving exponentially
small probability of error in terms of block length.
Such codes are known to exist but it is not known
how to find and use them.

In [3], an effective coding scheme was presented for
image transmission over a BSC, by combining Said
and Pearlman’s improvement [5] of Shapiro’s wavelet
source coding algorithm [4], and Hagenauer’s rate
compatible punctured convolutional (RCPC) channel
codes [6]. The results in [3] demonstrate that by choos-
ing the best available source and channel coders in-
dependently, and wisely selecting the corresponding
source and channel code rates, very good results can
still be obtained.

In this paper, we generalize the scheme of [3] from
a discrete channel model to an analog channel. For
a given power constrained Gaussian communication
channel, we consider the optimum allocation of en-



ergy per bit for a binary phase shift keying (BPSK)
transmitter when the performance is measured by end-
to-end average quantizer distortion. Choosing the av-
erage energy per transmitted bit in conjunction with
both the source rate and the channel code rate pro-
vides one additional degree of freedom with respect to
previously proposed schemes for discrete value chan-
nels, and therefore achieves higher overall peak signal
to noise ratio (PSNR) values for images. As an exam-
ple, for transmission of the 512 x 512 image “Lena”
over a BSC with crossover probability p = 1073, a
coding gain of about 1 dB over the results of [3] is
achieved by properly choosing the averaging energy
per transmitted bit.

2 Source and Channel Coding Trade-
off with a Power Constraint

Suppose that the quality of a sampled and encoded
analog source is characterized by its distortion D(r;)
as a function of its rate r; (measured in bits per source
sample). The quantity D(r,) typically measures the
mean-square quantization error of a decompressed im-
age in terms of the number of bits per pixel (bpp)
present in the compressed version of the image. Sup-
pose a channel code with rate r. acts on the output
bits from the source encoder. The resulting bit stream
is transmitted across an AWGN channel with zero-
mean and variance Ny/2 using a BPSK modulator
whose decoding is performed by a hard-limiter on the
received sampled values. Suppose the BPSK modu-
lator emits a sequence of constellation points (analog
values) 1, Tz, 3, - with z; € {—v/P,/P} where P
is a fixed power constraint (measured in units of en-
ergy per source sample). Consequently, if R constel-
lation signals per source sample are transmitted over
the channel, the average energy E; per transmitted
signal satisfies

R-E,=P.

The number of bits per source sample available for
source coding is rs = R-r. and the probability of error

for a transmitted channel bit is p(Es) = Q(/2E;/No),
where

Qz) = (2m) /2 /oo e 2y,

T

p(Es) is the crossover probability of the resulting dis-
crete BSC. The capacity of this BSC is

C(Bs) =1 — h(p(Es)), 1)

where h(-) is the binary entropy function, defined by
h(z) = —zlogy(z) — (1 — z) log, (1 — =).

Shannon’s channel coding theorem shows that for a
fixed Es, if r. < C then r, bits per source sample can
be transmitted with arbitrarily small probability of
error, and Shannon’s separation principle shows that
the distortion D(r;), corresponding to rate r,, can be
achieved. Shannon’s theorem predicts the theoreti-
cally achievable reliable transmission rate, although it
assumes unboundedly long block lengths.

In [3], the following related problem for im-
age transmission is considered: Given a BSC with
crossover probability p and o fixed transmission rate
Rq over this channel, what is the best possible distor-
tion achievable at the receiver with channel coding? If
we assume transmission over an AWGN channel, then
the value Ny is implicitly fixed. It follows that the
energy F; per BPSK transmitted channel signal takes
the fixed value E, = (No/2)(Q~1(p))?, where Q~1(-)
represents the inverse function of Q(-). Also, the
power constraint is implicitly defined by P = Ry Ej.

In contrast, in this paper, we fix the power con-
straint to P and allow E; to vary, so that for

o = Es/Eb,

the transmission rate becomes R = P/E; = Ry/a.
Consequently, for each channel code considered, E,
is optimized instead of being taken as a given. The
model of [3] corresponds to the case & = 1. A value
a < 1 can be viewed as a degradation of the channel
to allow the use of a more powerful channel code, and
conversely for a > 1. Note finally that with this new
model, the time required to transmit the source output
considered remains the same as in [3].

3 Trade-off Optimization for Images

In this section, we consider families of imple-
mentable codes (in contrast to Shannon’s random
codes), chosen based on specific design criteria. For
the family of codes considered, we then seek to solve
the problem: For a fized AWGN channel (fized No) and
a given power constraint (given P), jointly determine
the code of rate r. and the average energy Es per trans-
mitted BPSK signal that minimize the average mean-
squared error (MSE) of a transmitted image.

In the following, we study this practical problem us-
ing the progressive image coders of [4, 5]. The embed-
ded nature of these schemes particularly fits our prob-
lem as whenever the channel decoder fails to correct
an error, all the previous decoded blocks for the trans-
mitted image considered can still be used to obtain a



different resolution version of this image. Also, once a
channel decoding error has occurred, source decoding
stops. For a given AWGN channel with average power
constraint P, we determine the best trade-off between
source and channel coding to minimize the average
MSE of a transmitted image using a block channel
code of fixed length n. We assume Said and Pearl-
man’s wavelet source coding scheme is used in con-
junction with an (n, k,d) BCH channel code of length
n, dimension &, and minimum Hamming distance d [7].
We use BCH codes (instead of RCPC codes as in [3])
since they allow a tight error performance analysis by
means of their known distance distribution. Also, effi-
cient algebraic decoders for BCH codes have been de-
vised, so that they are both of practical and theoretical
interest. However, the following analysis remains valid
for any linear block channel code for communication
over a BSC.

For an image of size M pixels transmitted at a rate
R = P/E; bpp, the number of blocks of k bits each
that are encoded by the (n, k,d) code is

w25

If we set t = [(d—1)/2], the corresponding block error
probability after decoding is

r< > (pEra-pE @

i=t+1

with equality if only the errors of weight strictly less
than ¢t + 1 are corrected (which is assumed in the fol-
lowing) [7]. Due to the embedded nature of the source
coder, the average MSE (average over both source
and channel statistics) can be expressed explicitly as
a function of r, and E; as

6(TC7ES) = D(T‘s)(]. - Ps)b(ES)
b(Ey)—1

+ ; 'D(m@) (1_Ps)z’Ps7 (4)

where D(r) represents the distortion of the image com-
pressed at a rate of 7 bpp with no channel noise. In (4),
D(rsi/b(Es)) corresponds to the distortion achieved
when the source decoder stops after ¢ blocks due to a
first channel decoder error at the (i 4+ 1)-th block.

For a given channel code of rate r., we have
P; — 0 as @ — oo in which case lim, o 0(rc, Es) =
limy 00 D(Ror./a) = D(0). Also, P, = 1 as a — 0,
so that d(rc, Es) approaches D(0) for fixed values of
M and n. Hence, the minimum value of §(r., Es) is
achieved for some finite nonzero choice of «.

For each (n, k,d) code of the family considered with
re = k/n, the value E; providing the minimum MSE
value ,,in(re) in (4) is chosen. The corresponding
source code rate is r; = Pr./E; = Ror./a. Finally,
the code of rate r, with minimum MSE value 6,,;, is
chosen, so that

5min = Ir%icn{r%isn{é(rc,Es)}},
= niicn{émm(rc)}. (5)

In the approach of [3], the code chosen corresponds to
the MSE

Smin(Ep) = Hq}icn{(s(Tw Eb)} (6)

4 Simulation results

Consider the transmission of the 512 x 512 (= M)
image “Lena” over a BSC with crossover probabil-
ity p(Ep) for the transmission rate Ry. Figure 1 de-
picts the PSNR values achieved by seven BCH codes
of length n = 127 for p(E,) = 1072 and Ry = 1
bpp. We observe that the (127,71) BCH code al-
lows us to achieve d,,;, and a PSNR value of 40.38
dB by choosing E; = 0.54F, and adjusting r, =
(71/127) - 0.54=' = 1.035 bpp. In comparison, the
PSNR value corresponding to Ry = 1 bpp is 40.40
dB in the noiseless channel case, indicating that very
good performance has been achieved by the proposed
scheme.

Although r. = 71/127 and o = 0.54 define the op-
timum choice for the family of codes represented in
Figure 1, it is important to notice that in practice,
choosing E; > 0.54E, provides a choice that is more
robust to variable channel conditions, due to the large
slope of the curve on the left of the maximum. We
finally observe that for this family of codes, our ap-
proach provides more than 1 dB gain over the case
E; = Ej corresponding to [3], with the choice of a
different channel code.

For the same family of length 127 codes, Figure 4
depicts the results for p(Ep) = 1072 and Ry = 0.25
bpp. Again, the (127,71) BCH code provides the
largest PSNR value of 32.04 dB for o = 0.85. How-
ever, other codes of this family as well as the scheme
of [3] for the same code allow us to achieve close PSNR
values. Also, the highest PSNR achieved by this fam-
ily of codes is more than 2 dB lower than that cor-
responding to Ry = 0.25 bpp in the noiseless case,
which suggests that for this relatively noisy BSC, a
family of more powerful codes of longer lengths have
to be considered to approach this value. Interestingly,
due to the relatively flat shapes of the curves around



their maxima, the optimum choice of & becomes much
less subject to variable channel conditions than for the
schemes of Figure 1. Table 1 summarizes the optimum
choices of « for the family of length n = 127 codes,
p(Ey) = 1072 and 1073, and Ry = 0.25 and 1 bpp.
The corresponding simulation results are depicted in
Figures 1, 2, 3 and 4.

In all previous four cases considered, the highest
PSNR values obtained remain lower than that cor-
responding to Ry in the noiseless case. Note how-
ever that by allowing E; to change, it is possible to
achieve an even higher PSNR value than that corre-
sponding to Ry in the noiseless case. Such is the case
for the schemes depicted in Figure 5 for p(Fp) = 10~°
and Ry = 0.25 bpp. For the (127,71) BCH code,
choosing a = 0.23 and r; = 0.608 bpp allows us to
achieve a PSNR value of 37.97 dB against 34.11 dB
for Ry = 0.25 bpp in the noiseless case. This gain is
possible due to the good quality of the BSC consid-
ered.

5 Conclusion

These results can be extended to other types of
channels or modulation forms. For example, for the
same family of codes simulated in this paper, better re-
sults can be obtained by considering the AWGN chan-
nel and soft decision decoding, rather than the cor-
responding BSC and hard decision decoding, at the
expense of a much larger decoding complexity for the
channel decoder. However, for such schemes, (3) be-
comes a strict union upper bound, so that §(r., Es)
can only be upper bounded by (4). As a result, the ex-
act PSNR values can in general only be determined by
simulations, especially for values P, > 10~* for which
the union bound remains quite loose. Note that the
channel coding scheme of [3] based on the concatena-
tion of CRC and RCPC codes for the BSC is subject to
the same analytical problem due to the facts that the
error capability of the concatenated code is unknown
and the proposed decoding is suboptimum.
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I | Ro =025 | Rp=10 |

p(Fy) = 1073 | 34.38 dB | 40.38 dB
(a=0.5) | (a=0.54)
p(Ey) =102 | 32.04 dB | 37.83 dB
(a= 0.85) | (a=0.93)

Table 1: Coding results for the 512 x 512 Lena image
(in each case, the (127, 71) code performs the best
among the class of length 127 BCH codes).

42

T T T T T T T T
Curves: Eq (4) for k=36,50,64,71,78,92,and 106 (from left to right)
+: Method in 3] for k=36,50,64,71,78,92,and 106
ar Simulations *: k=64; o: k=71

40

PSNR (dB)
w w
oo ©

:

w
X
T

36

35F

L L L L L L
0.3 04 0.5 0.6 0.7 0.8 0.9 1 11 12 13
Alpha=E_s/E_b

34 I I I I

Figure 1: PSNR values for different BCH codes of
length 127, for p(F,) = 102 and Ry = 1 bpp.
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Figure 2: PSNR values for different BCH codes of

length 127, for p(E;) = 102 and Ry = 1 bpp. Figure 4: PSNR values for different BCH codes of

length 127, for p(Ep) = 10~2 and Ry = 0.25 bpp.
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Figure 3: PSNR values for different BCH codes of

length 127, for p(E,) = 10 and Ry = 0.25 bpp. Figure 5: PSNR values for different BCH codes of

length 127, for p(Ep) = 10=% and Ry = 0.25 bpp.



