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Abstract— All unconstrained information inequalities in three
or fewer random variables are known to be “Shannon-type”,
in that they are nonnegative linear combinations of instances of
the inequality

���������
	 �
�
���
. In 1998, Zhang and Yeung gave

the first example of an information inequality in four variables
that is not “Shannon-type”. Here we give six new unconstrained
non-Shannon information inequalities in four variables. The new
inequalities are independent of each other and of the Zhang-
Yeung inequality.

I. INTRODUCTION

Standard information inequalities are generally “Shannon-
type” inequalities, which can be derived by combining special
cases of the nonnegativity of conditional mutual information.
These were the only known types of information inequalities
until Zhang and Yeung in 1998 published a non-Shannon-
type information inequality [8]. Some other results on non-
Shannon-type information inequalities have been given by
Lněnička [2]. Makarychev, Makarychev, Romashchenko, and
Vereshchagin [3], Zhang [6], and Zhang and Yeung [7].

II. INFORMATION INEQUALITIES

For collections � , � , and � of jointly related discrete
random variables, denote the entropy of � by ������� , the
conditional entropy of � given � by �����
� �
� , the mutual
information between random variables � and � by ����� �!�
� ,
and the conditional mutual information between random vari-
ables � and � given � by �"���#�$�%� �&� .
Definition II.1. Let ' be a positive integer, and let (*),+.-/-.-0+1(32
be subsets of 4657+/-.-/-8+�'39 . Let :<;>=@? for 5BADCEAGF . An
inequality of the form

:<).���H4I��;<JKCL=M(N)O9,�3P�Q/Q.QOP�:*2K���H4I��;RJKCL=S(N2T9I�VUXW
is called an information inequality if it holds for all jointly
distributed random variables �Y),+.-/-.-$�
Z .

As an example, taking '\[^] , ( ) [_46579 , (a`#[_4I]b9 , (ac#[d
, (aef[g4656+!]�9 , : ) [D:*`\[h5 , and :ief[hj&5 , one obtains
�����Y).�NPB����� ` �Rjk������)I+!� ` �lUmW , which is an information
inequality since it is always true (this can be more succinctly
expressed as �����Y),�!� ` �VUXW ).

Since all conditional entropies and all conditional mutual
informations can be written as linear combinations of joint
entropies, any valid linear inequality involving conditional

entropies and conditional mutual informations will also be
called an information inequality. The textbook [5] refers to
information inequalities as “the laws of information theory”.

The information inequalities ����nf�LUoW , ����nB� p#�VUoW , and
�"��n��!p#�
U@W were originally given in 1948 by Shannon [4]
and can all be obtained as special cases (e.g. see [5]) of the
inequality

����� �!�%� �&�qUXW (1)

or equivalently

�����#+!�&�NP������>+!�&�qUo���r�&�NP������ +!�s+1�&�8- (2)

A Shannon-type information inequality is any information
inequality that is (or can be rearranged1 to be) of the form

t
;
: ; ����� ; �$� ; � � ; �
UBW (3)

where each :<; is a nonnegative real number. Virtually every
known result in information theory that makes use of an infor-
mation inequality only makes use of Shannon-type information
inequalities.

Any information inequality that cannot be expressed in
the form (3) will be called a non-Shannon-type informa-
tion inequality. It is known [5, p. 308] that all information
inequalities containing three or fewer random variables are
Shannon-type inequalities. The first known non-Shannon-type
information inequality was published in 1998 by Zhang and
Yeung and is stated in Theorem II.2 below. To date, it is
the only published unconstrained non-Shannon-type informa-
tion inequality for four random variables. The Zhang-Yeung
inequality has recently been applied to network coding to
demonstrate that Shannon-type information inequalities are in
general insufficient for computing the coding capacity of a
network [1].

A collection of information inequalities is said to be an
independent set if none of its inequalities can be expressed as
a nonnegative linear combination of the set’s other inequali-
ties (including versions obtained by substitution of variables)
and Shannon-type inequalities. Note that, in particular, any

1We allow replacement of u by v wyx0z . This seemingly trivial technicality
is needed, for example, in order to be able to assert that {Iwy|~}���zi��u is of
the form {Iw�|�}r�l� x0z��>u .



inequality in an independent set is a non-Shannon-type infor-
mation inequality.

In this paper, we present six new non-Shannon-type in-
formation inequalities. These form an independent set of
inequalities when taken together with the Zhang-Yeung non-
Shannon-type inequality.

Let �fUo] , and let � ) +��O`K+/-.-/-.+��O`���� ) be the list of nonempty
subsets of 4656+.-/-.-��<9 , where � ; contains

�
if and only if the�

th bit from the right, in the binary representation of C , is 5 .
For any collection of random variables, n [ 4/n ) +/-.-.-$n	�"9 ,
define the subset of random variables

p ; ��nf��[ 4/n�
&J � =�� ; 9T+
the list of entropies


 ��nf��[@������p ) ��nf�$�8+/-.-.-/+$����p�`���� ) ��n � � �0+
and the set of entropy lists (or “entropic” vectors)

���� [ 4 
 ��nf�VJ7n is a collection of � jointly

distributed random variables 96-
Also, let

� � denote the set of all points in ? ` � � ) which
satisfy every Shannon-type inequality (where the coordinates
represent the ] � jY5 entropies of the subsets of � random
variables).

As an example, taking n%) and n ` to be independent
uniform binary random variables gives ����n%).��[m����n ` ��[^5
and ����n>)I+$n ` ��[ ] , so � 56+.56+!]7�L= � �` .

We use the symbols � and � to denote subsets and proper
subsets, respectively. Clearly

� �� � � � . The Shannon outer
bound,

� � , is known to be an unbounded convex set with
planar boundaries. The closure, �� �� , of

� �� , is known [5, p. 306]
to be a convex cone in ? ` � � ) . Also, it has been known that� �` [ �� �` [ � ` , � �c � �� �c [ � c , and

� �e � �� �e � � e . The
proper inclusion �� �e � � e is a consequence of the following
result of Zhang and Yeung.

Theorem II.2. [8] The following is a � -variable non-
Shannon-type information inequality:

]K�"��� ���>�qAX����� �$� �$PY�"���#�!��+��>�$P��6���r� ���\� � �!P����r� ���\� �
�0-

It was previously unknown whether Shannon-type informa-
tion inequalities together with the Zhang-Yeung non-Shannon-
type inequality completely determine the space �� �e . Our results
here demonstrate that the space �� �e is not so determined, but
is indeed a bit more complicated.

The Zhang-Yeung inequality yields a new outer bound��� )��e satisfying �� �e � ��� )��e � � e . The set
��� )��e is formed

by “chopping off” 5O] pieces of
� e by planar cuts in ? )�� .

Our results in this paper, given in the next section, yield an
improved outer bound,

� � ` �e , satisfying �� �e � � � ` �e � � � )��e �� e . Thus, in particular, we establish that �� �e! [ � � )��e .
It can be shown that the cone

� e has � 5 extremal rays, the
cone

��� )��e has "$# extremal rays, and the cone
�%� ` �e has ]&#'#

extremal rays.

III. NEW INEQUALITIES

The following theorem summarizes our main results.

Theorem III.1. The following are � -variable non-Shannon-
type information inequalities:

(i)

]K�"���#�$�
�
A(�7�"���#�$��� �&�NP)�7�"���#�!� � �
�*P*�6�����s�!� � � �
PB]K�"���#���>�NPB]K�"���>�!� � �>�8-

(ii)

]K�"���#�$�
�VA+�6�"���#�$��� �&�NP��"��� �1� � � �iPB]K�"���>�!� � � �
P)�7�"���#�$�%� �>�NP��"���s���\� � �NPB]K�"��� ���>�8-

(iii)

]K�"���#�$�
�
A(�7�"���#�$��� �&�NPB]K�"���#�!� � �
�*P,�T�����s�!� � � �
PY]7����� �1� � �>�!P������ ���\� �&�!P&]K�"���>���>�!P����r� ���\� � �0-

(iv)

]K�"���#�$� �VA.-7����� �$��� �&�iP*�6����� �!� � �
�iP��"���>�!� � � �
PB]K�"���#���>�iP�]7�����s�!� � �>�0-

(v)

]7����� �!�
�qA(�6�"��� �!�%� �&�iP*�6�"���#�!� � �
�NP������s�1� � ���
P�]7����� ���>�NP)�7�"���s�1� � �%�NP��"��� ���\� �
�8-

(vi)

]K�"���#�$�
�
A(�7�"���#�$��� �&�NPB]K�"���#�!� � �
�*P�]7�����s�!� � � �
PY]7����� �!�%� �>�$P��"���#���\� �
�!P������s���f� ���$P&]7���r� ���>�0-

Furthermore, these six inequalities, together with the inequal-
ity in Theorem II.2, form an independent set of information
inequalities.

Each of the non-Shannon-type information inequalities in
Theorem III.1 can be expressed in the form given in Defini-
tion II.1, solely in terms of entropy functions. For example,
the first inequality in Theorem III.1 can equivalently be written
as:

j/�6�������<j0-7����� �3P*"6�����#+$� �<j/�6�����&�iP*16�����#+!�&�
P*16�����>+!�&�<j0#7����� +!�s+!�&�Rj ]7�����#+��>�3PB]K�����s+��>�
P�]7������+��>�<jk]K�����s+!��+��>�qUXW -
Next, we will provide a proof sketch of the first of the

six inequalities in Theorem III.1. Due to space limitations
and to provide clarity, we will omit many laborious details
of the proof as well as the proofs of the other five parts of the
theorem.

Definition III.2. Given jointly distributed random variables �
and ( and collections � and � of random variables, ( is said
to be a � -copy of � over � if the following two conditions
are satisfied:

(C1) �"��(q�!� +��\� � ��[mW .



(C2) The joint probability distributions of �r(<+$� � and ���#+$�
�
are equal.

We note that condition (C1) is sometimes written as (��
��� ��� +��>� . The following lemma is based on a technique
used in [8].

Lemma III.3. [5, Lemma 14.8] Given jointly distributed
random variable � and collections of random variables �
and � , there exists a random variable ( , jointly related to � ,
� , and � , such that ( is a � -copy of � over � .

The next lemma is used in the proof of Theorem III.1(i).

Lemma III.4. The following is a - -variable information
inequality:

����� �$� �
Ao����� + � ���>�NP���� �E� � � �s+1�&�NP��"���>�!� � � + � �iP��"���>�!� � �>�
P������ �!� � �s+ � �NP��"���#�$��� ��+ � �iP��"���#�$��� �&�0-

Proof. By expanding mutual informations into entropies and
cancelling terms, one can verify the following 1 -variable
identity:

����� �$� �
P���� �E�!(l� � +!�s+1��+ � � (4)

P���� �E�!(l� �&� (5)

P���� �E�!(l� �
� (6)

P���� �E� � � �s+!��+1(�� (7)

P������s+!� �1(l� � +��M+ � � (8)

P������s�!� � �E+1(�� (9)

P������s�!� � � + � +!(�� (10)

P������ �!(�� �>+!��+��M+ � � (11)

P������ �!(�� ��+ � � (12)

P������ �!(�� �>+ � � (13)

P������ + � ���\� (~� (14)

[ ����� + � ���>�NP���� �E� � � �s+1�&�NP��"���>�!� � � + � �iP��"���>�!� � �>�
P������ �!� � �s+ � �NP��"���#�$��� ��+ � �iP��"���#�$��� �&�
P)�7�"��� +��E�!(�� �>+!��+ � � (15)

jo�����r(��*j ����� �$� (16)

P �����r(<+$� �<j ����� +!�
�$� (17)

P �����r(<+!�&�<j ����� +!�&�$� (18)

jo�����r(<+$�>+!�&�<j �����#+$�>+!�&� � (19)

P �����r(<+$�>+ � �*j ����� +!�s+ � �$� (20)

P �����r(<+!��+ � �Rj ����� +1��+ � � � (21)

jk] ������(<+!�s+!��+ � �*j ����� +!�s+!��+ � � �8- (22)

Each of the terms in lines (4)–(14) is a conditional mutual
information and is therefore nonnegative. Thus, if the terms
in (4)–(14) are erased and the “ [ ” is replaced by “ A ”, then we
obtain a 1 -variable Shannon-type inequality. By Lemma III.3

we may choose ( to be a � -copy of � over ���>+!��+ � � . Then,
the term in line (15) is zero by condition (C1), and each of the
terms in lines (16)–(22) equals zero by condition (C2).

We note (without proof) that the inequality in Lemma III.4
is a - -variable non-Shannon-type information inequality.

Proof of Theorem III.1(i): By expanding mutual informations
into entropies and cancelling terms, one can verify the follow-
ing - -variable identity:

]K�"��� �!�
�
P�]7���r� � � � � � (23)

P*�6���r� � � � �
� (24)

P��"� �M� � � � � (25)

P��"� �M� � � �&� (26)

P*�6��� �E� � � � +!�s+!�&� (27)

P�]7�����s+1� � � � �#+��>� (28)

P��"���>�!� � �E+ � � (29)

P��"���#���\� � � (30)

P�]7����� � � � �s+1��+��>� (31)

P�� �"��� + � ���>�NP��"� �E� � � �s+1�&�NP������s�!� � � + � � (32)

P��"���>�!� � �>�iP��"��� �1� � �>+ � �NP������ �!�%� ��+ � � (33)

P��"���#�$��� �&��j �"���#�$�
��� (34)

[ �7�"��� �!�%� �&�NP)�7�"��� �1� � � �iP)�7�"���>�!� � � �
P�]7����� ���>�NPB]K�"���s�1� � �%�
P	�K���r��+��E� � � �#+$�
� (35)

jX����� � �<j ���r�&� � (36)

P*������� � +$� �Rj ���r��+$��� � (37)

P*������� � +$�
�*j ���r��+$�
�$� (38)

j0- ����� � +$� +!�
�<j ���r��+$� +!�
�$�8- (39)

Each of the terms in lines (23)–(31) is a conditional mutual
information and is therefore nonnegative. Thus, if the terms in
(23)–(31) are erased and the “ [ ” is replaced by “ A ”, then we
obtain a - -variable Shannon-type inequality. The expression
spanning lines (32)–(34) is nonnegative by Lemma III.4. By
Lemma III.3 we may choose

�
to be a � -copy of � over

���#+$� � . Then, the term in line (35) is zero by condition
(C1), and each of the terms in lines (36)–(39) equals zero
by condition (C2). 


The fact that the six inequalities in the theorem statement
and the Zhang-Yeung inequality form an independent set of in-
formation inequalities can be verified (somewhat laboriously)
by finding, for each of the seven inequalities, a point in

� e
which does not satisfy the inequality, but which does satisfy
each of the other six inequalities (including substituted forms).
For the inequality given in Theorem III.1(i), such a point is
� � +�� +�� +�� +�1 +�1 +���+�� +��b+�1 +���+�-b+��T+���+��,� .
Corollary III.5. �� �e  [ ��� )��e .
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[2] R. Lněnička, “On the tightness of the Zhang-Yeung inequality for
Gaussian vectors”, Communications in Information and Systems, vol.
3, no. 1, pp. 41-46, June 2003.

[3] K. Makarychev, Y. Makarychev, A. Romashchenko, and N. Vereshcha-
gin, “A new class of non-Shannon-type inequalities for entropies”,
Communications in Information and Systems, vol. 2, no. 2, pp. 147-
166, December 2002.

[4] C. E. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, vol. 27, pp. 379-423 and 623-656, July and October,
1948.

[5] R. W. Yeung, A First Course in Information Theory, Kluwer, 2002.
[6] Z. Zhang, “On a new non-Shannon type information inequality”, Com-

munications in Information and Systems, vol. 3, no. 1, pp. 47-60, June
2003.

[7] Z. Zhang and R. W. Yeung, “A non-Shannon-type conditional inequality
of information quantities”, IEEE Transactions on Information Theory,
vol. 43, pp. 1982-1985, November 1997.

[8] Z. Zhang and R. W. Yeung, “On characterization of entropy function
via information inequalities”, IEEE Transactions on Information Theory,
vol. 44, no. 4, pp. 1440-1452, July 1998.


